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Information Quality and Long-Run Risk: Asset
Pricing Implications

HENGJIE AI∗

ABSTRACT

I study the asset pricing implications of the quality of public information about
persistent productivity shocks in a general equilibrium model with Kreps–Porteus
preferences. Low information quality is associated with a high equity premium, a
low volatility of consumption growth, and a low volatility of the risk-free interest
rate. The relationship between information quality and the equity premium differs
from that in endowment economies. My calibration improves substantially upon the
Bansal–Yaron model in terms of the moments of the wealth–consumption ratio and
the return on aggregate wealth.

IN THIS PAPER, I introduce learning into a production-based long-run risk model.
Learning improves the asset pricing implications of the model along three di-
mensions: it increases the equilibrium equity premium, reduces the volatility
of consumption growth, and reduces the volatility of the risk-free interest rate.
I show that because of the production economy setting, the relationship be-
tween information quality and the equity premium differs from that found in
pure exchange economies (see, e.g., Veronesi (2000)). Quantitatively, my model
improves substantially upon the Bansal and Yaron (2004) model in terms of
its predictions about the volatility of the return on aggregate wealth and the
wealth–consumption ratio. Compared to Bansal and Yaron (2004), I use a lower
relative risk aversion (RRA) parameter, two, and a higher intertemporal elas-
ticity of substitution (IES) parameter, two. My model generates a lower risk
premium on the market portfolio, 5.06% per year, but does roughly as well as
the Bansal and Yaron (2004) model according to other measures commonly used
to assess the performance of consumption-based asset pricing models, such as
the key moments of the risk-free interest rate and the consumption growth
rate.

More specifically, I consider a general equilibrium model with a linear pro-
duction technology and Kreps–Porteus preferences (Kreps and Porteus (1978)).
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Productivity contains both persistent and transitory components, which are
assumed to be statistically independent. In equilibrium, the persistent com-
ponent of productivity shocks translates into persistent expected consumption
growth, generating long-run risk.

Without learning, long-run risk does not contribute to the risk premium on
aggregate wealth in the above economy if the shocks to the persistent and
the transitory components of productivity are independent. Consequently, the
model implies a risk premium that is too low if it is calibrated to match the
volatility of the consumption growth rate in the data. Moreover, without learn-
ing, the model implies that the volatility of the consumption growth rate will
be higher than the volatility of the return on aggregate wealth. However, ac-
cording to Lustig, Van Nieuwerburgh, and Verdelhan (2008), the volatility of
the return on aggregate wealth is estimated to be 4.94% per quarter, which is
much higher than the estimated volatility of consumption growth during the
same period, 0.44% per quarter.

By introducing learning I substantially improve the asset pricing implica-
tions of the model along three dimensions. First, learning leads to a higher
equity premium if the representative agent’s relative risk aversion is greater
than one. With a risk aversion of two and a volatility of consumption growth of
2.80%, my benchmark learning model generates a risk premium on aggregate
wealth of 2.68% per year, which is slightly higher than its empirical estimate
of 2.16% per year in Lustig, Van Nieuwerburgh, and Verdelhan (2008). With-
out learning, the same model would predict a 0.17% per year risk premium
on aggregate wealth if the volatility of consumption is calibrated to match the
data. The key to understanding this result is that learning creates a positive
covariance between the realized return and the expected return on the produc-
tion technology (which in equilibrium equals the return on aggregate wealth).
Whenever a high realized return is observed, the agent optimally revises her
posterior belief of the expected return upward. The positive covariance induces
a negative hedging demand when the agent’s risk aversion is greater than one,
which in equilibrium must be met by a higher risk premium for holding the
claim to the technology.

Second, learning reduces the volatility of consumption growth if the agent’s
intertemporal elasticity of substitution is greater than one. In Lustig, Van
Nieuwerburgh, and Verdelhan (2008), the estimated standard deviation of
the log return on aggregate wealth is 4.94% per quarter, and that of the log
wealth–consumption ratio is 11.74% per quarter. The standard deviation of the
log consumption growth rate is smaller by an order of magnitude, 0.44% per
quarter. With an IES of two, my benchmark model with learning provides a
coherent interpretation of the above empirical facts.

The above empirical evidence on the volatility of the return on aggregate
wealth and the wealth–consumption ratio suggests a large positive covariance
between the log return on aggregate wealth and the log wealth–consumption
ratio. To see this, following Campbell and Shiller (1989), I consider the log-
linear approximation of the log return on aggregate wealth:

rW ,t+1 = κ + ρ(wt+1 − ct+1) + ct+1 − wt, (1)
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where rW ,t+1 is the log return on aggregate wealth, wt+1 is the log aggregate
wealth, ct+1 is the log aggregate consumption, and κ and ρ are parameters
of linearization as defined in Campbell and Shiller (1989). Equation (1) im-
plies that the innovation of consumption growth can be decomposed into an
innovation in the log return on aggregate wealth and an innovation in the log
wealth–consumption ratio. That is, using [Et+1 − Et] to denote innovations in
conditional expectations, I have

[Et+1 − Et](�ct+1) = [Et+1 − Et](rW ,t+1) − ρ[Et+1 − Et](wt+1 − ct+1). (2)

This suggests that the variance of log consumption growth can be repre-
sented as the sum of the variances of the return on wealth and the log
wealth–consumption ratio less the covariance of the two:

vart[�ct+1] = vart[rW ,t+1] + ρ2vart[wt+1 − ct+1] − 2ρcovt[rW ,t+1, wt+1 − ct+1].
(3)

From equation (3), we can see that a high volatility of the log return on ag-
gregate wealth and a high volatility of the log wealth–consumption ratio can
be reconciled with a low volatility of the consumption growth rate only if the
variance terms on the right-hand side of equation (3) are offset by a large
positive covariance between the log return on aggregate wealth and the log
wealth–consumption ratio.

In my model, learning, together with an IES of two, generates an endogenous
positive covariance, covt[rW ,t+1, wt+1 − ct+1], and produces a quarterly volatility
of consumption growth of 1.14%.1 Without learning, the covariance term in
equation (3) is zero, and consequently the model will produce a counterfactually
high level of volatility of consumption growth.

Third, learning decreases the volatility of the risk-free interest rate. Fluc-
tuations in the risk-free interest rate come from fluctuations in expected con-
sumption growth. If the agent observes the persistent component of the return
on technology, then news about the persistent component of technology growth
translates fully into innovations in expected consumption growth. As informa-
tion quality decreases, the information content in news becomes smaller, and
the agent’s belief about future consumption growth becomes less sensitive to
news, thereby making the risk-free rate less volatile.

The effect of learning on the equity premium in my production economy
differs from that in pure exchange economies. In my paper, the assumption of
a linear production technology implies that the return on aggregate wealth is
determined exogenously by the technology. This delivers a simple separation
result: learning increases the equity premium if RRA is greater than one, and
reduces the volatility of consumption growth if IES exceeds one. In contrast,
in pure exchange economies, the return on aggregate wealth is endogenously
determined in equilibrium. In general, the effect of learning on the equity

1This number, although somewhat higher than the estimate provided by Lustig, Van Nieuwer-
burgh, and Verdelhan (2008), is consistent with most of the empirical estimates when a longer
sample is considered; see, for example, Mehra and Prescott (1985) and Bansal and Yaron (2004).
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premium depends on both RRA and IES. In the case of constant relative risk
aversion (CRRA) preferences, Veronesi (2000) establishes that in pure exchange
economies, learning decreases the equity premium if RRA is higher than one.

To better understand the difference between production and pure exchange
economies, I consider a pure exchange economy with a Kreps–Porteus utility
function. My study confirms Veronesi’s (2000) finding in the more general set-
ting. Furthermore, the Kreps–Porteus utility function allows me to separate
the role of IES from that of RRA. I show that Veronesi’s (2000) findings are
driven by the agent’s attitude toward intertemporal substitution, but not risk
aversion.

Many other papers study the role of learning in understanding asset re-
turns in a general or partial equilibrium context. Detemple (1986), Dothan and
Feldman (1986), and Gennotle (1986) are the first to study learning and asset
pricing in a fully dynamic framework. More recently, Brennan and Xia (2001)
emphasize the role of learning in understanding the volatility of the stock mar-
ket and the equity premium. Brevik and D’Addona (2007) study the relation-
ship between information quality and the equity premium in a pure exchange
economy with recursive preferences. Gollier and Schlee (2006) provide general
conditions under which information increases or decreases the equity premium
in pure exchange economies with general expected utility functions. Hansen,
Sargent, and Tallarini (1999) and Hansen and Sargent (2009) study filter-
ing and asset pricing problems in economies with robustness concerns. Croce,
Lettau, and Ludvigson (2007) examine the implications of investors’ informa-
tion for the cross-sectional properties of stock return and cash flow duration in
long-run risk models. However, the above papers do not investigate the asset
pricing implications of information quality in a long-run risk production econ-
omy, nor do they confront the model with empirical evidence on the statistical
properties of the wealth–consumption ratio, which is the main focus of this
paper.

The paper is organized as follows. Section I describes the economy.
Section II characterizes the optimal consumption allocation and studies the
qualitative asset pricing implications of information quality. Section III cali-
brates the model and demonstrates the quantitative importance of learning
in accounting for the key features of the volatility of the return on wealth
and the wealth–consumption ratio in the data. Section IV considers a pure ex-
change economy with learning and compares my result on the relationship be-
tween information quality and the equity premium with that of Veronesi (2000).
Section V concludes.

I. The Economy

A. Preferences

Consider an infinite horizon economy populated by a continuum of agents
with identical Kreps–Porteus preferences with constant RRA parameter γ and



Information Quality and Long-Run Risk 1337

constant IES parameter ψ . Time is continuous, and the representative agent’s
preference is described by the stochastic differential utility (SDU) developed
by Duffie and Epstein (1992a,b). The SDU is the continuous-time version of
the recursive preference considered in Kreps and Porteus (1978), Epstein and
Zin (1989), and Weil (1989).2 Given a consumption process {Cs : s ≥ 0}, for
every t ≥ 0, the date-t utility of the agent, denoted Vt, is defined recursively
by

Vt = Et

[∫ ∞

t
f (Cs, Vs) ds

]
. (4)

In the above equation, f (C, V ) is the aggregator of the recursive preference.3

I focus on the class of SDU that has constant RRA, γ , and constant IES, ψ , so
that

f (C, V ) = β

1 − 1/ψ

C1−1/ψ − ((1 − γ )V )
1−1/ψ

1−γ

((1 − γ )V )
1−1/ψ

1−γ
−1

. (5)

I assume γ �= 1 for simplicity; extension to the limiting case γ = 1 is straight-
forward. However, I do allow ψ = 1 with the understanding that, in this case,

f (C, V ) = β(1 − γ )V
[
ln C − 1

1 − γ
ln[(1 − γ )V ]

]
.

B. The Technology

The economy is endowed with a linear technology that allows the agent to
produce consumption goods from capital. Let Kt denote the total capital stock
at time t. Further, let Ct denote the rate of consumption flow, and It the rate
of the investment flow. Finally, let At,� denote the total factor productivity of
the technology during the infinitesimal time interval [t, t + �]. The resource
constraint during this time interval is

Ct� + It� = At,�Kt. (6)

Given It, the law of motion of capital during the time interval [t, t + �] is

Kt+� = (1 − δt,�)Kt + It�, (7)

2Representation of SDU in the infinite-horizon case is discussed in Duffie and Epstein (1992b).
The existence and uniqueness of SDU of the Kreps and Porteus (1978) type are discussed in Duffie
and Lions (1992) and Schroder and Skiadas (1999).

3In general, a recursive preference is characterized by a pair of aggregators ( f ,A). Duffie and
Epstein (1992b) show that one can always normalize so that A = 0. The aggregator f used here is
the normalized aggregator.
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where δt,� is the depreciation rate of capital during the same time interval.
Combining equations (6) and (7), the law of motion of capital can be written as

Kt+� = (At,� + 1 − δt,�)Kt − Ct�. (8)

The above equation makes it clear that the productivity of the technology
depends on At,� − δt,�. I assume that At,� − δt,� consists of a persistent com-
ponent, denoted by θt, and an i.i.d. component, modeled by increments of a
Brownian motion BK,t. That is,

At,� − δt,� = θt� + σK(BK,t+� − BK,t), (9)

where σK is the volatility parameter of the return on the technology. Combining
equations (8) and (9), and taking the limit as � → 0, the law of motion of capital
can be written as

∀t ≥ 0, dKt = Kt[θtdt + σKdBK,t] − Ctdt. (10)

The persistent productivity shock, θt, is modeled by an Ornstein–Uhlenbeck
process. The law of motion of θt is described by the following stochastic differ-
ential equation (SDE):

∀t ≥ 0, dθt = a(θ − θt)dt + σθdBθ,t, (11)

where a > 0 determines the mean reversion rate of the persistent shock.

C. Information

I consider two alternative information structures in this paper. In an economy
with complete information, ∀t ≥ 0, θt is observable to the agent. In an economy
with incomplete information, {θt : t ≥ 0} is not observable. In the latter case,
the agent observes two sources of noisy information about {θt : t ≥ 0}. First, the
Kt process itself contains information about θt. In fact, equation (10) implies
that

1
Kt

(dKt + Ctdt) = θtdt + σKdBK,t.

That is, knowing Kt and Ct is equivalent to observing the true θt plus a
white noise σKdBK,t. Second, the agent observes a noisy signal of θt, denoted
{et : t ≥ 0}, where

det = θtdt + σedBe,t, e0 = 0. (12)

Intuitively, et is determined by the true value of θt plus a white noise σedBe,t.
I assume that Be is independent of [BK, Bθ ]. The parameter σe ≥ 0 is a mea-

sure of information quality. If σe = 0, then the {et : t ≥ 0} process carries perfect
information about {θt : t ≥ 0} and hence observing {et : t ≥ 0} is equivalent to
observing {θt : t ≥ 0} itself. If σe > 0, then {et : t ≥ 0} contains noisy information
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about {θt : t ≥ 0}. In the case σe → ∞, {et : t ≥ 0} does not contain any informa-
tion about {θt : t ≥ 0} and the agent can update her belief about {θt : t ≥ 0} only
from the observed {Kt : t ≥ 0} process. I allow BK and Bθ to be correlated and
denote this correlation as

ρ = corr(BK, Bθ ). (13)

The agent’s consumption policy can depend only on the information available
and must satisfy the resource constraint. Formally, a consumption plan {Ct :
t ≥ 0} is feasible with initial condition (θ0, K0) if:

1. For every t ≥ 0, Ct depends only on the information available at time t.
2. Given {Ct : t ≥ 0}, the solution to equations (10) and (11) satisfies Kt ≥ 0

for all t ≥ 0.

D. The Asset Market

I assume that n equities are traded on the market. Equities are indexed by
i ∈ {1, 2, . . . , n}. I use boldface to indicate that the relevant variable is vector-
or matrix-valued and superscripts to denote the index of an individual equity.
Let Dt denote the vector of the rates of dividend payments of the n equities,
and Pt denote the prices of the equities at time t, where

Dt = [
D1

t , D2
t , . . . , Dn

t

]T
Pt = [

P1
t , P2

t , . . . , Pn
t

]T
.

For each i, {Pi
t : t ≥ 0} is assumed to be a diffusion process of the form

dPi
t = Pi

t

[
μi

P,tdt + σ i
P,tdBt

]
. (14)

In the above equation, {Bt : t ≥ 0} is a k-dimensional standard Brownian mo-
tion, μi

P,t is a scalar, and σ i
P,t is a 1 × k vector. It is convenient to define the

cumulative return process, {Ri
t : t ≥ 0}, for each equity i as in Duffie (2001):

Ri
0 = 0, and dRi

t =
(

μi
P,t + Di

t

Pi
t

)
dt + σ i

P,tdBt. (15)

I use the vector notation

Rt = [R1
t , R2

t , . . . , Rn
t

]T
and

dRt = μR,tdt + σ R,tdBt, t ≥ 0, (16)

where μR,t and σ R,t are, respectively, the drift and diffusion coefficient of the
cumulative return process of the form

μR,t =
[
μ1

P,t + D1
t

P1
t

, μ2
P,t + D2

t

P2
t

, . . . , μn
P,t + Dn

t

Pn
t

]T

(17)
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and

σ R,t = [σ 1
P,t

T , σ 2
P,t

T , . . . , σ n
P,t

T ]T . (18)

A bond is traded and allows the agents in the economy to borrow from and
lend to each other at a locally risk-free interest rate rt. Therefore, μi

R,t − rt is
the instantaneous risk premium on equity i at time t.

The equity that pays aggregate consumption as its dividend is of particular
importance. The value of this equity is equal to aggregate wealth, denoted Wt. I
use {RW ,t : t ≥ 0} to denote the cumulative return process of aggregate wealth.
I use μW ,t and σW ,t to denote the drift and volatility of the cumulative return
process of aggregate wealth.

In the competitive equilibrium of this economy, only the equity that pays
aggregate consumption is in positive supply. All other assets are in net zero
supply. The notion of competitive equilibrium is standard in this environment.
In Section II, I first solve the planner’s problem and appeal to the first and
second fundamental welfare theorems to derive the implied asset prices.

II. Asset Pricing Implications

A. The Planner’s Problem

The planner’s problem is to maximize the utility of the representative agent,
given in equation (4), subject to the feasibility constraints (10) and (11). If the
representative agent observes θt, for every t, the optimal consumption plan,
Ct, can be chosen as a function of the history {θs, Ks : 0 ≤ s ≤ t}. Dynamic pro-
gramming can be applied, and optimal consumption is a function of the state
variables (θt, Kt).

In the incomplete information case, the planner’s problem is to maximize
the same objective function in (4) subject to the same constraints (10) and
(11). However, feasibility now requires that the optimal consumption plan, Ct,
depend only on the observables {Ks, es : 0 ≤ s ≤ t}, for every t ≥ 0. In this case,
I assume that the agent’s date-0 prior belief about θ0 is a Gaussian distribution
with mean m0 and variance Q0.

The planner’s problem in the incomplete information economy can be solved
by a two-step procedure.4 The first step is a learning problem, that is, deducing
the conditional distribution of θt given observations. If the prior distribution of
θ0 is Gaussian, then the conditional distribution of θt given the observations of
{Ks,es : 0 ≤ s ≤ t} is Gaussian for all t. Therefore, the conditional distribution of
θt can be characterized by the first two moments, mt = Et[θt] and Qt = vart[θt].
The moments mt and Qt can be obtained as the solution to the following Kalman
filter (Liptser and Shiryaev (2001)):

dmt = a(θ − mt) dt +
(

1
σK

Qt + ρσθ

)
dB̃K,t + 1

σe
QtdB̃e,t (19)

4A separation property applies here. The standard reference is Liptser and Shiryaev (2001).



Information Quality and Long-Run Risk 1341

dQt =
{

σ 2
θ − 2aQt −

[(
ρσθ + 1

σK
Qt

)2

+
(

1
σe

Qt

)2
]}

dt. (20)

In equation (19), B̃K,t and B̃e,t are defined recursively by

dB̃K,t = 1
σK

[
1
Kt

(dKt + Ctdt) − mtdt
]

(21)

and

dB̃e,t = 1
σe

[det − mtdt]. (22)

Furthermore, Theorem 8.1 in Liptser and Shiryaev (2001) implies that
{B̃K,t, B̃e,t : t ≥ 0} are independent Brownian motions.

Intuitively, equation (19) implies that the changes in mt have three compo-
nents: a predictable component, revisions that come from observations of Kt,
and revisions that come from observations of the signal et. The locally pre-
dictable component, a(θ − mt) dt, captures the mean reversion of mt that comes
from the mean reversion of θt. The definition of dB̃K,t in equation (21) implies
that dB̃K,t is the revision of mt that results from the deviation of the real-
ized return on the technology, 1

Kt
(dKt + Ctdt), and the expected return on the

technology, mtdt. Similarly, dB̃e,t is the revision of mt that comes from news
contained in et—that is, the difference between the realized changes in et, det,
and the expected changes in et, mtdt.

Equation (20) describes the law of motion of Qt. As t −→ ∞, the posterior
variance of θt, Qt, converges to the steady-state level Q, where Q is given by

Q = (1 − ρ2)σ 2
θ(

a + ρ σθ

σK

)+
√(

a + ρ σθ

σK

)2 + (1 − ρ)σ 2
θ

(
σ−2

K + σ−2
e
) . (23)

I further assume that the conditional variance starts at its steady-state level;
therefore, Qt = Q for all t. Whenever necessary, I use the notation Q(σe) to
emphasize the dependence of Q on the information quality parameter σe. When
σe = 0, et perfectly reveals the true value of θt and thus Q = 0. In general, the
steady-state posterior variance, Q, increases as information about θt contained
in et becomes noisier. Mathematically,

Q(0) = 0;
∂

∂σe
Q(σe) > 0. (24)

Using equation (21), I can write the law of motion of Kt in terms of the
innovation process dB̃K,t:

dKt = Kt[mtdt + σKdB̃K,t] − Ctdt. (25)

Equations (19) and (25) together imply that the conditional covariance between
the return on the technology and the expected return on the technology, mt, is
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covt

(
dKt

Kt
, dmt

)
= ρσKσθ + Q. (26)

If θt is observable, the expected return on the technology is θt. Equations (10)
and (11) imply that the conditional covariance between the return on the tech-
nology and the expected return on the technology is instead given by

covt

(
dKt

Kt
, dθt

)
= ρσKσθ . (27)

Comparing equations (26) and (27) makes it clear that learning creates an
additional positive covariance between the innovations in the realized return
on the technology and the innovations in the expected return, mt. Learning
implies that whenever the realized return on the technology is high, the agent
will revise her posterior belief about the expected return upwards, creating a
positive covariance between the two.

It is convenient to denote

σm =
√(

1
σK

Q+ ρσθ

)2

+
(

1
σe

Q
)2

(28)

and define

B̃m,t = 1
σm

[(
1
σK

Q+ ρσθ

)
B̃K,t + 1

σe
QB̃e,t

]
. (29)

Therefore, B̃m is a standard Brownian motion, and the law of motion of {mt :
t ≥ 0} can be written as

dmt = a(θ − mt)dt + σmdB̃m,t. (30)

The second step in solving the planner’s problem in the incomplete informa-
tion case is a dynamic programming problem. By taking the posterior distri-
bution of θ as a state variable, the second-step problem can be made recursive
and solved by standard dynamic programming techniques. Since Qt = Q for
all t ≥ 0, the conditional mean mt is sufficient to keep track of the conditional
distribution of θt and thus can serve as the state variable in the second-stage dy-
namic programming problem. Using equations (19) and (25), the second-stage
optimization problem can now be written as

V (K, m; σe) = max
ct≥0

E0

[∫ ∞

0
f (Ct, Vt) dt

]
subject to: dKt = Kt[mtdt + σKdBK,t] − Ctdt, K0 = K, Kt ≥ 0,

dmt = a(θ − mt)dt + σmdB̃m,t, m0 = m. (31)

The value function of the planner’s problem is denoted as V (K, m; σe). I use this
notation to emphasize the dependence of the value function on the information
quality parameter σe.
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The optimization problem in (31) is identical to the planner’s problem of
a complete information economy with mt as the observable state variable.5

The key difference between the optimization problem in (31) and the planner’s
problem in the same economy with complete information is that the covariances
between the expected return and the realized return on the technologies are
different, as summarized in equations (26) and (27). Therefore, learning affects
the equilibrium prices and quantities of the model by endogenously generating
the conditional distribution of the state variables.

In the rest of this section, I focus on the planner’s problem in (31). The solution
to the planner’s problem in the case of the complete information economy can
be obtained as the special case of (31) with σe = 0. The following proposition
characterizes the solution to the planner’s problem.

PROPOSITION 1: Consider the social planner’s problem, (31).

• The value function is of the form

V (K, m; σe) = H(m; σe)
K1−γ

1 − γ
, (32)

where H(m; σe) satisfies the ordinary differential equation (ODE) in equa-
tion (IA.3) in the Internet Appendix.6 Moreover,

H′(m; σe)
H(m; σe)

< 0 (> 0) if γ > 1 (γ < 1). (33)

• The optimal consumption policy function is given by

C(K, m; σe) = x(m; σe)−1K, (34)

where x(m; σe) is the wealth–consumption ratio, which satisfies

x(m; σe) = β−ψ H(m; σe)
− 1−ψ

1−γ . (35)

Furthermore, x(m; σe) is strictly increasing (decreasing) in m if ψ > 1 (ψ <

1 ).

Proof: See the Internet Appendix.

The first part of the proposition implies that the value function is homoge-
neous of degree 1 − γ in K. This is due to the fact that the utility function is
homogeneous of degree 1 − γ in consumption, and the constraint set is linearly
homogeneous in K. It follows that the value function is multiplicatively sepa-
rable in m and K. Monotonicity of the value function with respect to m implies
that H(m; σe) is increasing or decreasing in m depending on the sign of γ .

The ratio of total capital stock to the rate of consumption flow, x(m; σe), defined
in equation (35), is also the wealth–consumption ratio of the representative

5A formal statement of this result can be found in Proposition 6 of Veronesi (1999).
6The Internet Appendix is available online at http://www.afajof.org/supplements.asp.
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agent. This is because aggregate wealth measured in terms of current-period
consumption goods, Wt, is equal to Kt for all t ≥ 0. Intuitively, Wt = Kt is true
for two reasons. First, since capital is the only factor of production in this econ-
omy, the value of the total capital stock is equal to aggregate wealth. Second,
equation (10) implies that one unit of Ct can always be transformed freely
into one unit of Kt, and consequently the relative price of capital measured in
current-period consumption is always equal to one.

The second part of Proposition 1 implies that the wealth–consumption ratio,
x(m; σe), is an increasing (decreasing) function of the state if ψ > 1(ψ < 1). This
can be explained by the interaction between the income effect and the substitu-
tion effect as follows. A higher value of mt implies a higher expected return on
the technology. On the one hand, this means that the agent is wealthier and,
other things being equal, will consume a greater proportion of her total wealth.
This is the income effect, which tends to decrease the wealth–consumption
ratio when mt is higher. On the other hand, a higher expected return on the
technology also encourages the agent to save more in order to raise future con-
sumption. This is the intertemporal substitution effect, which tends to increase
the wealth–consumption ratio for higher values of mt. If ψ > 1 , IES is large and
therefore the substitution effect dominates the income effect. Consequently, the
wealth–consumption ratio is increasing in mt. By the same rationale, if ψ < 1,
the income effect dominates and the wealth–consumption ratio decreases with
mt.

The above proposition also implies that equilibrium consumption growth
will contain a slow-moving mean-reverting component. Therefore, the econ-
omy considered in this paper is essentially a continuous-time version of the
Bansal and Yaron (2004) economy with production. To see this point, note that
equations (34) and (35) imply that

Ct = βψ H(mt; σe)
1−ψ

1−γ Kt. (36)

By Ito’s lemma, consumption is a diffusion process and can be written as

dCt = Ct

[
μC(mt)dt + σKdB̃K,t + 1 − ψ

1 − γ

H′(mt; σe)
H(mt; σe)

σmdB̃m,t

]
, (37)

where μC(m) is an increasing function of m. Since {mt : t ≥ 0} is a mean-
reverting process, the expected consumption growth is also mean-reverting. As
demonstrated by Bansal and Yaron (2004), with Kreps–Porteus preferences,
fluctuations in m will require a significant risk premium in equilibrium. In
Section II.B, I study how information quality affects the risk premium associ-
ated with fluctuations in m.

B. The Equity Premium

In this subsection, I establish that learning increases the risk premium on
aggregate wealth when γ > 1. To solve for the risk premium on aggregate
wealth, I first consider a general specification of the portfolio choice problem
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of the representative consumer. Suppose the drift and diffusion coefficients of
the cumulative return processes of the n equities specified in equation (16) are
functions of the state variable m, that is,

μR,t = μR(mt), σ R,t = σ R(mt), t ≥ 0,

where μR(m) is an Rn-valued measurable function of m, and σ R(m) is an Rn×k-
valued one. In equilibrium, the drift and diffusion parameters of the cumulative
return on aggregate wealth are also functions of m. I denote

μW ,t = μW (mt); σ W ,t = σ W (mt),

where μW (m) is a real-valued measurable function of m, and σ W (m) is an Rk-
valued one. I also use σ R,m(mt) to denote the n × 1 vector of covariances of the
returns with the state variable m, which is also assumed to be a function of the
state variable m:

σ R,m(mt) = covt[dRt, dmt].

Finally, I assume that the risk-free interest rate rt is a function of the state
variable, mt, denoted r(mt).

Denote φi as the fraction of the agent’s total wealth invested in equity i, and
denote

φ = [φ1, φ2, . . . , φn]T .

The law of motion of the representative agent’s wealth is written as

dWt = Wt{φT [μR(mt) − r(mt)] + r(mt)}dt + Wtφ
T σ R(mt)dBt − Ctdt. (38)

In the competitive equilibrium, the agent’s objective is to maximize the utility
function in equation (4) subject to the constraints (38) and (30). The value func-
tion of this maximization problem is a function of Wt and mt, denoted U (W, m).
The following lemma characterizes the solution to the optimal portfolio choice
problem. The proof of the lemma can be found in Duffie and Epstein (1992a).

LEMMA 1: The optimal consumption policy and the optimal portfolio choice
policy are functions of the state variables (W, m). Let C∗(W, m) and φ∗(m) denote
the consumption and portfolio policy functions. Then, for all (W, m),

UW (W, m) = fC(C∗(W, m),U (W, m)) (39)

and

[μR(m) − r(m)] + UW ,m(W, m)
UW (W, m)

σ R,m(m) + WUWW (W, m)
UW (W, m)

σ R(m)σ R(m)T φ∗(m) = 0.

(40)

Note that equation (38) implies that the diffusion parameter of the cumula-
tive return on total wealth satisfies

σ W (m) = φ∗(m)T σ R(m). (41)
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Using equations (40) and (41), I obtain Merton’s intertemporal capital asset
pricing formula (Merton (1973)):

μR(m) − r(m) = −WUWW (W, m)
UW (W, m)

cov
[
dR,

dW
W

∣∣∣∣m]− UW ,m(W, m)
UW (W, m)

cov[dR, dm| m].

(42)

Equation (42) reveals that the risk premium on any asset can be decomposed
into two components: compensation for its covariance with the return on ag-
gregate wealth, and compensation for its covariance with the innovations of
the expected return on aggregate wealth. In fact, as I show in the Internet
Appendix, the state price density of this economy, denoted {πt : t ≥ 0}, satisfies

dπt

πt
− Et

[
dπt

πt

]
= WtUWW (Wt, mt)

UW (Wt, mt)
σ R,W (mt)dBt

+ UW ,m(Wt, mt)
UW (Wt, mt)

σmdB̃m,t. (43)

Therefore, the above interpretation is indeed appropriate. I define the term

−WUWW (W, m)
UW (W, m)

cov
[

dR,
dW
W

∣∣∣∣m] (44)

as the myopic demand component of the risk premium. This term accounts for
the total risk premium if the total demand of the equity coincides with the
myopic demand, that is, if the intertemporal hedging demand (Merton (1971))
of the equity is zero. The second term in (42),

−UW ,m(Wt, mt)
UW (Wt, mt)

covt[dRt, dmt], (45)

is defined as the hedging demand component of the risk premium, since this
term reflects the adjustment of the risk premium on the equity due to the
agent’s intertemporal hedging demand. This decomposition turns out to be
very useful when I calibrate the model to the empirical evidence on the return
properties of aggregate wealth, and when I compare my result on the relation-
ship between the equity premium and information quality with that of Veronesi
(2000) in pure exchange economies.

In this economy, Wt = Kt for all t; therefore, the cumulative return process
of aggregate wealth is exogenously determined by the technology:

dRW ,t = 1
Kt

[dKt + Ctdt] = mtdt + σKdB̃K,t. (46)

The fact that Wt = Kt also implies that the value function in the planner’s
problem coincides with the value function in Lemma 1. Using Proposition 1,
equation (42) can be written as

μR(m) − r(m) = γ cov
[

dR,
dW
W

∣∣∣∣m]− H′(m)
H(m)

cov[dR, dm| m]. (47)
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Equations (46) and (47) can be used to derive the formula for the risk premium
on aggregate wealth, which is summarized in the following proposition.

PROPOSITION 2: The risk premium on aggregate wealth is given by

μW ,t − rt = γ σ 2
K − H′(mt; σe)

H(mt; σe)
(ρσKσθ + Q). (48)

Together with the inequality in (33), the above proposition implies that learn-
ing increases the risk premium on aggregate wealth when γ > 1. In this econ-
omy, learning does not affect the myopic demand component of the equity
premium, and it increases the hedging demand component of the equity pre-
mium when γ > 1.

To understand the above proposition, first consider the special case ρ = 0,
that is, the case in which the innovations in the return on the technology and
the innovations in the state variable θ are independent. Here, the long-run risk
in consumption growth does not contribute to the risk premium on aggregate
wealth if θ is perfectly observable. Learning restores the long-run risk premium
and increases the overall risk premium on aggregate wealth if γ > 1.

If θ is observable, that is, σe = 0, then equation (24) implies that the risk
premium on aggregate wealth is

μW ,t − rt = γ σ 2
K. (49)

Using Proposition 1, it can be shown that

μW ,t − rt = γ covt

[
dCt

Ct
,

dWt

Wt

]
.

That is, the Lucas (1978)–Breeden (1979) formula applies in this case. De-
spite the recursive preferences and the persistent productivity shocks, the risk
premium on aggregate wealth is the same as that in an economy with CRRA
preferences and i.i.d. productivity growth. This is not surprising, given the
assumption ρ = 0. Intuitively, the long-run risk comes from dBθ,t, and fluctu-
ations in the return on the technology come from dBK,t. Since dBK,t and dBθ,t

are uncorrelated, the return on the technology, and hence aggregate wealth,
are not exposed to the long-run risk in consumption.

If, instead, ρ = 0 but θ is not observable, the long-run risk is priced and the
total risk premium is given by

μW ,t − rt = γ σ 2
K − H′(mt; σe)

H(mt; σe)
Q.

Here, learning creates an additional term − H′(mt ;σe)
H(mt ;σe) Q in the equity premium.

From Proposition 1, the sign of H′(m;σe)
H(m;σe) depends on γ ; therefore, learning in-

creases the equity premium if γ > 1, and decreases the equity premium if
γ < 1. Intuitively, although dBK,t is uncorrelated with the fluctuation in the
state variable θt, it is correlated with the posterior mean of θt, mt, because of
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learning. Since mt drives the persistent component of consumption growth, as
shown in equation (37), the risk in dBK,t will be priced.

In the general case ρ �= 0, learning enhances the hedging demand component
of the risk premium on aggregate wealth by increasing the premium for long-
run risk in holding aggregate wealth. To see this, by equation (48), the long-run
average equity premium in the economy is given by

E∗[μR,W ,t − rt] = γ σ 2
K − (ρσKσθ + Q)E∗

[
H′(m; σe)
H(m; σe)

]
, (50)

where the notation E∗[·] denotes that the expectation in (50) is taken with re-
spect to the steady-state distribution of m. Numerical results indicate that the
term E[ H′(m;σe)

H(m;σe) ] is hardly affected by σe. In fact, using the log-linear approxima-
tion method proposed in Campbell et al. (2004), one can show that

H′(mt; σe)
H(mt; σe)

≈ 1 − γ

a + κ1
, (51)

where κ1 > 0 is a constant as given in the Internet Appendix. Therefore,

∂

∂σe
E∗[μR,W ,t − rt] ≈ γ − 1

a + κ1

∂

∂σe
Q (σe). (52)

This implies that if γ > 1(γ < 1), the equity premium increases (decreases) as
the noise contained in the {et}t≥0 process increases.

The key implication of Proposition 2 is that the direction of the effect of in-
formation quality on the equity premium depends on the RRA parameter. This
is because learning affects only the hedging demand component of the equity
premium, the sign of which is determined by the risk-aversion parameter.

The hedging demand component of the risk premium on aggregate wealth is

−UW ,m(Wt, mt)
UW (Wt, mt)

covt

[
dWt

Wt
, dmt

]
= − H′(mt)

H(mt)
covt

[
dWt

Wt
, dmt

]
. (53)

Proposition 1 implies that the coefficient − H′(mt)
H(mt)

is positive (negative) if γ >

1(γ < 1). The interpretation is that if γ > 1, the agent dislikes assets with
an expected return that is positively correlated with the return on her total
wealth. Consequently, the hedging demand for the asset is negative when the
covariance term in (53) is positive. Similarly, if γ < 1 and the expected return
on the asset and the return on the aggregate wealth are positively correlated,
the hedging demand will be positive.

As shown in equations (26) and (27), if θ is not observable, learning creates an
additional positive covariance between innovations in the return on aggregate
wealth and innovations in the expected return on aggregate wealth. The posi-
tive covariance induces a negative (positive) hedging demand if γ > 1(γ < 1). In
equilibrium, the expected return on equity has to adjust to equate supply and
demand; therefore, if γ > 1, the negative hedging demand created by learning
translates into a higher equity premium in equilibrium. More generally, the
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equity premium increases as the information contained in {et : t ≥ 0} becomes
noisy, as shown in equation (52).

The setup of the production economy allows me to study not only the effect
of information quality on the equity premium, but also its implications for
equilibrium allocations, and, in particular, for the volatility of consumption
growth rates. In the next subsection, I analyze the effect of learning on the
volatility of the consumption growth rate and on that of the risk-free interest
rate.

C. Volatility of Consumption Growth and the Risk-Free Interest Rate

The high equity premium, the low volatility of consumption growth, and
the low volatility of the risk-free rate observed in the data are among the
most important challenges to consumption-based asset pricing models. In
Section II.B, I provide conditions under which learning either increases or
decreases the equity premium. This subsection is devoted to analysis of the
effect of learning on the volatility of both consumption growth and the risk-free
interest rate.

First, learning decreases (increases) the conditional volatility of consumption
growth if ψ > 1(ψ < 1). To see this, using equation (37),

vart(d ln Ct) =
(

1 − ψ

1 − γ

H′(mt; σe)
H(mt; σe)

)2

σ 2
m + σ 2

K + 2(ρσKσθ + Q)
1 − ψ

1 − γ

H′(mt; σe)
H(mt; σe)

.

(54)

Applying the definition of σm in (28) and equation (23), I obtain

σ 2
m = σ 2

θ − 2aQ.

By the log-linear approximation in (51), equation (54) can be written as

vart(d ln Ct) ≈
(

1 − ψ

a + κ1

)2 (
σ 2

θ − 2aQ
)+ σ 2

K + 2(ρσKσθ + Q)
1 − ψ

a + κ1
.

Therefore, together with (24), the above equation implies

∂

∂σe
vart(d ln Ct) ≈ 2(1 − ψ)

aψ + κ1

(a + κ1)2

∂

∂σe
Q (σe) < 0 (>0) if ψ > 1(ψ < 1).

(55)

That is, the conditional volatility of consumption growth is decreasing (increas-
ing) in σe if ψ > 1(ψ < 1).

To understand equation (55) intuitively, note that the identity

ln Ct = ln Wt − ln
Wt

Ct
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implies the variance decomposition

vart[d ln Ct] = vart[d ln Kt] + vart[d ln x(mt; σe)] − 2covt[d ln Kt, d ln x(mt; σe)].

(56)

Equation (56) is essentially the continuous-time version of equation (3). It
implies that if the return on aggregate wealth (d ln Kt) and the innovation in the
wealth–consumption ratio (d ln x(mt; σe)) are uncorrelated, then the conditional
variance of consumption growth is the sum of the conditional variance of the
return on aggregate wealth and that of the wealth–consumption ratio. When
ψ > 1, learning creates a positive correlation between the return on aggregate
wealth and the wealth–consumption ratio, thereby reducing the volatility of
consumption growth. An IES higher than one implies that the agent has a
strong incentive to substitute future consumption for today’s consumption.
Consequently, the agent optimally chooses a high wealth–consumption ratio
whenever the expected future return on the technology is high. This generates
an endogenous positive covariance between the return on aggregate wealth and
the innovation in the wealth–consumption ratio, since high expected returns
are associated with high realized returns because of learning. The positive
covariance offsets the two variance terms in equation (56) and reduces the
overall conditional volatility of the consumption growth rate.

In addition, learning decreases the steady-state volatility of the risk-free
interest rate. To understand this result, note that since the expected return on
aggregate wealth is mt, equation (48) implies that the risk-free interest rate
can be written as

rt = mt − γ σ 2
K + H′(mt; σe)

H(mt; σe)
(ρσKσθ + Q) ≈ mt − γ σ 2

K + 1 − γ

a + κ1
(ρσKσθ + Q),

where the approximate equality uses the log-linearization approximation in
(51). Therefore, the unconditional variance of the risk-free interest rate is ap-
proximately equal to the unconditional variance of the posterior mean mt:

var∗(rt) ≈ var∗(mt) = 1
2a

σ 2
m = 1

2a

[
σ 2

θ − 2aQ
]
,

where the notation var∗[·] denotes the unconditional variance evaluated at the
steady-state distribution of mt. Consequently,

∂

∂σe
var∗(rt) = − ∂

∂σe
Q (σe) < 0.

Intuitively, fluctuations in the interest rate in this economy come from fluctu-
ations in expected consumption growth, which in turn come from fluctuations
in the posterior belief mt. If information is imprecise, then the revision of the
posterior belief mt is small whenever new information arrives. In the extreme
case where there is absolutely no new information, mt would be a constant: the
agent does not change her belief at all. In the model, the {Kt}t≥0 process always
carries some information about {θt}t≥0; therefore, the steady-state volatility of
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the interest rate achieves its minimum when σe = ∞. When information qual-
ity improves, the posterior mean becomes more sensitive to the arrival of new
information. In fact, when θt is known, mt moves one for one with movements
in θt and var∗(rt) ≈ 1

2aσ 2
θ . This is the case in which the steady-state volatility of

mt, and consequently the steady-state volatility of the risk-free interest rate,
is maximized.

To summarize, my results imply that in an economy with linear production
technology and SDU, the direction in which learning affects the equity premium
is completely determined by the RRA parameter, while the sign of the effect
of learning on the volatility of consumption growth depends only on the IES
parameter. I also show that learning reduces the volatility of the risk-free
interest rate regardless of the preference parameters. My results are similar
in spirit to the findings of Tallarini (2000) in the sense that in production
economy models with Kreps–Porteus preferences, the quantity implications
are primarily determined by IES and the risk premiums mostly depend on
RRA.

In Section III, I calibrate the model to the U.S. economy and demonstrate
the quantitative importance of learning in understanding some of the recent
empirical evidence on the statistical properties of the wealth–consumption ratio
provided by Lustig, Van Nieuwerburgh, and Verdelhan (2008).

III. Calibration

The purpose of this section is to assess the model’s ability to account for
some of the key asset pricing statistics in the data. Although the long-run
risk model developed by Bansal and Yaron (2004) successfully explains many
salient features of the asset market data, the volatility of the return on ag-
gregate wealth and the volatility of the wealth–consumption ratio implied by
the model are too low relative to the empirical evidence presented in Lustig,
Van Nieuwerburgh, and Verdelhan (2008). My benchmark model substantially
improves the performance of the Bansal and Yaron (2004) model relative to the
empirical findings of Lustig, Van Nieuwerburgh, and Verdelhan (2008). Other
asset pricing statistics of the model, such as the unconditional moments of the
consumption growth rate, the risk premium on the market portfolio, and
the risk-free interest rate, are largely consistent with their counterparts
in the data and in the Bansal and Yaron (2004) model.

A. Parameter Choices

The choices of the preference parameters are as follows: β = 0.014, γ = 2,
and ψ = 2. I calibrate the discount rate β = 0.014. This is equivalent to an
annual discount factor of 0.986 per year in discrete time models. I choose
the risk-aversion parameter γ = 2. This choice of risk-aversion parameter is
consistent with that used in most of the macroeconomics literature, for example,
Rouwenhorst (1995). In the benchmark model, I use an IES parameter ψ = 2.
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Robust analysis with respect to the IES parameter is reported in the next
subsection.

I choose the technology parameters as follows: σK = 0.099, a = 0.027 , θ̄ =
0.035, and σθ = 0.005. I choose σK to match the volatility of the return on
aggregate wealth and θ̄ to match the level of the mean risk-free interest rate.
The estimated volatility of the return on aggregate wealth by Lustig, Van
Nieuwerburgh, and Verdelhan (2008) is 4.94% at the quarterly level. With
σK = 0.099, equation (46) implies that the instantaneous volatility of the return
on aggregate wealth is

lim
�→0

Stdt

[
Rt+�

Rt
− 1
]

= σK = 9.9%.

The annualized volatility of the return on aggregate wealth is also affected by
the fluctuations in θ and is slightly higher than 9.9%. This brings the quarterly
volatility of the return on aggregate wealth in my model to 4.97%, which closely
matches the estimate in Lustig, Van Nieuwerburgh, and Verdelhan (2008).
Changes in θ̄ primarily affect the risk-free interest rate without changing the
risk premium. I choose θ̄ = 0.035 so that the average of the annualized risk-free
interest rate in the model is 0.86%, which matches the point estimate of the
same moment in Bansal and Yaron (2004).

Because of the statistical difficulty of estimating the long-run risk parame-
ters, there is little independent empirical evidence available to discipline the
choice of a and σθ . Here I choose a = 0.027 and σθ = 0.005 and verify that the
key statistics of consumption dynamics generated by the model are consistent
with those in the data. Equation (3) shows that, without learning, the volatil-
ity of consumption growth is at least as high as the volatility of the return on
aggregate wealth. Consequently, it is impossible for the model to match the
second moment of the consumption growth rate in the data. I set σe = ∞ in the
benchmark model to maximize the impact of learning. In Section III.B, I show
that the key moments of the equilibrium consumption growth rate generated
in the benchmark model with learning are largely consistent with the data.
I also change σe and evaluate the effect of learning on the dynamics of the
consumption growth rate and the wealth–consumption ratio.

B. Dynamics of Aggregate Consumption and Aggregate Wealth

In this subsection, I discuss the model’s implications on the dynamics of
the consumption growth rate and the return on aggregate wealth. I show that
the moments of consumption growth rate generated by the model are largely
consistent with those in the data, and the model improves substantially upon
the Bansal and Yaron (2004) model in terms of the statistical properties of the
wealth–consumption ratio and the return on aggregate wealth.

The model is solved numerically using the Markov chain approximation
method developed in Kushner and Dupuis (2001). Figure 1 plots the risk pre-
mium on aggregate wealth as a function of the state variable m. The solid
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Figure 1. Expected return on aggregate wealth. The dotted line is the risk premium on
aggregate wealth obtained by log-linear approximation. The solid line is the accurate numerical
solution for the risk premium on aggregate wealth computed using the Markov chain approxima-
tion method.

line is the instantaneous risk premium on aggregate wealth as given in (48).
The dotted line represents the risk premium on aggregate wealth obtained by
using the log-linear approximation in equation (51). Log-linear approximation
assumes that ln H(m) is linear in m, and therefore H′(m)

H(m) is a constant. Figure 1
shows that the risk premium on aggregate wealth is slightly increasing in m.
This is because H′(m)

H(m) is slightly decreasing in m. The log-linearization method
gives a fairly good approximation of the level of the risk premium, but does not
capture the dependence of the risk premium on m. Figure 2 plots the expected
return on aggregate wealth and the risk-free interest rate as a function of m.
As m rises, the expected return on aggregate wealth increases and most of the
increase is due to changes in the risk-free interest rate. Empirical evidence
suggests that risk premia are countercyclical (see, e.g., Cochrane (2005)). A
richer model that incorporates countercyclical volatility of the return on aggre-
gate wealth could generate the pattern of time-varying risk premia consistent
with the empirical evidence. However, I abstract from time-varying volatility
in order to focus on the effect of learning on the unconditional moments of
returns and consumption growth rates.

Table I reports the moments of the wealth–consumption ratio generated by
the model. Estimates of these moments from the data, and the correspond-
ing moments produced by the Bansal and Yaron (2004) model, are taken from
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Figure 2. Expected returns as a function of m. The dotted line is the expected return on
aggregate wealth, m. The dashed line is the risk-free interest rate as a function of m. Most of the
variation in the expected return on aggregate wealth comes from variation in the risk-free interest
rate. The graph is based on the accurate numerical solution using the Markov chain approximation
method.

Lustig, Van Nieuwerburgh, and Verdelhan (2008). Since all moments in Lustig,
Van Nieuwerburgh, and Verdelhan (2008) are calculated at the quarterly fre-
quency, I simulate my continuous-time model and aggregate quantities to a
quarterly frequency. This avoids the time aggregation issue and makes all
moments directly comparable to each other.

My model reproduces the large volatility of the wealth–consumption ratio
and the return on aggregate wealth in the data. Note that the quarterly stan-
dard deviation of the return on aggregate wealth produced by the Bansal and
Yaron (2004) model, 1.64%, is much smaller than its empirical counterpart
of 4.94%. My model closely matches the volatility of the return on aggregate
wealth because the parameter σK is calibrated to target this moment. The
model also produces a highly volatile wealth–consumption ratio process, as in
the data. The quarterly standard deviation of the wealth–consumption ratio
produced by the benchmark model, 11.01%, although still lower than the point
estimate in Lustig, Van Nieuwerburgh, and Verdelhan (2008), 17.24%, is sub-
stantially higher than the same moment in the Bansal and Yaron (2004) model,
2.35%. The standard deviation of the first difference in the wealth–consumption
ratio produced by the model, 4.34%, closely matches the same moment in the
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Table I
Moments of the Wealth-to-Consumption Ratio

This table displays the unconditional moments of the log wealth–consumption ratio, w − c; its first
difference, �wc; the log return on the aggregate wealth, rW ; the consumption growth rate gC ; and
the log risk-free interest rate, r f . The expressions E[·] and Std[·] denote the means and standard
deviations of the quantities in square brackets. The expressions AC(1)[w − c] and AC(4)[w − c] are,
respectively, the first- and fourth-order autocorrelations of the log wealth–consumption ratio. The
expression corr[�c, �wc] stands for the correlation between consumption growth rates and the log
wealth–consumption ratio. The second column (Data) contains moments estimated in Lustig, Van
Nieuwerburgh, and Verdelhan (2008). The third column (BY) contains moments generated from
simulations of the Bansal and Yaron (2004) model. Moments in the second and the third columns are
reported in Lustig, Van Nieuwerburgh, and Verdelhan (2008). The last column contains moments
generated from the benchmark model in this paper. The statistics in the last column are simulated
from the continuous-time model and aggregated to a quarterly level. Moments in the third and
the last columns are averages and standard errors (in parentheses) of 5,000 simulations of 220
quarters of data. Moments in the second column are the point estimates and standard errors (in
parentheses) obtained by the bootstrap procedure described in Lustig, Van Nieuwerburgh, and
Verdelhan (2008).

Data BY Model

E [w − c](s.e.) 5.86 (0.49) 5.85 (0.01) 5.81 (0.28)
Std [w − c](s.e.) 17.24% (4.30) 2.35% (0.43) 11.01% (4.06)
AC(1) [w − c](s.e.) 0.96 (0.03) 0.91 (0.03) 0.88 (0.07)
AC(4) [w − c](s.e.) 0.85 (0.08) 0.70 (0.10) 0.65 (0.19)
Std (�wc)(s.e.) 4.86% (1.16) 0.90% (0.05) 4.34% (0.38)
corr [�c,�wc](s.e.) 0.11 (0.06) −0.06 (0.06) 0.43 (0.09)
Std [gC ](s.e.) 0.44% (0.03) 1.43% (0.08) 1.14% (0.18)
Std [rW ](s.e.) 4.94% (1.16) 1.64% (0.09) 4.97% (0.43)
E [rW − r f ](s.e.) 0.54% (0.16) 0.40% (0.01) 0.66% (0.60)

data, 4.86%. The Bansal and Yaron (2004) model, on the other hand, produces
variation in the wealth–consumption ratio of 0.90% per quarter.

Other statistics of the wealth–consumption ratio generated by the
model are largely consistent with the data. The autocorrelations of the
wealth–consumption ratio produced by the model are similar to those in Bansal
and Yaron (2004), and are well within two standard deviations of their empiri-
cal estimates. In the data, the consumption growth rate and the first difference
in the wealth–consumption ratio are moderately positively correlated (0.11
at the quarterly level). My model produces a larger correlation, 0.43 at the
quarterly level, while the Bansal and Yaron (2004) model produces a small
negative correlation. The quarterly risk premium on the aggregate wealth
generated by my model, 0.66%, is slightly higher than the point estimate in
Lustig, Van Nieuwerburgh, and Verdelhan (2008), 0.54%. The Bansal and Yaron
(2004) model generates a slightly lower risk premium on aggregate wealth,
0.40%.

Table II compares the moments of the consumption growth rate in the
data with those generated by the Bansal and Yaron (2004) model and those
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Table II
Moments of Annualized Consumption Growth

This table compares the unconditional moments of annualized consumption growth in the data, in
Bansal and Yaron’s (2004) model, and in the benchmark incomplete information economy. The ex-
pressions E [gC ] and Std [gC ] denote the mean and standard deviation of annualized consumption
growth rates. The expression AC( j) is the jth autocorrelation. The second column (Data) contains
the point estimates and the standard errors (in parentheses) of the estimates of these moments
computed from U.S. Bureau of Economic Analysis data for the period 1929 to 1998 and are taken
from Bansal and Yaron (2004) directly. The third column (BY) contains the consumption growth
statistics reported in Bansal and Yaron (2004). They are generated from 1,000 simulations of
840 months of data in the Bansal and Yaron (2004) model and time-aggregated to an annual fre-
quency. The last column (Model) contains the averages and standard errors (in parentheses) of
the corresponding moments across 5,000 simulations of the benchmark model in this paper for
840 months. All simulations are done in the continuous-time model and aggregated to an annual
frequency.

Data BY Model

E [gC ] 1.8 1.8 1.79 (2.21)
Std [gC ] 2.93 (0.69) 2.72 2.80 (0.52)
AC(1) 0.49 (0.14) 0.48 0.48 (0.15)
AC(2) 0.15 (0.22) 0.29 0.28 (0.19)
AC(5) −0.08 (0.10) 0.13 0.12 (0.06)
AC(10) 0.05 (0.09) 0.01 0.01 (0.07)

generated by my benchmark model. The estimates of the moments of the
consumption growth rate are taken from Bansal and Yaron (2004). Since the
estimation and calibration in Bansal and Yaron (2004) are done at an annual
frequency, I simulate a continuous-time model and time-aggregate quantities
to an annual frequency. Table II shows that the consumption growth statistics
in my model are broadly consistent with their empirical counterparts, and with
those produced in the Bansal and Yaron (2004) model. The mean and the stan-
dard deviation of the consumption growth rates in the model closely match their
empirical counterparts. The autocorrelation functions of consumption growth
rates are very similar to those in the Bansal and Yaron (2004) model and are
largely consistent with the pattern in the data.

Learning and a high IES are together responsible for the large volatil-
ities of the return on aggregate wealth and the wealth–consumption ra-
tio generated by my model. To understand the intuition for this, note that
equation (3) implies that a large covariance term, covt(rW ,t+1, wt+1 − ct+1),
is necessary for generating the right pattern of volatility of the consump-
tion growth rate, the wealth–consumption ratio, and the return on aggre-
gate wealth. Following Campbell (1999), I write the innovation of the log
wealth–consumption ratio as

(wt+1 − ct+1) − Et[wt+1 − ct+1] = (ψ − 1)(Et+1 − Et)

⎡⎣ ∞∑
j=0

ρirW ,t+ j+1

⎤⎦ .
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Therefore, the covariance term in equation (3) can be written as

covt(rW ,t+1, wt+1 − ct+1)

= (ψ − 1)covt

⎛⎝rW ,t+1 − Et[rW ,t+1], (Et+1 − Et)

⎡⎣ ∞∑
j=0

ρirW ,t+ j+1

⎤⎦⎞⎠ .
(57)

Equation (57) is exactly the discrete-time analogue of the variance decomposi-
tion in equation (56). The above equation shows that learning creates a positive
covariance between the innovation in return, rW ,t+1 − Et[rW ,t+1], and the inno-
vation in expected future returns, (Et+1 − Et)[

∑∞
j=0 ρirW ,t+ j+1]. With ψ > 1, this

implies a positive covariance between the return on aggregate wealth and the
wealth–consumption ratio and helps produce a small volatility of consumption
growth rates.

Equation (57) implies that the choice of the IES parameter is important for
generating a small volatility of the consumption growth rates. Empirical ev-
idence on the magnitude of the IES parameter is mixed. While Hansen and
Singleton (1982), Attanasio and Weber (1989), and Vissing-Jorgensen (2002)
estimate the IES parameter to be larger than one, other studies, for example,
Hall (1988), Campbell (1999), and Browning, Hansen, and Heckman (1999),
argue that the IES parameter is well below one. Bansal and Yaron (2004)
calibrate the IES parameter to be 1.5 and argue that ignoring the time-
varying volatility in consumption growth leads to serious downward bias in
the estimates of the IES parameter. Bansal, Kiku, and Yaron (2007) esti-
mate the IES parameter to be 2.43 with a standard deviation of 1.3. Key
implications of the model for different choices of the IES parameter are re-
ported in Table III. Changes in the IES parameter have a negligible effect on
the statistical properties of asset returns. As shown in Table III, the effect of
IES on the volatility of the log wealth–consumption ratio is quite significant.
The volatility of the log wealth–consumption ratio is minimized when ψ = 1.
In this case, the ratio of wealth to instantaneous consumption is constant by
Proposition 1, and the volatility of the annualized log wealth–consumption
ratio comes completely from the volatility of time-aggregated consumption.
For ψ < 1, the wealth–consumption ratio is decreasing in mt. Consequently,
the volatility of the return on aggregate wealth and the volatility of the
wealth–consumption ratio reinforce each other, making consumption growth
more volatile than the return on aggregate wealth. For ψ > 1, as discussed in
Section II.C, changes in the wealth–consumption ratio offset the volatility in
the return on aggregate wealth because of learning. Therefore, as ψ increases,
the volatility of the log wealth–consumption ratio rises, while the volatility of
consumption growth decreases.

Table IV compares the model’s implications for different choices of the infor-
mation quality parameter σe. As I decrease σe from ∞ to zero, the mean con-
sumption growth rate increases slightly. The volatility of consumption growth
increases sharply from 2.80% to 13.1% per year. In the case with no learn-
ing, the volatility of consumption growth is higher than the volatility of the
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Table III
The Role of Intertemporal Elasticity of Substitution

This table documents the effects of the choice of the IES parameter, ψ , on the key implications of
the model. The expressions Std [rW ], Std[w − c], and Std [�wc] denote the standard deviations
of the log return on aggregate wealth, the log wealth–consumption ratio, and the first difference
in the log wealth–consumption ratio. The terms E [gC ] and Std [gC ] denote the mean and stan-
dard deviation of annualized consumption growth rates. AC(1) is the first-order autocorrelation
of consumption growth rates. E [r f ] and Std [r f ] denote, respectively, the annualized mean and
standard deviation of the risk-free interest rate generated by the model. E [rW − r f ] stands for the
annualized risk premium on aggregate wealth. All quantities are computed at an annual level. All
reported statistics are the averages and standard deviations (in parentheses) of the corresponding
moments across 5,000 simulations of the benchmark model for 70 years. All simulations are done
in the continuous-time model and aggregated to an annual frequency.

ψ 0.5 1.0 1.5 2.0 2.5

Wealth-to-Consumption Ratio
Std [rW ] 10.3 (0.92) 10.3 (0.93) 10.2 (0.93) 10.3 (0.92) 10.3 (0.93)
Std [w − c] 12.2 (3.2) 5.74 (0.49) 10.1 (2.7) 18.5 (6.0) 27.5 (9.5)

Consumption Growth Rate
E [gC ] 1.63 (2.03) 1.69 (2.04) 1.69 (2.05) 1.79 (2.21) 1.85 (2.24)
Std [gC ] 11.1 (1.0) 8.13 (0.75) 5.36 (0.53) 2.80 (0.52) 2.04 (0.62)
AC(1) 0.23 (0.11) 0.25 (0.11) 0.29 (0.12) 0.48 (0.15) 0.77 (0.14)

Returns
E [r f ] 0.84 (1.02) 0.86 (1.00) 0.84 (0.96) 0.86 (0.98) 0.85 (0.94)
Std [r f ] 0.80 (0.28) 0.79 (0.27) 0.78 (0.27) 0.77 (0.26) 0.75 (0.26)
E [rW − r f ] 2.69 (1.22) 2.68 (1.24) 2.69 (1.25) 2.68 (1.26) 2.69 (1.27)

Table IV
The Effect of Information Quality

This table documents the effects of information quality on the moments of consumption growth,
the risk premium on aggregate wealth, the risk-free interest rate, and the wealth–consumption
ratio for various values of the information quality parameter, σe. The terms E[gC ] and Std[gC ]
denote the mean and standard deviation of annualized consumption growth rates. The expressions
E[rW − r f ] and E[r f ] are, respectively, the annualized risk premium on the aggregate wealth and
the annualized risk-free interest rate. The expressions Std[rW ], Std[r f ], and Std[w − c] denote
the annualized standard deviations of the return on aggregate wealth, the risk-free interest rate,
and the log wealth–consumption ratio. All reported statistics are the averages and standard errors
(in parentheses) of the corresponding moments across 5,000 simulations of the benchmark model
for 70 years. All simulations are done in the continuous-time model and aggregated to an annual
frequency.

σe E[gC ] Std[gC ] E[rW − r f ] Std[rW ] E[r f ] Std[r f ] Std[w − c]

0.00 1.92 (2.60) 13.1 (1.62) 1.96 (1.23) 10.3 (1.0) 1.57 (1.66) 1.33 (0.48) 32.6 (11.6)
0.01 1.91 (2.55) 11.8 (1.51) 2.07 (1.23) 10.3 (1.0) 1.47 (1.58) 1.25 (0.45) 30.1 (10.7)
0.02 1.88 (2.55) 10.8 (1.47) 2.18 (1.24) 10.2 (1.0) 1.35 (1.51) 1.17 (0.42) 28.3 (10.1)
0.05 1.81 (2.37) 8.41 (1.29) 2.39 (1.24) 10.3 (1.0) 1.13 (1.30) 1.02 (0.37) 24.6 (8.7)
0.10 1.80 (2.27) 5.91 (1.13) 2.55 (1.25) 10.3 (1.0) 0.97 (1.12) 0.88 (0.32) 21.3 (7.4)
∞ 1.79 (2.21) 2.80 (0.52) 2.68 (1.26) 10.3 (1.0) 0.86 (0.98) 0.77 (0.26) 18.5 (6.0)
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return on aggregate wealth because changes in the wealth–consumption ratio
are independent of the innovations in the return on aggregate wealth and add
to the volatility of consumption growth. As σe changes from ∞ to zero, the
risk premium on aggregate wealth decreases from 2.68% to 1.96%, despite the
huge volatility in consumption growth rates associated with small values of σe.
Furthermore, the mean risk-free interest rate increases from 0.86% to 1.57%,
which echoes the change in the equity premium. The standard deviation of the
risk-free interest rate increases from 0.77% to 1.33%. These all confirm the
theoretical results obtained in Sections II.B and II.C.

The risk premium on aggregate wealth produced by the model is fairly low,
2.68% per year. To address the equity premium puzzle (Mehra and Prescott
(1985)), in the next subsection I examine whether the benchmark model is able
to reproduce the key features of the market risk premium when the dividend
process of the market equity is calibrated to the data.

C. The Equity Premium Puzzle

Following Campbell (1996) and Bansal and Yaron (2004), I model the aggre-
gate dividend process and the aggregate consumption process separately. The
market return is assumed to be the return on the claim to the dividend process
{Dt : t ≥ 0}. The log dividend is assumed to satisfy

d ln Dt = φd ln Ct − Adt + σDdBD,t,

where the Brownian motion BD,t is independent of all other shocks in the econ-
omy. As in Bansal and Yaron (2004), the parameter φ captures the idea of
leverage. The parameters φ, A, and σD are chosen as follows: A = 0.034, φ =
2.05, σD = 0.11. The parameter A determines the mean growth rate of divi-
dends and has virtually no effect on the risk premium; A = 0.034 is chosen to
match the mean growth rate of dividends in the data. The parameters φ and
σD are chosen to jointly match the standard deviation of the dividend growth
rate, and the correlation between the dividend growth rate and the consump-
tion growth rate in the data. The moments of dividend growth and the market
return are reported in Table V. The autocorrelation of the dividend growth rate
produced by this parameter choice is slightly higher than its counterpart in
the data, but is similar to the same moment produced by the Bansal and Yaron
(2004) model and well within one standard deviation of its point estimate.

I use a low risk-aversion parameter, γ = 2. In fact, the high volatility of
the return on aggregate wealth and the moderate risk premium on the return
on aggregate wealth suggests that risk aversion must be low. To see this, note
that in any economy where the expected return on wealth is a Markov diffusion
process, Lemma 1 and equation (42) imply that the risk premium on aggregate
wealth be given by

μW ,t − rt = γ vart

[
dWt

Wt

]
− UW ,m(Wt, mt)

UW (Wt, mt)
covt

[
dWt

Wt
, dmt

]
. (58)
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Table V
The Risk Premium of the Market Return

This table reports the key asset pricing statistics in the data, in the Bansal and Yaron (2004)
model, and in the benchmark incomplete information economy. All moments are annualized. The
expressions Std[gD] and AC(1) denote the standard deviation and the first-order autocorrelation of
log dividend growth rate. corr(g, gD) is the correlation of log dividend growth and log consumption
growth. E[r f ] and E[rM − r f ] are, respectively, the annualized mean risk-free rate and the annu-
alized risk premium on the market return. E[exp(p − d)] is the average price-to-dividend ratio of
the market portfolio. Std(r f ), Std(rM), and Std[p − d] denote the standard errors of the risk-free
interest rate, the market return, and the log price-to-dividend ratio, respectively. The second col-
umn (Data) contains the point estimates and standard errors (in parentheses) of these moments
provided in Bansal and Yaron (2004). The third column (BY) contains the moments generated by
the Bansal and Yaron (2004) model reported in Bansal and Yaron (2004). The last column (Model)
contains the moments generated by the benchmark model in this paper. Moments in the last col-
umn are averages and standard deviations (in parentheses) of 5,000 simulations of 840 months of
data. The simulation is done in continuous time and aggregated to an annual frequency.

Data BY Model

Std[gD] 11.49% (1.98) 10.96% 10.65% (11.09)
AC(1) 0.21 (0.13) 0.33 0.30 (1.3)
corr(g, gD) 0.55 (0.34) 0.31 0.53 (0.11)
E[r f ] 0.86% (0.42) 0.93 0.86% (0.98)
Std(r f ) 0.97% (0.28) 0.57 0.77% (0.26)
E[rM − r f ] 6.33% (2.15) 6.84 5.06% (3.14)
Std[rM] 19.42% (3.07) 18.65 23.20% (3.27)
E[exp(p − d)] 26.56 (2.53) 19.98 27.22 (1.50)
Std[p − d] 0.29 (0.04) 0.21 0.34 (0.12)

Lustig, Van Nieuwerburgh, and Verdelhan (2008) estimate the quarterly stan-
dard deviation of return on aggregate wealth to be 4.94%. Assuming ho-
moskedasticity, this alone will generate a 0.49% risk premium on aggregate
wealth with γ = 2 through the myopic demand component of the equity pre-
mium in (58). In the data, the risk premium on aggregate wealth is 0.54%
per quarter (Lustig, Van Nieuwerburgh, and Verdelhan (2008)). As long as the
covariance between the return and the expected return is positive, higher risk
aversion will generate too much risk premium in aggregate wealth. In fact, in
my model, the second term is fairly large because of learning, and consequently
the model overstates the risk premium on aggregate wealth: 0.66% on a quar-
terly level. In Bansal and Yaron (2004), the volatility of the return on aggregate
wealth is too low relative to the estimate in Lustig, Van Nieuwerburgh, and
Verdelhan (2008), and thus they have to use a large risk-aversion parameter
to produce a large market price of risk.

The model generates a risk premium on the market return of 5.06% per year
with a risk-aversion parameter of two. Both the transitory and the persistent
components of the return on technology are responsible for the large risk pre-
mium. Using log-linearization, by equation (42), the risk premium on an asset
with cumulative return Rt can be written as
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[μR(mt) − r(mt)] = γ covt

[
dRt,

dWt

Wt

]
+ γ − 1

a + κ1
covt[dRt, dmt]. (59)

The above equation makes it clear that a high volatility of return on aggregate
wealth, σK, enhances the myopic demand component of the risk premium, and a
low mean reversion parameter, a, strengthens the hedging demand component
of the equity premium. As explained in Section III.B, the volatility of the return
on aggregate wealth in my model is much larger than that in Bansal and Yaron
(2004). The expected return on aggregate wealth is also more persistent in
my model. The monthly autocorrelation of mt is e− a

12 = 0.998, higher than that
used in Bansal and Yaron (2004), 0.979. The hedging demand component of
the equity premium is further enhanced by learning. Consequently, the model
generates a significant risk premium on the market return despite the low risk
aversion.

My model abstracts from time-varying volatility in consumption growth
rates. The volatility of return on aggregate wealth is constant by assump-
tion. Numerical results show that the variation in the instantaneous volatility
of consumption growth rate is negligible. Bansal and Yaron (2004) demon-
strate that time-varying volatility is important in accounting for many stylized
empirical facts. First, the time-varying volatility risk in consumption growth
contributes to a sizable portion of the equity premium in their calibration. My
model understates the risk premium on the market return: 5.06% per year
compared to 6.84% per year in Bansal and Yaron’s (2004) calibration. Incorpo-
rating time-varying volatility in consumption growth will increase the risk pre-
mium produced by the model. Second, in Bansal and Yaron (2004), time-varying
volatility helps generate the predictability of excess returns by dividend yield.
As explained earlier, in my model, since the wealth–consumption ratio, the
risk-free interest rate, and the risk premium are all increasing functions of the
state variable m, a high dividend yield forecasts a low risk premium and low
future returns in the model. These implications of the model are clearly incon-
sistent with empirical evidence. Since the main focus of the paper is on the
effect of learning on the unconditional moments of the wealth–consumption ra-
tio and the return on aggregate wealth, I abstract from time-varying volatility
and do not attempt to address empirical evidence on the conditional moments
of stock returns. A richer setup could potentially further improve the perfor-
mance of the model in terms of the level of the risk premium on the market
and the predictability of stock returns.

IV. Comparison with Pure Exchange Economies

The relationship between information quality and the equity premium has
been studied by Veronesi (2000), Brennan and Xia (2001), and Brevik and
D’Addona (2007), among others, in pure exchange economies. In pure ex-
change economies with CRRA utility, Veronesi (2000) establishes the result that
learning leads to a lower (higher) equity premium if RRA is higher (lower) than
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one, which is the opposite of my result in equation (52). In this section, I consider
a pure exchange economy and compare the relationship between information
quality and the equity premium in my production economy with that in pure
exchange economies.

In the linear production economy studied in this paper, as discussed in
Section II.B, learning affects the hedging demand component of the equity
premium, and the direction of this effect depends on RRA. Learning does not
affect the myopic demand component of the equity premium. This is because
the return on aggregate wealth is exogenously determined by the linear produc-
tion technology, and the sign of the myopic demand component of the equity
premium depends only on risk aversion and the volatility of the return on
aggregate wealth, as shown in equation (42).

In the rest of the section, I demonstrate that in pure exchange economies,
learning affects not only the hedging demand component, but also the myopic
demand component of the equity premium. The sign of the effect of learning on
the hedging demand component of the equity premium depends only on RRA,
whereas the direction in which learning affects the myopic demand component
of the equity premium is determined by the IES parameter. I also show that
in the case of CRRA, the effect on the myopic demand component of the eq-
uity premium always dominates. Consequently, my result confirms Veronesi’s
(2000) finding and further reveals that Veronesi’s (2000) result is driven by the
agent’s IES, not RRA.

Consider a pure exchange economy in which the representative agent has the
Kreps–Porteus SDU as specified in (4). The endowment process of the economy
is assumed to be

dYt = Yt[θtdt + σY dBY ,t], (60)

where {θt}t≥0 follows the same process as described in (11). Again, assume

corr(BY , Bθ ) = ρ.

If the agent does not observe {θt}t≥0, she must update her belief based on the
observed consumption process and an additional source of information denoted
by {et}t≥0, where

det = θtdt + σedBe,t.

I again assume that Be is independent of [BY , Bθ ]. The posterior mean of θ

obeys the following stochastic differential equation (again, assuming that the
posterior variance, QE, starts at its steady-state level given in equation (IA.16)
in the Internet Appendix):

dmt = a(θ − mt)dt +
(

1
σK

QE + ρσθ

)
dB̃Y t + 1

σe
QEdB̃e,t, (61)

where B̃Y t and B̃e,t are innovation processes defined by

dB̃Y ,t = 1
σY

[
dYt

Yt
− mtdt

]
, dB̃e,t = 1

σe
[det − mtdt]



Information Quality and Long-Run Risk 1363

and QE is the steady-state posterior variance of θ in the exchange economy.
The expression of QE is given in the Internet Appendix.

Let Wt denote the wealth of the representative agent. Homogeneity implies
that the value function of the agent’s optimal portfolio choice problem can be
written as

U (W, m) = 1
1 − γ

G(m)
1
ψ W1−γ , (62)

where the function G(m) satisfies an ODE given in the Internet Appendix.
Using equation (44), the myopic demand component of the risk premium on
aggregate wealth, denoted MDt, is written as

MDt = γ vart

[
dWt

Wt

]
. (63)

Similarly, equation (44) implies that the hedging demand component of the risk
premium on aggregate wealth is given by

HDt = − 1
ψ

G′(mt)
G(mt)

covt

[
dWt

Wt
, dmt

]
. (64)

In the Internet Appendix, I derive the following log-linearization approximation
of equations (63) and (64):

MDt ≈ γ

⎧⎪⎨⎪⎩σ 2
C +

(
1 − 1

ψ

)2

(a + �1)2

(
σ 2

θ − 2aQE
)+ 2

1 − 1
ψ

a + �1
(ρσCσθ + QE)

⎫⎪⎬⎪⎭ , (65)

HDt ≈ − 1
ψ

⎧⎨⎩
(
1 − 1

ψ

)
(1 − γ )

(a + �1)2

(
σ 2

θ − 2aQE
)+ 1 − γ

a + �1
(ρσCσθ + QE)

⎫⎬⎭ . (66)

Equations (65) and (66) reveal the effect of information quality on the my-
opic demand component and the hedging demand component of the equity
premium. First, if ψ > 1(ψ < 1), learning increases (decreases) the myopic de-
mand component of the equity premium by increasing (decreasing) the volatil-
ity of the return on wealth. To see this, using log-linear approximation around
ψ = 1,

∂

∂σe

[
MDt

] ≈ 2γ

(
1 − 1

ψ

)
(�1 + a/ψ)

(a + �1)2

∂QE

∂σe
, (67)

where �1 > 0 is a constant defined in the Internet Appendix.7 By (24), it is
clear that the myopic demand component of the equity premium is increasing
in σe if ψ > 1.

7Details of the log-linear approximation can be found in the Internet Appendix.
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When ψ > 1, learning increases the myopic demand component of the risk
premium on aggregate wealth by raising the volatility of the return on ag-
gregate wealth. To see the intuition for this, consider the following variance
decomposition:

vart (d ln Wt) = vart (d ln Ct) + vart (ln xt) + 2covt (d ln Ct, d ln xt) , (68)

where xt = Wt
Yt

is the wealth–consumption ratio of the representative agent.
Here, changes in σe affect the variance of the return on wealth mainly through
the third term in (69). Learning creates a positive covariance between innova-
tions in consumption growth and innovations in expected consumption growth
m. If ψ > 1, then x is an increasing function (Proposition 1), and therefore
learning makes the term covt(ln Ct, ln xt) negative. Consequently, the variance
of the return on wealth increases because of learning. Of course, if ψ < 1 , the
same argument implies that learning decreases the volatility of the return on
aggregate wealth.

The optimal wealth–consumption ratio of the representative agent is increas-
ing in the expected return on wealth if ψ > 1. In the linear production economy
that I focus on in this paper, the volatility of the return on wealth is completely
determined by the exogenous technology; therefore, learning does not affect the
myopic demand component of the risk premium on aggregate wealth. In this
case, the positive covariance between the return on aggregate wealth and the
wealth–consumption ratio induced by learning works to reduce the volatility
of the endogenously determined consumption process. In the pure exchange
economy above, the volatility of the consumption growth rate is exogenous.
The positive covariance between the realized consumption growth rate and the
wealth–consumption ratio resulting from learning works to raise the volatility
of the return on aggregate wealth and hence increases the myopic demand
component of the equity premium.

Second, learning increases the hedging demand component of the equity
premium if γ > 1(γ < 1). Again, using a log-linear approximation around
ψ = 1,

∂

∂σe

[
HDt

] ≈ 1
ψ

(γ − 1)

[
a (2/ψ − 1) + �1

]
(a + �1)2

∂QE

∂σe
. (69)

Therefore, for ψ close to one, the hedging demand component of the equity
premium is increasing in σe if γ > 1. The intuition for this is the same as
discussed earlier in Section II.B.

In the case of CRRA preferences, γ = 1
ψ

, the effect on the myopic demand
component of the equity premium always dominates. (One can see this by
letting γ = 1

ψ
and comparing (67) with (69).) This is why Veronesi (2000) ob-

tains the result that lower information quality decreases (increases) the equity
premium if γ > 1(γ < 1 ). In the general case of Kreps–Porteus utility, the di-
rection of the effect of learning on the myopic demand component of the equity
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premium depends on the IES parameter, not the RRA parameter. In this sense,
Veronesi’s (2000) result is driven by the agent’s attitude toward intertemporal
substitution.

V. Conclusion

I study the asset pricing implications of information quality about the long-
run growth rate of the economy in a simple production economy. I show that
lower information quality increases the risk premium on aggregate wealth if
the representative agent’s risk aversion is higher than one, and reduces the
volatility of equilibrium consumption growth if IES is larger than one. The ef-
fects of learning are quantitatively significant and lead to substantial improve-
ment upon the Bansal and Yaron (2004) model in terms of its predictions about
the volatility of the return on aggregate wealth and the wealth–consumption
ratio.

Several remarks are in order. First, the assumption of the linear production
technology is made for analytical convenience. Under this assumption, the di-
rection in which information quality affects the equity premium depends only
on the RRA parameter, and the sign of the effect of information quality on the
volatility of consumption growth is determined completely by the IES param-
eter. In pure exchange economies, or production economies with adjustment
costs, the direction of the effect of information depends on both parameters.
However, the basic intuition developed in this paper will still be useful in these
more general settings. In particular, when both RRA and IES are larger than
one, learning is likely to increase the risk premium on aggregate wealth, since
the effect of learning on the hedging demand component and that on the my-
opic demand component of the equity premium work in the same direction. The
simple setting of linear technology allows for a complete separation of the roles
of RRA and IES.

Second, all asset pricing implications of the model can be obtained by assum-
ing exogenously the conditional distribution of the relevant state variables.
Learning endogenizes the conditional distributions and imposes discipline on
the choice of the distributions.

Finally, the choice of the linear production technology clearly has its limi-
tations. As is well known, incorporating production presents additional chal-
lenges for general equilibrium models to generate a realistic equity premium
(Rouwenhorst (1995)). One reason is that the physical capital in the data is
very smooth. In order to generate large fluctuations in the equity price, one
has to rely on adjustment costs as in Jermann (1998) or on real rigidity as in
Boldrin, Christiano, and Fisher (2001). In the absence of investment frictions
and a labor market, my model is not rich enough to address the empirical evi-
dence on investment dynamics and other stylized business cycle facts, but this
topic would be an interesting one for future research.
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