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Abstract

We model investment options as intangible capital in a production economy in which younger

vintages of assets in place have lower exposure to aggregate productivity risk. In equilibrium,

physical capital requires a substantially higher expected return than intangible capital. Quan-

titatively, our model rationalizes a significant share of the observed difference in the average

return of book-to-market-sorted portfolios (value premium). Our economy also produces (1) a

high premium of the aggregate stock market over the risk-free interest rate, (2) a low and smooth

risk-free interest rate, and (3) key features of the consumption and investment dynamics in the

US data.
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Introduction

Historically, stocks with high book-to-market ratios, i.e., value stocks, earn a higher average return

than those with low book-to-market ratios, i.e., growth stocks (Fama et al. (1992, 1995)). The

difference in log units is approximately 4.3% per year and is known as the value premium. The

market-to-book ratio of a firm is often viewed as a measure of the intensity of future growth options

relative to assets currently in place. Interpreted this way, the empirical evidence on value premium

suggests that the average spread between the return on physical assets in place and growth options

is comparable to the aggregate stock market equity premium.

In this paper we propose a quantitative general equilibrium model in which growth options

form intangible capital. When calibrated to standard statistics of the dynamics of macroeconomic

quantities, our model is able to reproduce key features of asset returns data, including the difference

in the average return on installed physical capital and future growth opportunities. Our model

generates a high equity premium (5.66% per year for the market return, in log units) with a

moderate risk aversion of 10 and a low and smooth risk-free interest rate. Our results are comparable

to those obtained by the standard real business cycle (RBC) models in terms of the second moments

of aggregate consumption, investment, and hours worked. Furthermore, the expected annual log

return on growth options is 4.08% lower than that on installed physical capital, a significant share

of the observed value premium in the data.

We follow Ai (2009) and model growth options as intangible capital in an otherwise standard

neoclassical production economy. In contrast to assets in place, growth options do not produce

consumption goods, and hence their payoff is not directly linked to aggregate productivity shocks.

Rather, they represent an investment opportunity that allows their owner to build new production

units using physical investment goods. Higher aggregate investment enables a greater fraction of

growth options to be implemented and yield a higher payoff. Thus, in our model, the returns of

growth options and physical capital depend on different risk factors, and hence feature different

risk premiums in equilibrium.
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We make two major modifications to the Ai (2009) model. First, we adopt recursive preferences

and an aggregate productivity process with long-run risk as in Croce (2008). This allows us to gen-

erate a highly volatile pricing kernel. More importantly, we show that in our model physical capital

endogenously has a much higher exposure to long-run risk than intangible capital. Our production-

based model thus rationalizes the empirical findings on the cross-section of equity returns in Bansal

et al. (2005), Hansen et al. (2008), and Kiku (2006).

Second, focusing on US microeconomic data we document that the productivity of new vintages

of capital is less sensitive to aggregate productivity shocks than that of older vintages. Based on

this novel empirical finding, our model features heterogeneous productivity of vintage capital, with

young vintages having lower exposure to aggregate shocks, as in the data. As a result, in our

economy the response of physical investment with respect to unexpected fluctuations in aggregate

productivity (short-run shocks) is positive, as in standard RBC models, but it is negative with

respect to news about future productivity shocks (long-run shocks). These findings provide a

crucial explanation of the high equity premium, large spread between the return on growth options

and assets in place, and significant volatility of investment observed in the data.

In our setup, the elasticity of substitution between tangible investment and intangible capital is

high, implying that the adjustment of tangible capital is not costly. Consequently, investment re-

sponds strongly to contemporaneous productivity shocks, as it does in standard RBC models. The

response of investment to long-run shocks, however, is sluggish for two reasons. First, news shocks

predict future productivity growth but do not affect current output. Because of consumption-

smoothing motives, the agent tends to avoid dramatic changes in investment, as they cause fluctu-

ations in consumption in the opposite direction. Second, since new investments are less exposed to

aggregate shocks due to their young age, their productivity is affected by news shocks only with a

delay. The agent, therefore, finds it optimal to postpone the adjustment of investment with respect

to such shocks. In equilibrium, after a long-run productivity shock, the price of physical capital

responds immediately and sharply, whereas physical investment and the return on growth options
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do not. This feature of our model is novel and allows us to reproduce both the equity premium and

the value premium observed in the data, while maintaining the appealing features of the traditional

RBC models on the quantity side.

Our analysis contributes to several strands of literature. We follow Hansen et al. (2005) and Li

(2009) and interpret the spread in the return on book-to-market-sorted portfolios as evidence for

the difference in the risk premiums of tangible and intangible capital. Hansen et al. (2005) believe

that this observation “has potentially important ramifications for how to build explicit economic

models to use in constructing measures of the intangible capital stock.” The purpose of our paper

is to develop such a model and provide a unified framework to both measure and price intangible

assets.

Our paper is related to the literature on real options and the cross-section of equity returns

(see, e.g., Berk et al. (1999), Gomes et al. (2003), Carlson et al. (2004), Cooper (2006)) and the

literature on adjustment costs and value premium (Zhang (2005), Gala (2005)). Our study differs

from the above literature along several dimensions, however. First, in our economy, growth options

are less risky than assets in place, whereas in previous real options–based models the opposite is

true. The aforementioned papers explain the observed value premium by postulating that value

firms are option intensive while growth firms are assets in place intensive. Empirical evidence,

however, suggests that growth firms are option intensive. Typically, growth firms have higher R&D

investment (Li and Liu (2010)) and a higher capital-expenditure-to-sales ratio (Da et al. (2012)),

two commonly used empirical proxies for firms’ growth opportunities. Growth firms also feature

longer cash-flow duration than value firms (see, e.g., Dechow et al. (2004), Da (2006), and Santos

and Veronesi (2010)), consistent with the interpretation that their assets consist mainly of options

rather than installed physical capital. More recently, Kogan and Papanikolaou (2009) and Kogan

and Papanikolaou (2010) provide direct empirical evidence for the lower average return of growth

options relative to assets in place. Our framework is consistent with the above empirical findings,

since in our economy assets in place have both higher returns and shorter duration than growth
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options.

Second, we work in general equilibrium and study the quantitative implications of our model for

asset prices as well as the joint dynamics of consumption, investment, and hours worked. Many of

the above papers, however, present partial equilibrium models. Although Gomes et al. (2003) and

Gala (2005) adopt a general equilibrium approach, they do not focus on standard RBC moments. In

contrast, we use the empirical evidence on the quantity side of the economy to discipline our model

of production technology and, therefore, its asset pricing implications. Our unified neoclassical

framework combines the success of the RBC models on the quantity side with the success of long-

run risk–based models on the cross-section of equity returns obtained in endowment economies.

Third, our model assumes a long-run component in productivity and endogenously generates

a long-run component in consumption growth. We show that value stocks are more exposed to

long-run shocks than are growth assets. This feature of our model is consistent with the empirical

evidence presented in Bansal et al. (2005), Hansen et al. (2008), and Kiku (2006).

Similarly to our approach, Ai and Kiku (2009) also explore conditions under which growth

options are less risky than assets in place because of lower exposure to long-run risk. Their analysis

differs from ours, however, in that in their model the creation of intangible assets is exogenous,

and they do not confront the model with empirical evidence on macroeconomic quantities such as

investment or hours worked.

Our paper builds on the literature on asset pricing in production economies, which was recently

surveyed by Kogan and Papanikolaou (2011). Our work differs from previous papers in two sig-

nificant respects. First, our model addresses the equity premium puzzle, as does the rest of the

literature, but more importantly we also study the spread between the returns on tangible and in-

tangible capital. Second, this literature typically relies on capital adjustment costs or other frictions

in investment to generate variations in the price of physical capital. However, strong adjustment

costs, although necessary to generate a sizeable equity premium, are often associated with either

a counterfactually low volatility of investment or a counterfactually high volatility of the risk-free
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interest rate. Our model simultaneously produces a low volatility of the risk-free interest rate, a

significant volatility of stock market returns, and a high volatility of investment, as in the data.

In a recent study, Borovicka et al. (2011) develop methods to analyze the sensitivity of quantities

and asset prices with respect to macroeconomic shocks in dynamic stochastic general equilibrium

models. Borovicka and Hansen (2011) focus on the discrete time case and examine the shock-

exposure and shock-price elasticities of tangible and intangible capital generated by our model.

Finally, our paper also relates to the literature that emphasizes the importance of intangible

capital in understanding macroeconomic quantity dynamics and asset prices. Hall (2001) infers the

quantity of intangible capital in the US economy from a capital adjustment cost model. McGrat-

tan and Prescott (2009a, 2009b) emphasize the importance of intangible capital in understanding

economic fluctuations. Jovanovic (2008) models intangible capital as investment options and inves-

tigates its implications on aggregate Tobin’s Q. Gourio and Rudanko (2010) focus on the relation-

ship between customer capital, investment, and aggregate Tobin’s Q. Lin (2009) studies intangible

capital and stock returns in a partial equilibrium model with capital adjustment cost. Eisfeldt and

Papanikolaou (2009) analyze organization capital and the cross-section of expected returns. While

providing insights on intangible capital, these papers do not study the difference in the expected

return of value and growth stocks.

The remainder of the paper is organized as follows. We present the model and some analytical

results in Sections I and II. In Section III, we provide empirical evidence on the lower risk exposure

of new investments relative to physical capital of older vintages. We discuss the quantitative

implications of our benchmark model in Section IV and consider relevant extensions in Section V.

Section VI concludes. Proofs of the theorems and the robustness analysis of the empirical results

can be found in the Appendix.
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I Model Setup

A Preferences

Time is discrete and infinite, t = 1, 2, 3, · · · . The representative agent has Kreps and Porteus (1978)

preferences, as in Epstein and Zin (1989):

Vt =

{
(1− β)u (Ct, Nt)

1− 1

ψ + β
(
Et

[
V 1−γ
t+1

]) 1−1/ψ
1−γ

} 1

1−1/ψ

,

where Ct and Nt denote, respectively, the total consumption and total hours worked at time t. For

simplicity, we assume an inelastic labor supply and set u (Ct, Nt) = Ct. We relax this assumption

in section V.

B Production Technology

Production Units. Consumption goods are produced by production units of overlapping gen-

erations. Production units created at time τ are called generation-τ production units and begin

operation at time τ + 1. Each generation-τ production unit uses labor, nτt , as the only input of

production and pays a competitive real wage wt. For t ≥ τ + 1, let Aτ
t denote the time t labor

productivity level common to all the production units belonging to generation τ . The output of a

generation-τ production unit at time t, yτt , is given by

yτt = (Aτ
t n

τ
t )

1−α , ∀t ≥ τ + 1.

At the equilibrium, the cash flow of a generation-τ production unit at time t is given by

πτt = max
n

{
(Aτ

t n)
1−α − wtn

}
.

In our setup, labor productivity, Aτ
t , is generation-specific and captures the heterogenous expo-
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sure of production units of different vintages to aggregate productivity shocks. The productivity

processes are specified as follows. First, we assume that the log growth rate of the productivity

process for the initial generation of production units, ∆at+1, is given by

log
At+1

At

≡ ∆at+1 = µ+ xt + σaεa,t+1, (1)

xt+1 = ρxt + σxεx,t+1,

εa,t+1

εx,t+1


 ∼ i.i.d.N







0

0


 ,




1 0

0 1





 , t = 0, 1, 2, · · · .

This specification follows Croce (2008) and captures long-run productivity risks.

Second, we impose that the growth rate of the productivity of production units of age j =

0, 1, ..., t − 1 is given by

At−j
t+1

At−j
t

= eµ+φj(∆at+1−µ). (2)

Under the above specification, production units of all generations have the same unconditional

expected growth rate. We also set At
t = At to ensure that new production units are on average

as productive as older ones.2 Heterogeneity hence is driven solely by differences in exposure to

aggregate productivity risk, φj . Our empirical investigation in Section III suggests that φj is

increasing in j, i.e., older production units are more exposed to aggregate productivity shocks than

younger ones.3 To capture this empirical fact, we adopt a parsimonious specification of the φj

function as follows:

φj =

{
0 j = 0

1 j = 1, 2, ...

That is, new production units are not exposed to aggregate productivity shocks in the initial period

2Generation-t production units are not active until period t+1; therefore, the level of Att does not affect the total
production of the economy in period t.

3In the data, the productivity process of young firms has a higher idiosyncratic volatility than that of older firms.
To capture this fact, generation-specific shocks should be included in equation (2). After solving the model with these
additional shocks, however, we find only negligible differences in our results. We therefore choose not to include this
additional source of shocks for parsimony.
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of their life, and afterwards their exposure to aggregate productivity shocks is identical to that of

all other existing generations.

We discuss the empirical evidence on heterogeneous exposure in Section III, and we consider

more general specifications of the φj function in Section V. Providing a microeconomic foundation

for this feature of the model is beyond the scope of this study. However, we note that both our

empirical evidence and the specification of φj are consistent with the learning model of Pastor and

Veronesi (2009). In their economy, young firms are subject to substantial idiosyncratic risks but

have very little exposure to aggregate shocks. The reason is that young firms are embedded with

new technologies, which are highly uncertain. It is not optimal to operate these new technologies on

a large scale until the uncertainty is reduced with learning. As a result, shocks to young firms have

little impact on aggregate quantities. Over time, as young firms age, their productivity becomes

more correlated with aggregate output because their technologies are adopted on a larger scale.

In our economy, it is convenient to measure production units of all generations in terms of their

generation-0 equivalents. As we show in Appendix A, our specification of the productivity process

implies that the output and cash flow of a generation-t production unit are ̟t+1 times greater than

those of a generation-0, where

̟t+1 =

(
At

t+1

At+1

) 1−α
α

= e−
1−α
α

(xt+σaεa,t+1) ∀t. (3)

We use pK,t+1 to denote the cum-dividend value of a generation-0 production unit at time t+1.

Because the cash flow of generation-t production units is ̟t+1 times that of a generation-0 pro-

duction unit, the value of a new production unit created at time t measured in time-t consumption

numeraire is Et [Λt,t+1̟t+1pK,t+1], where Λt,t+1 denotes the stochastic discount factor. We also

assume that a production unit dies with probability δK at the end of each period, and death shocks

are i.i.d. across production units and over time.
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Blueprints. The only way to construct a new production unit in this economy is to implement

a blueprint. Implementing a blueprint at time t costs 1
θt

units of physical investment good. We

call θ the quality of a blueprint, because blueprints with high θ are more efficient in constructing

production units. We allow θt to differ across blueprints and evolve stochastically over time to

capture idiosyncratic shocks to the profitability of blueprints. At the beginning of each period t,

first the value of θt is revealed, and then the owner of the blueprint makes the decision whether or

not to implement it. A blueprint can only be implemented once, and the implementation choice is

irreversible. If not implemented immediately, a blueprint dies with probability δS at the end of the

period, and death shocks are i.i.d. across blueprints and over time.

In our setup, at any time t, the owner of a blueprint faces an optimal stopping problem. She

can choose to build a production unit immediately at cost 1
θt
. Alternatively, she may delay the

implementation decision into the future. If we denote the value of a blueprint with quality θt at

time t as pS,t (θt), then the following recursive relation holds:

pS,t (θt) = max

{
Et [Λt,t+1̟t+1pK,t+1]−

1

θt
, (1− δS)Et [Λt,t+1pS,t+1 (θt+1)]

}
. (4)

The first term in the brackets is the payoff of immediate option exercise: implementing a blueprint

with quality θt at time t costs 1
θt

amount of general output and creates a generation-t production

unit whose value is Et [Λt,t+1̟t+1pK,t+1]. The second term is the payoff associated with delaying

option exercise: with probability 1 − δS the blueprint survives to the next period and obtains

another draw of θt+1.

In our economy, the supply of blueprints is endogenous. At time t, a total measure Jt of new

blueprints can be produced by investing Jt units of output. Blueprints created at time t can be

used to build production units starting from period t+ 1.

Interpretation. Production units are the building blocks of assets in place. Their creation

requires physical output and their value is reflected in the accounting books. They produce final
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goods directly and generate payoffs immediately.

Blueprints are growth options. They capture key features of innovations and new investment

opportunities. They are subject to substantial idiosyncratic risk (θ) and are implemented only if

their quality becomes high enough. Blueprints do not produce any consumption goods immediately;

they only start to do so after being implemented. They are intangible in the sense that they are

claims to future output and lack physical embodiment. According to US accounting rules, the cost

of developing new blueprints such as innovations and new investment opportunities is typically

expensed rather than capitalized. For this reason, we think of Jt as intangible investment. In the

rest of the paper, we use the terms blueprints and growth options, and the terms production units

and assets in place, interchangeably.

Both production units and blueprints constitute a form of capital, because they can be stored

and thus allow investors to trade off current-period consumption against future consumption.

Specifically, production units are tangible capital, and blueprints are intangible capital. We are

interested in understanding how the different roles played by tangibles and intangibles in aggregate

production determine their expected returns.

In our setup, stocks feature high book-to-market ratios (value stocks) if they consist mainly of

claims to tangible capital. Conversely, low book-to-market ratio stocks (growth stocks) are intan-

gible capital intensive. At the equilibrium, value premium reflects the difference in the expected

returns on tangible and intangible capital.

Our notions of value and growth are also consistent with the empirical evidence on the negative

relation between cash-flow duration and book-to-market value (see, e.g., Dechow et al. (2004) and

Da (2006)). Our value stocks feature short cash-flow duration because they are mainly claims to

assets in place that pay off immediately. Growth stocks, in our model, are long-duration assets,

because they load heavily on growth options, which generate cash flows only in the distant future

after they are implemented and become production units.
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C Aggregation

Tangible Capital. We use Mt to denote the total measure of production units created at time

t and use Kt to denote the productivity-adjusted total measure of production units expressed in

generation-0 equivalents. The advantage of using Kt as a state variable is that the aggregate

production function is of the Cobb-Douglas form despite the heterogeneity across vintages. If we

let Yt denote aggregate output, then the following holds:

Yt =

t−1∑

τ=0

(1− δK)t−τ−1Mτy
τ
t = Kα

t (AtNt)
1−α , (5)

where At is the labor productivity of generation-0 production units. In Appendix A, we show that

the law of motion of the productivity-adjusted measure of tangible capital, Kt, takes the following

simple form:

K1 =M0, Kt+1 = (1− δK)Kt +̟t+1Mt, t = 1, 2, · · · .

Our specification of productivity has two advantages. First, it provides a parsimonious way

to incorporate the empirical fact that new investments are less exposed to aggregate productivity

shocks than capital of older vintages. Second, it maintains tractability at the aggregate level.

Intangible Capital. To avoid having to keep track of the distribution of θt as an infinite dimen-

sional state variable, we assume that θt is i.i.d. among blueprints and over time. For simplicity,

we also assume that the distribution of θt has a continuous density, denoted as f . As shown in

Ai (2009), in this case the mass of newly created production units, Mt, depends only on the to-

tal measure of all available blueprints at time t, denoted as St, and the total amount of tangible

investment goods, It, through the following relation:

Mt = G (It, St) = max
θ∗t

{
St ×

∫
∞

θ∗t

f (θ) dθ

}
(6)

subject to St ×

∫
∞

θ∗t

1

θ
f (θ) dθ ≤ It,
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where the function G is defined as the value function of the optimization problem (6).

Intuitively, optimal option exercise follows a simple cut-off rule: blueprints are implemented in

period t if and only if their quality exceeds θ∗t . Ai (2009) provides a formal proof of this claim and

shows that

θ∗t = GI(It, St). (7)

In each period, the agent chooses tangible investment, It, and exercises top-quality options until the

exhaustion of all physical investment goods. Therefore, given the resource constraint in equations

(6) and (7), both Mt and θ
∗

t are fully determined by It and St.

Note that one blueprint transforms into exactly one production unit after implementation.

Therefore, G(It, St) is the total measure of both the newly created production units and the

blueprints implemented. Taking into account the amount of new blueprints created, Jt, the dy-

namics of the intangible stock, St, is

St+1 = [St −G (It, St)] (1− δS) + Jt. (8)

Using equation (6), the law of motion of Kt can be written as

Kt+1 = (1− δK)Kt +̟t+1G (It, St) . (9)

Finally, we assume that general output can be transformed frictionlessly into consumption, Ct,

tangible investment, It, and intangible investment goods, Jt, so that the implied aggregate resource

constraint is given by

Ct + It + Jt ≤ Kα
t (AtNt)

1−α . (10)

D Relation to the Literature

Our model of growth options follows the general equilibrium setup in Ai (2009) and differs from

existing studies in several respects. First, unexercised growth options can be stored and potentially
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implemented in the future. The storability of unexercised growth options makes them a type of

capital distinct from physical assets in place. In contrast, Berk et al. (1999) and Gomes et al.

(2003) assume that options disappear if not immediately exercised.

Second, the creation of new growth options in our model is endogenously determined by the

optimal choice of the agent. This allows not only the price but also the quantity of intangible

capital to adjust to productivity shocks in general equilibrium. The endogenous quantity channel

increases the representative agent’s ability to smooth consumption and allows options to be less

risky than assets in place. In contrast, partial equilibrium–based real-option models (for example,

Berk et al. (1999), Gomes et al. (2003), and Carlson et al. (2004)) typically assume exogenous

arrival of growth options and abstract from the quantity adjustment channel. As a result, options

are more risky than assets in place in these models.

Third, our intangible capital is the stock of growth options and does not immediately produce

output, as does tangible capital. This feature links the cross-sectional differences in both stock

returns and their cash-flow duration to production technology. The macroeconomic literature

that focuses on the quantity dynamics of intangible capital, in contrast, typically assumes that

both intangible and tangible capital affect output directly. For example, the aggregate production

function in McGrattan and Prescott (2009a, 2009b) and Corrado et al. (2006) are of the form

Yt = F (At,Kt, St, Nt), where Kt and St denote tangible and intangible capital, respectively. This

specification implies that the payments to tangible and intangible capital have similar duration and

are both perfectly conditionally correlated with aggregate productivity shocks, thus allowing little

room for differences in expected returns.

Finally, the incorporation of intangible capital presents additional challenges to general equi-

librium asset pricing models with production. Because of the well-known difficulty in generating

a high equity premium in production economies, one might be tempted to assume that intangible

capital is much riskier than physical capital and propose this as a resolution of the equity premium

puzzle. However, as argued by Hansen et al. (2005), the empirical evidence on the value premium
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suggests the exact opposite. In the US, the portfolios of firms with low book-to-market ratios pay

substantially lower returns than those of firms with high book-to-market ratios. This suggests that

intangible capital earns a much lower risk premium than tangible capital, making it even harder

to account for the overall market equity premium. We turn now to the solution of the model

and discuss a mechanism that simultaneously generates a high equity premium and a high value

premium.

II Model Solution

A The Social Planner’s Problem

We consider a competitive equilibrium with complete markets in which claims to production units

and blueprints are traded. The equilibrium allocation and prices can be constructed from the

solution to the social planner’s problem that maximizes the representative agent’s utility:

V (Kt, St, xt, At) = max
Ct,It,Jt≥0

{
(1− β)C

1− 1
ψ

t + β
(
E
[
V (Kt+1, St+1, xt+1, At+1)

1−γ
∣∣∣ xt, At

]) 1−1/ψ
1−γ

} 1
1−1/ψ

,

subject to the evolution of productivity (equations (1) and (2)), the resource constraint (equation (10)), and

the laws of motion of St and Kt (equations (8) and (9)). We refer the reader to Ai (2009) for a formal proof

of the equivalence between the competitive equilibrium allocation and Pareto optimality.

Despite the heterogeneity in productivity of production units and quality of blueprints, our formulation

of the social planner’s problem does not use cross-sectional distributions. Our model hence maintains the

tractability of standard RBC models—relevant to study macroeconomic quantity dynamics—and simultane-

ously allows us to the study of both option-exercise and the cross-section of physical and intangible capital

returns in general equilibrium.
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B Asset Prices

Given equilibrium allocations, the stochastic discount factor of the economy, Λt,t+1, can be represented by

the ratio of marginal utilities at time t and t+ 1:

Λt,t+1 = β

(
Ct+1

Ct

)− 1
ψ




Vt+1
(
Et

[
V 1−γ
t+1

]) 1
1−γ




1
ψ−γ

. (11)

Let pK,t and qK,t denote the time-t cum- and ex-dividend price of a generation-0 production unit,

respectively. Let pS,t(θ) denote the value of a blueprint with quality θ at time t before the option exercise

decision is made. Because shocks to θ are i.i.d. over time, the time-t price of an ex ante identical blueprint

before the revelation of θt, denoted pS,t, is

pS,t =

∫ ∞

0

pS,t (θ) f (θ) dθ,

and can be interpreted as the per-unit value of the perfectly diversified aggregate stock of blueprints. We

also use qS,t to denote the price of a newly created blueprint at time t.

We use the first-order and envelope conditions of the social planner’s problem to characterize the price

of growth options and assets in place, as stated in the following proposition.

Proposition 1 (Equilibrium Conditions) Assets in place are priced as follows:

pK,t = αKα−1
t (AtNt)

1−α + (1− δK) qK,t, (12)

qK,t = Et [Λt,t+1pK,t+1] .

A blueprint with quality θ is implemented at time t if and only if θ ≥ θ∗t , where θ
∗
t satisfies

Et [Λt,t+1̟t+1pK,t+1]−
1

θ∗ (t)
= (1− δS)Et [Λt,t+1pS,t+1] . (13)
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The price of growth options is determined as follows:

pS,t =
GS (It+1, St+1)

GI (It+1, St+1)
+ (1− δS) qS,t (14)

qS,t = Et [Λt,t+1pS,t+1 (θt+1)] = 1.

Proof. See Ai (2009).

The two equations in (12) together constitute a recursive relation that can be used to solve for pK,t

given equilibrium quantities. The interpretation is that the value of a unit of tangible capital is equal to the

present value of its marginal product.

Since a blueprint is implemented at time t if and only if its quality exceeds the threshold level, θ∗t ,

equation (13) implies that the owner of a marginal blueprint with quality θ∗t must be indifferent between

immediate option exercise and delaying implementation into the future.

Equation (14) provides a decomposition of option value into in-the-money and out-of-the-money payoff

components. The value of an unexercised option is (1− δS) qS,t after accounting for the death shock. The

term GS(It,St)
GI (It,St)

can be interpreted as the expected payoff of an in-the-money option and is an increasing

function of IS by the homogeneity and the concavity of G. Intuitively, a rise in I
S increases the probability of

growth options to be exercised and therefore their payoff rises as well. From the social planner’s perspective,

GS(I,S)
GI(I,S)

can be interpreted as the marginal product of intangible capital: GS (I, S) is the number of new

production units that can be produced by an additional growth option, and GI (I, S)
−1

= 1
θ∗ is the price

of a marginal production unit measured in current-period consumption goods. The value of an unexercised

growth option, qS , is always 1 because one unit of general output can always be transformed into one unit

of new blueprints at time t.

Finally, note that equations (7)–(14) completely characterize both aggregate quantities and prices in

the economy. Given aggregate quantities, equation (7) can be used to solve for the optimal option-exercise

threshold for blueprints.

The returns of tangible and intangible capital can be therefore written as

rK,t+1 =
pK,t+1

qK,t
=
αKα−1

t+1 (At+1Nt+1)
1−α + (1− δK) qK,t+1

qK,t
, (15)
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and

rS,t+1 =
pS,t+1

qS,t
=
GS (It+1, St+1)

GI (It+1, St+1)
+ (1− δS) , (16)

respectively. Equations (15) and (16) are the key to understanding the expected returns on tangible and

intangible capital. Equation (15) implies, as is common in standard RBC models, that the return on assets

in place is monotonic in aggregate productivity shocks. In contrast, the return on growth options does not

depend directly on productivity shocks, and in fact it is a function only of the It+1/St+1 ratio. The return

on intangibles is high in states in which the demand for options is large, i.e., when I is large relative to

the total supply of growth options, S. Our choice to model intangibles as growth options thus allows the

return on physical and intangible capital to depend on different risk factors and, consequently, to command

different risk premiums in equilibrium. In Section IV, we show that physical investment I is not responsive

to long-run productivity shocks. As a result, the return on intangible capital has little exposure to long-run

risk, whereas physical capital is highly risky.

III Firms’ Exposure to Aggregate Risks

In this section we provide empirical evidence supporting the claim that new production units are less sensitive

to aggregate productivity shocks than are older vintages of physical capital. A production unit in our model

should be interpreted as any investment project generating cash flows. Because it is difficult to identify both

productivity and age of individual projects within firms, we adopt an indirect approach and work with firm-

level data. Specifically, for each firm in our data set we estimate the time-series of its productivity growth

rate and compute two alternative measures of the age of its assets in place. We find that the correlation

between firm-level and aggregate productivity growth is statistically smaller for firms with younger vintages

of physical capital.

A Data and Firm-level Productivity Estimation

Data Description. We consider publicly traded companies on US stock exchanges listed in both the

COMPUSTAT and CRSP databases for the period 1950–2008. In what follows, we report COMPUSTAT

items in parentheses and define industry at the level of two-digit SIC codes. The output, or value added, of
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firm i in industry j at time t, yi,j,t, is calculated as sales (sales) minus the cost of goods sold (cogs) and

is deflated by the aggregate GDP deflator from the US National Income and Product Accounts (NIPA). We

measure the capital stock of the firm, ki,j,t, as the total book value of assets (at) minus current assets (act).

This allows us to exclude cash and other liquid assets that may not be appropriate components of physical

capital. We use the number of employees in a firm (emp) to proxy for its labor input, ni,j,t, because data for

total hours worked are not available.

We construct two measures of the age of assets in place of firm i at time t. Our first measure is simply the

age of firms, calculated using founding years from Ritter and Loughran (2004) and Jovanovic and Rousseau

(2001). This procedure enables us to form a large dataset with 8,084 different firms and 83,089 observations.

Our second measure is capital age, KAgei,t, which we compute as follows:

KAgei,t =

∑T
l=1(1− δi)

l · Ii,t−l · l∑T
l=1(1− δi)l · Ii,t−l

, (17)

where Ii,t measures capital expenditures (capx), and δi is the firm-specific depreciation rate (depreciation

expense (xdp) divided by book value of property, plant, and equipment (ppent)) averaged over time. When

data on depreciation expense are not available, we measure depreciation by COMPUSTAT depreciation (dp)

minus amortization of intangibles (am). According to the above definition, the capital age of a firm is the

weighted average age of its capital vintage if we set T = ∞. Empirically, we can only choose a finite T and

face the following trade-off: a large T provides a better approximation of the age of capital vintage, but it

considerably reduces the number of observations in our data set.

In Table 1, we sort all observations in our panel into four firm-age quantiles and present summary

statistics. For each quantile, we report median firm age (column 2) and median capital age calculated using

T = 5, T = 8, and T = 15 (column 3-5, respectively). All measures of capital age are increasing in firm age,

indicating that they are consistent with each other.

Table 1 explicitly shows the trade-off related to the choice of T . If we use the average annual depreciation

rate from COMPUSTAT of 15%, setting T = 15 implies that we account for roughly 92% of the firms’ total

capital stock. This choice of T provides a fairly good approximation of the true capital vintage of the firms,

but it only allows us to compute capital age for 36% of the 8, 084 firms for which firm age is available. On

the other hand, setting T = 5 permits us to retain all our firms, but this captures only 62% of firms’ most

recent capital stock. To keep our discussion focused, we present our empirical evidence using firm age as the

18



Table 1: Summary Statistics by Firm Age Quantiles

Firm Age Median Median Median Median
Quantile Firm Age Capital Age (T=5) Capital Age (T=8) Capital Age (T=15)

1 8 2.55 3.37 4.47
2 16 2.61 3.54 4.84
3 29 2.66 3.63 5.06
4 91 2.71 3.76 5.41

All Firms 24 2.64 3.60 5.01

N. Firms 8,084 8084 6,014 2,937
N. Obs.a 83,089 88,283 64,871 32,239

Notes - This table reports the summary statistics of our panel. The sample ranges from 1950 to 2012 and
includes approximately 8,084 different firms, for a total of 83,089 observations grouped into four firm-age
quantiles. Firm age is expressed in years and is computed using founding dates from Ritter and Loughran
(2004) and Jovanovic and Rousseau (2001). Capital age is computed according to equation (17). The last
two rows report the number of firms and observations available for different measures of age.

main proxy for the age of firms’ production units. In Appendix B, we show that our empirical results are

robust to different measures of capital age.

Estimation of Firm-level Productivity. We assume that the production function at the firm level

is Cobb-Douglas and allow the parameters of the production function to be industry-specific:

yi,j,t = Ai,j,tk
α1,j

i,j,tn
α2,j

i,j,t , (18)

where Ai,j,t is the firm-specific productivity level at time t. This is consistent with our original specification

since the observed physical capital stock, ki,j,t, corresponds to the mass of production units owned by the

firm.

We estimate the industry-specific capital share, α1,j , and labor share, α2,j , using the dynamic error

component model adopted in Blundell and Bond (2000) to correct for endogeneity. Details are provided in

Appendix B. Given the industry-level estimates for α̂1,j and α̂2,j , the estimated log productivity of firm i is

computed as follows:

ln Âi,j,t = ln yi,j,t − α̂1,j · ln ki,j,t − α̂2,j · lnni,j,t.

We allow for α1,j + α2,j 6= 1, but our results hold also when we impose constant returns to scale in the

estimation, i.e., α1,j + α2,j = 1.
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Table 2: Exposure to Aggregate Risk by Firm Age

Regression ∆ lnA AGE AGE ∗∆ lnA B/M Obs. Firms

(1) -0.042 -0.002*** 0.012*** -0.005 70,909 7,335
(0.216) (0.000) (0.003) (0.004)

(2) 0.880* -0.003*** 0.018*** -0.046*** 22,432 4,023
(0.533) (0.001) (0.007) (0.007)

(3) 0.383 -0.002*** 0.011** -0.006 59,395 7,226
(0.319) (0.000) (0.004) (0.005)

Notes - This table reports firms’ risk exposure by age. All estimates are based on the following second-stage
regression: ∆ lnAi,j,t = ξ0i + ξ1∆ lnAt + ξ2AGEi,j,t + ξ3AGEi,j,t ·∆ lnAt +B/Bi,j,t+ εi,j,t. Regression (1)
is obtained using the whole sample. To control for exit bias, in regression (2) we use the Inverse Mills Ratio
(IMR) as an additional explanatory variable. In regression (3) we exclude the years with negative aggregate
productivity growth. All the estimation details are reported in Appendix B. Numbers in parentheses are
standard errors. We use ∗, ∗∗, and ∗ ∗ ∗ to indicate p-values smaller than 0.10, 0.05, and 0.01, respectively.

We use the multifactor productivity index for the private nonfarm business sector from the Bureau of

Labor Statistics (BLS) as the measure of aggregate productivity.

B Empirical Results

Here we present our estimates on the link between firm exposure to aggregate productivity and firm age.

We provide additional robustness analyses of our results in Appendix B. We consider the following baseline

regression:

∆ lnAi,j,t = ξ0i + ξ1∆ lnAt + ξ2AGEi,j,t + ξ3AGEi,j,t ·∆ lnAt + ξ4B/Mi,j,t + εijt, (19)

where ξ0i is a firm-specific fixed effect, ∆ lnAt is the growth rate of aggregate productivity as measured by

the BLS, and B/Mi,j,t measures firm book-to-market ratio. We introduce the book-to-market ratio to control

for the difference in the composition of tangible and intangible assets across firms. The key parameter of

interest here is the coefficient ξ3, which captures the age effect on firm sensitivity to aggregate productivity

growth. If the average age of investment projects is increasing in firm age, then under the null of our model

ξ3 is positive.

We find strong empirical evidence in favor of our specification of firm productivity (Table 2). In our

baseline estimation (regression (1)), the estimated coefficient ξ3 is both positive and statistically significant.

Furthermore, we obtain very similar point estimates in regressions (2) and (3), where we correct for possible
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sample selection bias induced by firm exits.

If exits caused by exposure to negative aggregate productivity shocks are correlated with firm age, they

could induce an upward bias in our estimate of ξ3 in regression (1). Consider a hypothetical scenario in

which young firms are more exposed to negative aggregate productivity shocks than are older firms. In such

a case, the estimate of ξ3 obtained from regression (1) would be biased upwards, because young firms would

be more likely to exit our database in years with large negative aggregate productivity shocks.

In regression (2) we correct for sample-selection bias by adopting the Heckman (1979) two-stage sample-

selection estimator. In regression (3), we instead estimate equation (19) excluding all the observations from

years with negative aggregate productivity shocks. The details of these robustness analyses can be found in

Appendix B, where we also adopt an additional estimation procedure for the coefficients of the production

function. Across all these specifications, our estimates of ξ3 are very robust: they are consistently positive,

statistically significant, and comparable in magnitude.

Note also that the estimate of ξ4 is consistently negative across all specifications, implying that the

productivity growth rate of growth firms is always higher than that of value firms. This is consistent with

the view that growth firms have longer cash-flow duration than value firms, a fact that our model replicates

and that we address in subsection C.3 of section IV.

Our specification of firms’ productivity processes is not only qualitatively consistent with the pattern

in the data, but also quantitatively plausible. In fact, our calibration matches well the magnitude of firms’

transition from low to high exposure to aggregate productivity shocks. We denote by φY (φO) the regression

coefficient of the productivity growth of the young (old) capital vintages on aggregate productivity growth

rates. In our model, φY = 0 and φO = 1.12. To see why φO = 1.12, note that the aggregate productivity

growth rate is a weighted average of that of the new capital vintage, Att+1/A
t
t = eµ, and the common growth

rate of all older vintages, At+1/At:

∆ ln Āt+1 = (1− λt)∆ lnAt+1 + λtµ, 1 > λt > 0.

The regression coefficient of ∆ lnAt+1 on aggregate productivity growth ∆ lnAt+1 is therefore
1

1−λ
. Assuming

a death rate of 11% per year for production units, λ = 11% in steady state, and 1
1−λ

= 1.12.
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Table 3: Exposure to Aggregate Risk of Young versus Other Firms

φ Obs
Regression Young Other OMY Young Other

(1) -0.484 0.963*** 1.447*** 15,030 55,879
(0.373) (0.100) (0.361)

(2) -0.325 1.202*** 1.527* 5,015 17,417
(0.837) (0.416) (0.908)

(3) -0.727 1.501*** 2.228*** 12,721 46,674
(0.618) (0.177) (0.597)

Notes - This table reports risk exposure of Young and Other firms. In each sample period, a firm is classified
as Young if it belongs to the set of the 25% youngest firms; otherwise it is classified in the group Other. All
estimates are based on the following second-stage regression (equation (20)):

∆ lnAijt =

{
ξ0i + φY∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t i ∈ Young
ξ0i + φO∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t otherwise.

OMY refers to φO − φY . Regression (1) is obtained using the whole sample. To control for exit bias, in
regression (2) we add the Inverse Mills Ratio (IMR). In regression (3) we exclude the years with negative
aggregate productivity growth. All the estimation details are reported in Appendix B. Numbers in paren-
theses are standard errors. We use ∗, ∗∗, and ∗ ∗ ∗ to indicate p-values smaller than 0.10, 0.05, and 0.01,
respectively.

In the data, we estimate φY and φO using the following regressions:

∆ lnAi,j,t =

{
ξ0i + φY∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t i ∈ Young

ξ0i + φO∆ lnAt + ξ1iB/Mi,j,t + ε̃i,j,t otherwise.
(20)

In each period a firm is classified as Young if it belongs to the set of the 25% youngest firms in our sample.

We report our estimation results in Table 3. Overall, our estimate of φY is not statistically different from

zero, and that of φO is positive and significant. The difference in productivity exposure, OMY = φO − φY ,

is positive and statistically significant, and the point estimate is close to its model counterpart, 1.12.

Our choice of the φj process is likely to understate the duration of the transition from low to high

exposure. Our model assumes that production units have full exposure to aggregate productivity shocks

after one period, while the median capital age of the young firms for T = 15 is 4.47 years, which suggests

that the transition from low exposure to high exposure takes on average 3.47 years. In Section V, we extend

our model to allow for more general specifications of the φj process and show that longer transitions further

enhance the equity and value premiums generated by our model. Our current specification for the φj process
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reflects a conservative calibration.

IV Quantitative Implications of the Model

In this section, we calibrate our model at an annual frequency and evaluate its ability to replicate key

moments of both macroeconomic quantities and asset returns. We focus on a long sample of US annual

data, including pre-World War II data. All macroeconomic variables are real and per capita. Consumption

and physical investment data are from the Bureau of Economic Analysis (BEA), while intangible investment

(Jt) is measured as in Corrado et al. (2006) by aggregating expenses in brand equity, firm-specific resources,

R&D, and computerized information. As in the US NIPA, we treat intangible investment as an expense and

define measured output, YM,t, as Ct + It. Annual data on asset returns are from the Fama-French dataset.

We use the Fama-French HML factor as a measure of the spread between tangible and intangible capital.

Appendix B provides more details on our data sources.

A Parameter Values

Our model has three major components: heterogeneous productivity of vintage capital, long-run productivity

risk, and intangible capital. To determine the importance of each component, we compare four different

calibrations. The benchmark model comprises all three components and is our preferred calibration. Model

1 lacks heterogeneous productivity of vintage capital (we set φ0 = 1) but retains the other features of

the benchmark model, namely, long-run productivity risk and intangible capital. In model 2, we further

exclude fluctuations in long-run productivity growth (by setting σx = 0). Finally, we consider the case

without intangible capital in model 3. Essentially, model 3 is the neoclassical growth model with recursive

preferences and i.i.d. productivity growth rates. The details of the four models are summarized in Table 4.

The parameters of the models can be divided into three groups. The first group includes risk aversion,

γ; intertemporal elasticity of substitution, ψ; capital share, α; depreciation rates, δK and δS ; average growth

rate of the economy, µ; and the first-order autocorrelation of the predictable component in productivity

growth, ρ. These parameters are identical across all four calibrations. We choose the parameters for risk

aversion, γ = 10, and intertemporal elasticity of substitution, ψ = 2, in line with the long-run risk literature.

We set the capital share α = 0.3 and the annual depreciation rate of physical capital δK = 11%, consistent

with the RBC literature (Kydland and Prescott (1982)). We choose the same rate of depreciation for
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Table 4: Main Components of Our Economy

Benchmark Model 1 Model 2 Model 3

Vintage capital Yes (φ0 = 0) No (φ0 = 1) No (φ0 = 1) No (φ0 = 1)
Long-run productivity risk Yes (σx 6= 0) Yes (σx 6= 0) No (σx = 0) No (σx = 0)
Intangible capital Yes Yes Yes No
Recursive preferences Yes Yes Yes Yes

Notes - This table summarizes the main components active in each of our four models. All parameter values
are reported in Table 5.

intangible capital, δS = 11%. The measured depreciation of intangible capital in our model also includes

implemented blueprints, G (It, St), and ranges from 40% to 60% per year across the calibrations. Although

the empirical evidence on depreciation of intangibles is sparse (Hand and Lev (2003)), these numbers are

consistent with the empirical estimate in Corrado et al. (2006). Our sensitivity analysis suggests that δS

only modestly affects our asset pricing results. We calibrate µ = 2% per year, consistent with the average

annual real growth rate of the US economy. We set ρ = 0.93, which is the point estimate obtained in Croce

(2008).

The second group of parameters includes the discount factor, β; the standard deviation of the persistent

component of productivity growth, σx; and the short-run shock volatility, σa. In all calibrations, we set the

discount factor β to match the level of the risk-free interest rate in the data if possible. An exception is

model 3, which lacks sufficient parameters to match both the level of the risk-free rate and the consumption–

tangible investment ratio. We therefore choose β in model 3 to match the consumption–tangible investment

ratio but not the level of the risk-free rate. We set σa and σx in both the benchmark model and model 1 to

approximately match the standard deviation and the first-order autocorrelation of the annual growth rate

of measured output. In both models 2 and 3, we impose σx = 0 and set σa to match the standard deviation

of the annual growth rate of measured output.

The third group of parameters describes the functional form of the aggregator G (It, St) function. As

shown in Ai (2009), for any smooth G function that is concave and homogeneous of degree 1, there is a unique

density function f (θ) such that G is the aggregator of the option-exercise problem described in equations

(4) and (6). We focus our attention on density functions that generate the following CES aggregator:

G (I, S) =
(
νI1−

1
η + (1− ν)S1− 1

η

) 1
1−1/η

. (21)
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Table 5: Calibrated Parameter Values

Benchmark Model 1 Model 2 Model 3

Preference parameters

Discount factor β 0.97 0.97 0.98 0.89
Risk aversion γ 10 10 10 10
Intertemporal elasticity of substitution ψ 2.0 2.0 2.0 2.0

Production function/Aggregator parameters

Capital share α 0.3 0.3 0.3 0.3
Depreciation rate of physical capital δK 11% 11% 11% 11%
Depreciation rate of intangible capital δS 11% 11% 11% –
Weight on physical investment ν 0.84 0.79 0.815 –
Elasticity of substitution η 1.40 1.40 1.75 –

Total Factor Productivity parameters

Average growth rate µ 2.0% 2.0% 2.0% 2.0%
Volatility of short-run risk σa 5.08% 6.30% 7.30% 5.00%
Volatility of long-run risk σx 0.86% 0.80% – –
Autocorrelation of expected growth ρ 0.925 0.925 – –
Risk exposure of new investment φ0 0 1 1 1

Notes - This table reports the parameter values used for our calibrations. The following parameters are
common across all models: risk aversion, γ; intertemporal elasticity of substitution, ψ; capital share, α;
depreciation rates, δK and δS ; average productivity growth rate, µ. We choose the rest of the parameters to
match the moments reported in Table 6 whenever possible. All models are calibrated at an annual frequency.

We choose the two parameters ν and η to approximately match the steady-state consumption–tangible

investment ratio and also the consumption–intangible investment ratio across all models, insofar as possible.4

In Appendix C, we derive the associated density function, f , and the implied cross-sectional distribution

of the book-to-market ratio of newly implemented blueprints. We show that our aggregator G, although

calibrated to match aggregate moments, conforms well with the microeconomic evidence on the distribution

of the book-to-market ratios of new IPO firms in the US.

The calibrated parameter values are summarized in Table 5, and the steady-state moments used to

calibrate the parameters are reported in Table 6. We solve the model using a second-order local approx-

4Model 3 does not have intangible capital, so E[I/J ] is not defined. In model 2, the parameter η has only minor
effects on the stochastic steady state; therefore, it is not possible to match both E[C/I ] and E[I/J ] simultaneously.
In model 2, we follow the RBC literature and set ν to match the consumption–physical investment ratio observed in
the data.
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Table 6: Moments Used for Model Calibration

Data Benchmark Model 1 Model 2 Model 3

E [C/I] 5.62 5.60 5.54 5.63 5.69
E [I/J ] 1.00 1.01 0.95 (0.77) —
σ [∆ lnYM ] 3.49 3.49 3.49 3.49 3.52
AC1 [∆ lnYM ] 0.45 0.25 (0.60) 0.46 0.13
E [rf ] 0.86 0.80 0.87 0.86 (12.65)

Notes - This table reports the moments used to calibrate the parameters of the models evaluated in this
paper. Our database refers to US annual data from 1930 to 2003 (see Appendix B). All moments that cannot
be matched are in parentheses. In Model 1, the autocorrelation of measured output, YM ≡ C+I, is too high.
In Model 2, the parameter ν is set to match the C/I ratio, even though the implied I/J ratio is lower than
in the data. In Model 3, the discount factor β is chosen to match the steady-state consumption-investment
ratio, even though this choice makes the risk-free interest rate too high.

imation computed using the dynare++ package. Our results are consistent with those of Borovicka and

Hansen (2011), who adopt alternative numerical procedures to analyze shock-price and shock-exposure elas-

ticities generated by our model. We also solve our models numerically using a finite element–based global

approximation method to check the accuracy of the local approximation method. Overall, the two numerical

solutions produce very similar results.

B Quantity Dynamics

In this section, we show that all four models produce largely similar macroeconomic quantity dynamics and

that our benchmark model improves slightly upon the RBC model (model 3) along several dimensions. In

this sense, our model inherits the success of the RBC models on the quantity side of the economy.

The quantity dynamics produced by our calibrations are shown in the top panel of Table 7. All four

calibrations produce a small volatility of consumption growth and a high volatility of tangible investment

growth, consistent with the data. Recall that model 3 is essentially the standard RBC model with recursive

preferences. We know from Tallarini (2000) that the risk aversion parameter of the recursive preference

has little effect on the quantity dynamics. Therefore, on the quantity side, the model behaves just like the

standard RBC model with CRRA preferences where γ = 1
ψ = 0.5. The second moments generated by model

3 are consistent with those in Kydland and Prescott (1982). In particular, this model produces a small

standard deviation of consumption (2.14% per year) and a standard deviation of investment about six times

larger (15.33% per year).
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Table 7: Quantities and Prices

Moments Data Benchmark Model 1 Model 2 Model 3

σ (∆ lnC) 02.53 (00.56) 02.60 02.85 02.69 02.14
σ (∆ ln I) 16.40 (03.24) 14.18 10.90 08.85 15.33
AC1 (∆ lnC) 00.49 (00.15) 00.48 00.68 00.48 00.59
ρ (∆ lnC,∆ ln I) 00.39 (00.29) 00.17 00.56 00.77 00.59
ρ (∆ lnC10,∆ ln I10) 00.62 (00.24) 00.73 00.82 00.83 00.72

σ [SDF ] 87.98 90.94 73.50 43.21
E[rK − rf ] 01.95 00.80 00.82 00.31
σ[rK ] 01.99 01.26 01.27 00.92
E[rS − rf ] 00.54 00.74 00.47 –
σ[rS ] 00.88 00.88 00.79 –

σ[rf ] 00.97 (00.31) 01.00 00.96 00.70 00.65
E[rLM − rf ] 05.71 (02.25) 05.20 02.37 02.31 00.83
E[rLK − rLS ] 04.32 (01.39) 04.20 00.17 01.05 –

Notes - All figures are multiplied by 100, except contemporaneous correlations (denoted by ρ) and first-order
autocorrelations (denoted by AC1). Empirical moments are computed using US annual data from 1930 to
2003. Numbers in parentheses are GMM Newey-West adjusted standard errors. ∆ logC10 and ∆ log I10
denote the 10-year growth rate of consumption and investment, respectively. E

[
rLK − rLS

]
measures the

average difference between the levered returns of tangible and intangible capital. We use the HML Fama-
French factor as an empirical counterpart of rLK − rLS . r

L
M indicates levered market returns. Returns are in

log units and the leverage is 3 (Garca-Feijo and Jorgensen (2010)). All the parameters are calibrated as in
Table 5. The entries for the models are obtained by repetitions of small-sample simulations.

Comparing models 2 and 3, we see that the addition of intangible capital to the standard RBC model

reduces the volatility of physical investment growth. This is because the concavity of the aggregator G

implies decreasing marginal production of physical investment and affects the volatility of physical investment

similarly to adjustment cost functions in neoclassical models. In order to generate a high volatility of tangible

investment, therefore, the curvature of G (I, S) needs to be low, or, equivalently, the elasticity of substitution

between I and S, η, needs to be sufficiently high. All of our calibrated models with intangible capital have this

feature. Adding long-run shocks and heterogenous productivity of capital vintages increases the volatility of

investment. In model 2, investment growth volatility is almost 11%, and in the benchmark model it reaches

a level of 14.18%, consistent with the data.

The persistence of the growth rates of macroeconomic quantities produced by our model is similar to

that in the data. In models 2 and 3, both output and consumption are autocorrelated, even if productivity

growth is not. This result is generated by the persistent fluctuations of our endogenous state variables, K

and S (as in Kaltenbrunner and Lochstoer (2010)). The persistence generated in these two models, however,
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is smaller than that in the data. The addition of long-run productivity risk increases the autocorrelation

of consumption and output growth rates (Croce (2008)). Since both the benchmark model and model 1

feature long-run productivity shocks, they produce a higher autocorrelation in output growth (Table 6) and

consumption growth (Table 7) than models 2 and 3. The introduction of long-run productivity shocks,

therefore, brings our model closer to the data.

The correlation between consumption and physical investment growth rates in our benchmark calibration

is consistent with its empirical pattern, i.e., it is moderate at an annual frequency and high over the long

horizon. This is an improvement with respect to standard RBC models, which are notorious for producing

large correlations of consumption and investment growth even over short horizons. Standard RBC models

have only one source of shocks, the short-run productivity shocks. Since both consumption and investment

co-move with this shock, the correlation of their growth rates is quite high. In contrast, our model also

features news about future productivity shocks that have no effect on current total output. Because of the

resource constraint, consumption and total investment must move in opposite directions in response to these

shocks, reducing their unconditional correlation.

In section V, we show that extensions of our model are capable of matching a broader set of moments,

including intangible investment volatility and the dynamics of hours worked.

C Asset Price Dynamics

In this section we examine the asset pricing implications of our model. While the quantity dynamics of the

benchmark model inherits the basic features of the standard RBC model, thanks to the lagged risk exposure

of new vintage capital, asset returns in our model respond to long-run risks similarly to endowment-based

long-run risk models, for example, that of Bansal and Yaron (2004). More importantly, our model is able to

produce a large spread between the expected return on tangible and intangible capital.

Campbell (2000) summarizes the challenge to general equilibrium asset pricing models as three puzzles:

the equity premium puzzle (Mehra and Prescott (1985)), the stock market volatility puzzle (Campbell

(1999)), and the risk-free rate puzzle (Weil (1989)). These puzzles are even more difficult to solve in

production economies, as models must (1) not only generate a pricing kernel that is sufficiently volatile,

but also endogenously produce a high risk exposure of the stock market returns, and (2) be consistent

with the empirical evidence from the quantity side of the economy. The literature has relied primarily on

adjustment cost or other forms of rigidity in investment to generate the variation in the price of physical
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capital. In the next sections we show that it is difficult to reconcile the high risk exposure of the market

returns and the high volatility of tangible investment when relying on rigidity in investment as the only

means by which to generate variations in the price of physical capital. In our benchmark model, however,

thanks to heterogeneous productivity of capital of different vintages, we can simultaneously produce volatile

stock market returns and aggregate physical investment. The adoption of recursive preferences with high

intertemporal elasticity of substitution also allows us to solve the risk-free rate puzzle.

The empirical evidence on the value premium imposes a strong discipline on general equilibrium asset

pricing models with intangible capital. Stocks with high book-to-market ratios earn higher returns than

stocks with low book-to-market ratios, and the difference between market value and book value can be

attributed to the value of intangible capital owned by the firm. This evidence suggests that intangible

capital earns a lower average return than physical capital. Qualitatively, the benchmark model and models 1

and 2 are consistent with intangible capital being less risky than physical capital (Ai (2009)). Quantitatively,

however, only the benchmark model is capable of producing a significant value premium. The interaction

between lagged risk exposure of new vintage capital and long-run productivity risk is the main driver of this

result.

In the following subsections, we first discuss the common features of all four calibrations (Section C.1),

then examine the models’ implications for the returns on physical capital rK (Section C.2). Finally, we

study the models’ implications for the value premium (Section C.3). The asset pricing implications of all

four calibrations are summarized in Table 7.

C.1 Common Features

All calibrations except model 1 are able to generate a low and relatively smooth risk-free interest rate.5 The

volatilities of the risk-free interest rates are low because we adopt an intertemporal elasticity of substitution

greater than one: since agents are very willing to substitute consumption across time, fluctuations in the

expected consumption growth rate produce only small variations in the equilibrium interest rate.

All four models produce a fairly high volatility of the stochastic discount factor. Since the representative

agent is endowed with recursive preferences, fluctuations in expected consumption growth (long-run risk,

5In standard RBC models, there is always a tension between simultaneously producing a high consumption–
physical investment ratio and a low level of the risk-free rate through the subjective discount factor β. This explains
why in model 3 we are not able to match the level of the risk-free rate, since we set β to reproduce the consumption-
investment ratio observed in the data.
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Figure 1 – Impulse Response Functions for Quantities

This figure shows annual log deviations from the steady state. All the parameters are calibrated to the values
reported in Table 5. The dashed lines refer to model 1; the solid lines refer to the benchmark model.

in the language of Bansal and Yaron (2004)) strongly affect marginal utility. Models 2 and 3 feature

predictability in consumption growth because of the endogenous fluctuations in K and S. The introduction

of long-run productivity shocks in both the benchmark model and model 1 almost doubles the volatility of

the stochastic discount factor.

C.2 Investment Dynamics and Physical Capital Returns

As shown in Kaltenbrunner and Lochstoer (2010) and Croce (2008), an important challenge for the long-

run risk–based asset pricing model with production is to account for the high volatility of investment and

stock returns simultaneously. Although recursive preferences generate a high volatility of the stochastic

discount factor, the return to physical capital is typically very smooth, unless one is willing to assume a

large adjustment cost. High levels of adjustment cost, however, are typically associated with counterfactually

low levels of volatility in investment growth.
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This tension is present in models 1, 2, and 3, but it is resolved in our benchmark model, where the annual

volatility of the unlevered returns on physical capital is 2.00% and investment is as volatile as in an RBC

model. To explain our results, we plot in Figures 1 and 2 the impulse response functions of quantities and

prices, respectively, generated by both short-run and long-run shocks in the benchmark model and model 1.

The left panels of Figures 1 and 2 show that the introduction of heterogeneous productivity of vintage

capitals does not significantly alter the model’s response to short-run shocks. This result has two important

implications. First, since the quantity dynamics in the benchmark model are mostly driven by short-run

shocks, they inherit the success of standard RBC models with i.i.d. productivity growth (model 3). Second,

the risk premiums associated with short-run shocks are small in both models. Therefore, in order to under-

stand the success of our benchmark model in accounting for both equity and value premiums, we must focus

on the interaction between long-run shocks and the heterogeneous productivity of vintage capitals.

As shown in the right-hand panels of Figures 1 and 2, the impulse responses to long-run shocks are

significantly different across model 1 and the benchmark model. With a one-standard-deviation change in

the long-run productivity shock, the return on physical capital, rK , in the benchmark model increases by

about 1.5%, whereas the change in rK in model 1 is barely visible. This implies that the exposure to the

long-run productivity risk of physical capital is very small in model 1, whereas that in the benchmark model

is larger by several orders of magnitude.

To explain the different behavior of rK across the benchmark model and model 1, we focus our attention

on the ex-dividend price of physical capital, qK,t (see Figure 2, fourth panel, right column). Iterating equation

(12) forward, we can express qK,t as the present value of the infinite sum of all future payoffs:

qK,t =

∞∑

j=1

(1− δK)
j
Et

[
Λt,t+jαK

α−1
t+j (At+j)

1−α
]
, (22)

Equation (22) implies that the price of physical capital, qK,t, is the present value of the marginal product of

physical capital in all future periods. This equation holds in model 1 as well. A positive innovation in the long-

run productivity component xt has two effects on the future marginal product of physical capital. The first

is a direct effect: keeping everything else constant, an increase in xt raises the marginal product of physical

capital by increasing all future At+j for j = 1, 2, · · · . The second effect comes from the general equilibrium.

An increase in the marginal productivity of capital also triggers more investment, which augments Kt+j in

all future periods. Due to the decreasing returns to scale (α < 1), an increase in Kt+j mitigates the direct
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effect.

In model 1, the elasticity of substitution between physical investment and intangible capital, η, is set to

1.4. This implies that the supply of physical investment is quite elastic. Consequently, the return on physical

capital responds very little to long-run shocks. To see this point more clearly, note that without overlapping

generations of vintage capital, we have ̟t = 1 ∀t, and equation (13) can be written as

qK,t − (1− δS) =
1

GI (It, St)
=

1

ν

(
It

G (It, St)

) 1
η

. (23)

By equation (23), as η increases, It becomes more sensitive to changes in qK,t. Equation (22) implies that

if investment adjusts elastically to productivity shocks, then the effect of the long-run productivity shock

on qK,t is small, due to decreasing return to scale of physical capital. This intuition is confirmed by our

impulse response functions. Innovations in the long-run productivity component are accompanied by a nearly

permanent increase in the I/S ratio (Figure 1, third panel, right column, solid line). As a result, the changes

in qK after a long-run productivity shock are almost negligible (Figure 2, fourth panel, right column). To

summarize, in model 1 the return on physical capital responds little to long-run productivity shocks because

the direct effect on the price of physical capital is mostly offset by movements in investment (the general

equilibrium effect). As with standard adjustment cost models, it is difficult to simultaneously produce a

high volatility of both investment growth and returns on physical capital in model 1.

In the benchmark model, however, after a long-run productivity shock, investment rises, but after a

substantial delay, whereas the return on physical capital increases immediately and sharply. The I/S ratio

initially drops and then starts to rise, always staying below the level obtained in model 1 (Figure 1, fourth

panel, right column). The last panel in the right column of Figure 1 plots the impulse response of physical

capital stock normalized by productivity (kt = Kt/At) after a long-run shock. Because of the lagged response

of investment, the level of physical capital in the benchmark model stays nearly permanently behind that

obtained in model 1. Since the marginal product of capital, αk
−(1−α)
t , is a decreasing function of normalized

capital stock, in the benchmark model the marginal product of physical capital remains almost permanently

above that observed in model 1, producing a strong increase in qK,t.

In this case, the direct and general equilibrium effects of long-run productivity shocks affect qK,t in the

same way, thereby reinforcing each other. The marginal product of capital increases both because a positive

shock in xt increases At+j in all future periods and because the sluggish response of investment to long-run
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Figure 2 – Impulse Response Functions for Prices

This figure shows annual log deviations from the steady state. All the parameters are calibrated to the values

reported in Table 5. Returns are not levered. The dashed lines refer to model 1; the solid lines refer to the

benchmark model.

shocks results in a nearly permanent reduction of physical capital stock relative to that in model 1.

To understand the lagged response of investment to long-run news in the benchmark model, note that a

long-run shock increases the productivity of all existing vintages of capital almost permanently but affects

the productivity of the new production units only after a delay. This generates an incentive to postpone the

exercise of new growth options. As a result, a long-run productivity shock immediately produces a strong

income effect (the agent anticipates a persistent increase in the productivity of all existing vintages of capital

and prefers to consume more) without generating a significant substitution effect (the return on new physical

investment is unaffected by long-run productivity shocks for an extended period of time). At time 1, when a
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positive long-run shock materializes, the net effect is an immediate increase in consumption and a decrease

in investment, exactly the opposite of what happens in model 1, in which the substitution effect dominates

the income effect and investment increases. This feature of the model is consistent with recent empirical

findings of Barsky and Sims (2010) and Kurmann and Otrok (2010).

In the benchmark model, positive long-run shocks, although small, have quite significant and prolonged

negative effects on physical investment. This sluggish response of investment is generated by the persistence

of the long-run shocks: after positive long-run news, the relative productivity of new investment remains

behind that of existing vintages for an extended period of time, thereby discouraging a fast and full recovery

of investment.

C.3 Value Premium

We report the value premium in the data and the model in the last row of Table 7. In the data, HML is

calculated as the average return of the HML factor as constructed by Fama and French (1995). The model

counterpart of HML is calculated as the difference in the leveraged return on tangible and intangible capital.6

To understand the difference in the expected returns of tangible and intangible capital, we can use the

functional form of G (I, S) in equation (21) and write the returns of intangible capital in equation (16) as

rS,t+1 =
1− ν

ν

(
It+1

St+1

) 1
η

+ (1− δS) . (24)

As explained in section II.B, the term 1−ν
ν

(
It+1

St+1

) 1
η

can be interpreted as the expected payoff of in-the-money

options in period t + 1. Because St+1 is determined in period t, innovations in the return on intangible

capital respond positively to innovations in It+1. The intuition for this result is that an increase in the I
S

ratio lowers the option-exercise threshold θ∗ (t) = GI (It, St) and raises the probability of option-exercise,

thereby enhancing the payoff of growth options. As shown in Figures 1 and 2, in our benchmark model,

I
S responds negatively to long-run productivity shocks. Therefore, our model is able to account for the

empirical fact that growth stocks are less exposed to long-run economic risks, as documented in Bansal et al.

(2005), Hansen et al. (2008), and Kiku (2006).

To understand the lower exposure of growth options with respect to long-run productivity shocks com-

6In our analysis, we abstract away from both financial and operative leverage. Garca-Feijo and Jorgensen (2010)
estimates suggest a degree of total leverage of 4; we set leverage to 3 to be conservative.
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pared to assets in place, note that the payoff of growth options can be replicated by long positions in

assets in place and short positions in the cost of the strike asset. Exercising growth options at time t

costs 1
θ unit of investment goods and produces a generation-t production unit, which is equivalent to ̟t+1

generation-0 production units. Since installed physical capital in this economy is measured in terms of

generation-0 production unit equivalents, the expected cost of creating an additional unit of Kt on date t is

Et
[
̟−1
t+1

1
θ

]
= 1

θe
1−α
α (xt+ 1

2
σ2
a), 0 < α < 1. Growth options have low exposure to long-run risk, xt, because

the cost of exercising them, Et
[
̟−1
t+1

1
θ

]
, covaries positively with xt and acts as a hedge. Good news for

the productivity of existing productions units is bad news for unimplemented blueprints because it is more

expensive to create new production units as productive as those of old vintages. As a result, both physical

investment and option returns respond negatively to long-run productivity shocks.

The implications of our model for the value premium are summarized in the bottom panel of Table 7. We

make the following observations. First, all models with intangible capital yield a higher return for physical

capital than for intangible capital. Second, despite the introduction of long-run risk, model 1 produces a

lower spread between physical and intangible capital than does model 2. In model 1, intangible capital is

more exposed to long-run risk than is tangible capital. Specifically, without heterogeneous productivity of

vintage capital, after a positive long-run productivity shock, physical investment increases sharply but qK,t

remains almost flat (Figure 2). At the same time, the increase in the I/S ratio is associated with a drop

in the option exercise threshold, θ∗ (t), and a positive innovation in the return on intangible capital. As a

result, as shown in Table 7, simply adding long-run productivity shocks to model 2 increases the market risk

premium only slightly and eliminates most of the spread in the expected return on physical and intangible

capital.

Third, compared to model 1, our benchmark model produces both a larger risk premium on physical

capital and a smaller one on intangible capital, thus improving on equity and value premiums simultaneously.

The heterogeneous productivity of vintage capital is responsible for both improvements because it causes the

I/S ratio to drop after good long-run news. This feature of the model produces a sharp increase in the return

on tangible capital, rK , and a drop in the intangible capital return, rS . It increases the riskiness of physical

capital and makes growth options an insurance device against long-run risk. Overall, the benchmark model

produces a market risk premium more than two times larger than that of model 1, and a spread between

tangible and intangible capital returns larger by an order of magnitude.

We conclude our discussion on value premium by exploring the implications of our model for the cash-
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flow duration of book-to-market-sorted portfolios. We define the Macaulay duration, MDt, of a stochastic

cash flow process, CFt, as:

MDt =

∑∞

s=1 s ·Et [Λt,t+sCFt+s]∑∞

s=1 Et [Λt,t+sCFt+s]
. (25)

We provide the details of the calculation of the duration of growth options and assets in place in Appendix

C. Here we point out that options typically have longer duration than assets in place because they start

paying cash flows only after being exercised and becoming assets in place. Under our benchmark calibration,

the Macaulay duration of assets in place (17 years) is about half of that of growth options (30 years).

Since in our model value stocks are intensive in assets in place and growth stocks are intensive in options,

our framework is consistent with the inverse relationship between cash-flow duration and book-to-market

characteristics documented by Dechow et al. (2004). This feature of our model stands in contrast with

previous results in the real-option literature. In Gomes et al. (2003), for example, value stocks are option

intensive and therefore have longer cash-flow duration than low book-to-market stocks.

D Additional Testable Implications of the Model

In this section, we conduct econometric analyses on model predictions that directly link asset prices to

macroeconomic fundamentals. First, we provide supporting evidence on the response of both investment

growth and the spread between tangible and intangible capital returns to productivity news shocks. Second,

we study the correlation of investment leads and lags with aggregate stock market returns as well as the

spread between tangible and intangible capital returns.

Response to News Shocks. The key asset pricing implications of our model rely on the exposure

of asset returns to long-run risk, or news about future productivity shocks. Our production-based general

equilibrium framework links risk exposure to the response of macroeconomic quantities to these shocks.

As we discuss in section IV.C, a positive news shock is accompanied by a sharp increase in the spread of

the returns of tangible and intangible capital. On the quantity side, it leads to an immediate decrease in

aggregate investment and a corresponding rise in aggregate consumption without affecting total output. We

test these conditional responses in the data by jointly estimating equation (1) and the following system of
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equations through a GMM procedure:

xt = βdarf · rf,t−1 + βdapd · pdt−1 (26)

HMLt = βHML
SR · εa,t + βHML

LR · εx,t + εHML
t (27)

CYt = β
C/Y
SR · εa,t + β

C/YM
LR · εx,t + β

C/YM
(−1) · CYt−1 + ε

C/YM
t , (28)

where CYt = Ct
Ct+It

is the consumption-output ratio, or consumption share. In equation (26), we follow

Bansal et al. (2007) and use the risk-free rate and the log price-dividend ratio to identify news shocks.

Equation (27) is also consistent with our model: the spread between the value and growth portfolios, HMLt,

depends on the realization of short-run and long-run productivity shocks, as well as an error term, εHML
t . In

equation (28), we use β
C/Y
SR and β

C/Y
LR to denote the sensitivity of the consumption-output ratio with respect

to short-run and long-run productivity shocks, respectively. Consistent with our model, the consumption

share process is very persistent in the data. Instead of estimating a full-blown DSGE model with Kt and St

as state variables, we use the lagged value, CYt−1, to control for the history dependence of the consumption

share process.7

In Table 8, we report our results for three different measures of aggregate productivity. In the first row,

we compute aggregate productivity according to equation (5). We set α = 0.3 and assume an inelastic labor

supply, Nt = 1, as in our benchmark model. In the second regression, we allow for changes in aggregate

labor. Data on labor and physical capital are from the NIPA tables and are described in Appendix B. In our

third specification, we use a multifactor adjusted measure of productivity directly provided by the BLS. The

first two measures of productivity can be computed starting from 1930, but the BLS productivity data are

available only for the post–World War II period. Across all specifications, the identification of the long-run

predictable component in productivity growth is statistically significant, as shown by the small p-value of

the Wald statistics. In addition, both HML and the consumption share respond positively to the identified

news shocks, as predicted by our model. The response of HML is positive and statistically significant across

all specifications. The response of consumption share, in contrast, is statistically significant in regressions

(1) and (2) when longer samples of the productivity data are available.

7We have also estimated a version of equation (28) including investment-specific shocks, an alternative determinant
of the consumption-output ratio discussed in the literature. Our results are robust to this extension. We thank
Dimitris Papanikolaou for sharing his data on investment specific shocks.
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Table 8: Conditional Responses of Consumption and HML

C/Y HML Wald Test
Productivity Sample SRR LRR SRR LRR p-val

(1) Capital adjusted 1930–2006 -0.403*** 0.287* 5.015 127.361*** 0.000
(BEA) (0.041) (0.158) (23.076) (43.259)

(2) Capital and labor 1930–2006 0.189*** 0.297*** 1003.184*** 1106.65*** 0.000
adjusted (BEA) ( 0.042) (0.131) (89.484) (292.082)

(3) Multifactor adjusted 1949–2006 -0.397*** 0.003 72.81 1713.036*** 0.000
(BLS) (0.052) (0.093) (59.84) (213.999)

(4) O-Y capital 1951–2006 0.019 0.174*** -1.478 162.153*** 0.000
adjusted (0.018) (0.037) (9.053) (23.876)

(5) O-Y capital and 1951–2006 0.023** 0.032 4.745 666.628*** 0.000
labor adjusted (0.011) (0.050) (12.755) (117.059)

Notes - This table reports contemporaneous sensitivity of consumption share and HML to both short- and

long-run productivity shocks. Specifically, we jointly estimate equations (1) and (26)–(28) and report β
C/Y
SR ,

β
C/Y
LR , βHML

SR , and βHML
LR in columns 3 to 6, respectively. In the last column, we report the p-value of the Wald

statistics that tests the null of no predictability in productivity growth. The first three regressions are based
on aggregate measures of productivity. The last two regressions are based on the productivity differential
between Young and Other firms as defined in section III to proxy for −̟t. Numbers in parentheses are GMM
standard errors. We use ∗, ∗∗, and ∗ ∗ ∗ to indicate p-values smaller than 0.10, 0.05, and 0.01, respectively.

In addition, we test the implications of our model for the responses of returns and quantities to news

about the differences in productivity of young and old firms. We construct the productivity difference as the

ratio of the average productivity of all firms in the second to fourth age quartiles and that of the youngest

25% of firms in our data set (see section III). We estimate equations (1) and (26)–(28), with ∆at replaced

by the log difference of productivity. Because the productivity difference is not perfectly correlated with

aggregate productivity in the data, this estimation exercise provides yet another way to empirically test the

model.

We report the results of our estimation in row (4) of Table 8, where firm-level productivity is computed as

in equation (18) but assuming an inelastic labor supply. In row (5) of the same table, we allow for variations

in firm-level labor as in Section III. Consistent with our model, both HML and the consumption share drop

upon the arrival of good news for the relative productivity of young and old firms.

Leads and Lags. The economic mechanism in the benchmark model has strong implications for the

correlation of tangible investment with the market return and the spread between tangible and intangible

capital returns. We plot these correlations in Figure 3 for both our benchmark model and model 1 and show

that our benchmark model fits the correlation patterns in the data well.
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Figure 3 – Returns and Investment Growth Leads and Lags

This figure shows the correlation of market excess returns (left panel) and the spread between the returns

of tangible and intangible capital (right panel) with investment growth leads (j > 0) and lags (j < 0).

The thin solid line represents the point estimate of the correlations computed using US data from 1930 to

2003. The spread between tangible and intangible capital is proxied by the HML factor. The dotted lines

mark the 95% confidence interval for the correlations. The solid line with circles represents the correlations

obtained in the benchmark model. The diamond-shaped markers refer to model 1. All the parameters are

calibrated to the values reported in Table 5. The entries from the models are obtained through repetitions

of small-sample simulations.

The left panel of Figure 3 plots the cross-correlations between the market excess returns, rexm,t+1, and

leads (j > 0) and lags (j < 0) of tangible investment growth rates, ∆It+1. Consistent with the data, in

our benchmark model the contemporaneous correlation between investment growth and excess returns is

close to zero. This is the result of two offsetting effects. On the one hand, just like in the standard RBC

model, a positive short-run productivity shock triggers a positive co-movement of the market return and

investment growth. On the other hand, a positive long-run productivity shock boosts the market return

but discourages current-period investment. In contrast, in model 1 long-run productivity shocks induce

positive co-movements between investment growth and market returns and reinforce the effect originated

from short-run shocks. As a result, model 1 produces a counterfactually large contemporaneous correlation

of investment and market return.

In addition, similarly to the data, in our benchmark model the correlation reaches a peak for one-period-

ahead investment and dies off at longer horizons. The correlation’s surge at j = 1 is generated by two effects

that reinforce each other. First, upon the realization of a positive short-run shock at time t, both intangible

investment, Jt, and therefore St+1, rise. At time t + 1, because tangible investment and intangible capital
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are complements, it is optimal to increase further tangible investment, It+1. Hence, a positive excess return

at time t predicts a rise in investment at time t+1. Second, upon the realization of a positive long-run shock

at time t, there is an immediate spike in the market excess return and a fall in physical investment followed

by sluggish investment growth. Long-run shocks reinforce the fact that positive market excess returns at

time t predict future positive investment growth starting from time t+1. Since these quantity dynamics die

off over time, their effects on long-horizon correlations taper as well. In contrast, in model 1 the correlation

between current excess returns and future investment growth is too high when j = 1, and it quickly becomes

negative at longer horizons.

In the right panel of Figure 3, we plot the cross-correlations between the return on the value-minus-growth

portfolio, HML, and leads and lags of investment growth. Consistent with the data, the correlation between

investment growth and HML is low for j = 0 and increases gradually over longer horizons. Note that the

returns on tangible and intangible capital move in the same direction after short-run shocks, but in opposite

directions following long-run shocks; therefore, the HML return mainly reflects realizations of long-run

productivity shocks in our model. As already noted, positive long-run shocks induce a small contemporaneous

drop in physical investment followed by prolonged investment growth. Therefore, HML predicts future

investment growth even though it has a negative contemporaneous correlation with investment.

In contrast, in model 1, the correlation between investment and HML return is too high for j = 0, 1

and quickly becomes negative at longer horizons. Overall, in our benchmark model, the correlations are

consistently within the 95% confidence interval bands estimated from the data. We view the empirical

evidence presented in this section as strongly supporting the economic mechanism emphasized by our model.

V Extensions

In this section we consider three extensions of our model and study their implications for a broader set

of moments of macroeconomic quantities and asset prices. First, we introduce adjustment costs in the

production of intangibles. Second, we add an endogenous labor supply. Finally, we further enrich the model

and consider more general specifications of the φj process that governs the heterogeneity of firms’ exposure

to aggregate shocks. We show that our main results are preserved and often enhanced in these more general

settings. For the sake of brevity, we focus our discussion only on moments that significantly change across

the new extensions.
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A Adjustment Costs

In Figure 4, the impulse responses of both tangible and intangible investment in the benchmark model

contain a periodic component. As a result, in our benchmark model the volatility of intangible investment

is about two times that of tangible investment, while this number is about one-half in the data (Table 9).

Here we introduce adjustment costs on the accumulation of intangible capital. This modification elim-

inates the periodic component in both tangible and intangible investments and makes their volatility con-

sistent with the data. Specifically, we replace the law of motion of intangible capital in equation (8) by the

following expression:

St+1 = (1− δS)(St −G(It, St)) +H(Jt,Kt), (29)

and parameterize H in the spirit of Jermann (1998):

H(J,K) =

[
a1

1− 1/ξ

(
J

K

)1−1/ξ

+ a2

]
K.

We calibrate the parameter ξ to match the volatility of intangible investment. Once ξ is chosen, the parame-

ters {a1, a2} are pinned down by the following two steady-state conditions: H(J,K) = J and HJ (J,K) = 1,

where J and K denote the steady-state levels of intangible investment and tangible capital stock, respec-

tively. In Appendix C.2 , we provide a microeconomic foundation for our specification of the adjustment

cost function and prove that it arises as the result of a concave production function of new blueprints.

Given this modification of the model, the equilibrium conditions (14)–(16) are replaced by

qS,t = 1/HJ,t

pK,t = αKα−1
t (AtNt)

1−α
+HK,tqS,t + (1− δK) qK,t

rK,t+1 =
αKα−1

t+1 (At+1Nt+1)
1−α

+HK,tqs,t + (1− δK) qK,t+1

qK,t,

rS,t+1 =
GS (It+1, St+1)

GI (It+1, St+1)
+ (1− δS) qS,t,

where HJ and HK denote the partial derivative of H with respect to J and K, respectively.

We highlight three main results. First, the impulse response functions of tangible and intangible invest-
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Figure 4 – Impulse Response Functions across Model Extensions

This figure shows annual log-deviations from the steady state. All the parameters are calibrated to the values
reported in Table C.2 in Appendix C.

ment in the model with adjustment costs are smooth (Figure 4). Second, the incorporation of adjustment

costs raises the volatility of physical investment and lowers that of intangible investment, consistent with the

data (Table 9). Third, in the model with adjustment costs the behavior of consumption growth and returns

on both tangible and intangible capital remains similar to that in the benchmark model. As a result, the im-

plications of benchmark model for the equity premium, the value premium and the volatility of consumption

growth are largely unaffected by this extension. Also, we observe that adding adjustment costs enhances

the failure of the CAPM and produces a spread in the CAPM alphas consistent with the data (Table 9, last

column).

We conclude this section with a brief explanation of the origin of the periodic component and the reason

it disappears with adjustment costs. Because of the complementarity between intangible capital and physical

investment, GIS(It, St) > 0, the agent has a strong incentive to substantially increase physical investment
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only after more intangible capital is built up. At time t, however, the stock of intangible capital, St, is

one-period predetermined and cannot simultaneously adjust with tangible investment, It. For this reason,

the agent finds it optimal to proceed in alternating steps.

For the sake of simplicity, let us focus on a positive short-run productivity shock at time t = 1 (Figure

4, left column). Upon the realization of the shock, physical investment is partially delayed and intangible

investment, J1, is immediately adjusted in order to reach a higher level of intangible stock, S2. At time

t = 2, physical investment is efficiently increased and intangible capital is partially depleted. At time t = 3,

more intangible investment is needed to replenish the stock of blueprints. As a result, in the third period

physical investment is dampened, and intangible investment surges again. This pattern continues until it

converges back to the steady state.

Note that the above investment policy requires large adjustments in intangible investment, J , and pro-

duces an intangible investment growth volatility of 35% per year. Even in the presence of mild adjustment

costs, such large changes in intangible capital become very costly. For this reason, with adjustment costs

the increase in intangible investment becomes gradual and persistent, while physical investment immedi-

ately spikes upon the realization of the productivity shock. Because the incorporation of adjustment costs

significantly improves our results, we keep this feature in the following two extensions as well.

B Endogenous labor supply

Extension of the Model. In this section, we allow for an endogenous labor supply and explore the

ability of the model to account for the joint dynamics of aggregate consumption, investment, and hours

worked. We report conventional business cycle statistics generated by the model in Table 9 and illustrate

the response of macroeconomic quantities to productivity shocks in Figure 4.

To allow for endogenous labor supply, we adopt a Cobb-Douglas aggregator between consumption goods,

Ct, and leisure, 1−Nt:

ut = Cot (1−Nt)
1−o.

We set the parameter o so that the average number of hours worked is equal to one-third of the total number
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Table 9: Key Moments across Several Model Extensions

σ∆C σ∆I/σ∆C σ∆J/σ∆I σ∆n ρ∆C,∆n E[rLM − rf ] E[rLK − rLS ] αK − αS

Data 02.53 05.29 00.50 02.07 00.28 05.71 04.32 04.01
(00.56) (00.50) (00.07) (00.21) (00.07) (02.25) (01.39) (01.77)

Bench. 02.60 05.40 02.50 – – 05.20 04.20 00.40
Ext. 1 02.53 06.40 00.40 – – 04.55 04.16 04.91
Ext. 2 02.56 06.00 00.60 01.92 00.08 04.00 04.76 05.98
Ext. 3 02.59 06.23 00.50 01.84 00.28 05.41 05.68 07.70
Ext. 4 02.66 05.40 00.58 01.70 00.19 04.45 05.92 08.00

Notes - All figures are multiplied by 100, except contemporaneous correlations (denoted by ρ). Empirical
moments are computed using US annual data in log units. Numbers in parentheses are GMM Newey-West
adjusted standard errors. E

[
rLK − rLS

]
and E

[
rLM − rf

]
measure the levered spread between tangible and

intangible capital returns, and the market premium, respectively. The leverage coefficient is 3 (Garca-Feijo
and Jorgensen (2010)). All the parameters are calibrated as in Table C.2 in Appendix C. The difference in
the intercept of the CAPM regression for tangible and intangible returns is denoted by αK−αS . The entries
for the models are obtained by repetitions of small-sample simulations. Extension 1 features adjustment
costs on intangible investment. In Extension 2 we also add endogenous labor. In Extensions 3 and 4 we
retain adjustment costs and endogenous labor and set φ1 to 0 and 0.5, respectively, to study two-period
transitions of productivity exposure.

of workable hours. The intratemporal first-order condition for labor is

1− o

o
·

Ct
1−Nt

= (1 − α)
Yt
Nt
,

and the stochastic discount factor becomes

Λt+1 = β

(
Ct+1

Ct

)−1(
ut+1

ut

)1− 1
ψ




Vt+1

Et

[
V 1−γ
t+1

] 1
1−γ




1
ψ−γ

.

All other equations that characterize the equilibrium remain unchanged.

Quantitative Results. First, we note that in Figure 4 the impulse response of consumption, invest-

ments, and returns are qualitatively similar to that obtained with an inelastic labor supply and adjustment

costs on intangible capital. As a result, the model’s implications for asset prices and macroeconomic quan-

tities discussed so far remain largely unchanged (Table 9).

Second, in Figure 4, short-run shocks (contemporaneous productivity shocks) induce co-movement among

consumption, investment, and hours worked, as in standard RBC models. Upon the realization of positive
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long-run shocks (news about future productivity shocks), however, both investment and labor drop while

consumption increases. The negative response of labor with respect to news is due to the income effect:

good news about future productivity does not raise the current-period marginal product of labor but does

increase the wealth of the agent. As a result, the agent works less, consumes more, and lowers investment.

This feature of our model is consistent with the empirical evidence reported in Barsky and Sims (2010)

and Kurmann and Otrok (2010) and enables us to produce a low contemporaneous correlation between

consumption and labor growth. In this extension, corr(∆Ct,∆nt) is slightly lower than in the data, but it

increases in the two model specifications to be discussed in the next subsection.

The reduction in the labor supply in response to news shocks lowers the marginal product of physical

capital and enhances the decline in investment observed in the benchmark model. Consequently, intangible

capital provides even more insurance against news shocks. This explains why the model with an elastic labor

supply generates a slightly higher value premium, as reported in Table 9.

Overall, the inclusion of an endogenous labor supply preserves the success of previous versions of our

model and generates plausible cyclical dynamics of hours worked, similar to the standard RBC model.

C More General Productivity Processes

Extension of the Model. In this section, we consider an additional extension that allows for a more

flexible specification of the heterogeneity in the productivity processes of production units. As we show in

Section III and Appendix B, the exposure to aggregate productivity shocks is increasing in capital vintage

age. Allowing for a gradual transition from low to high exposure requires more general specifications of the

φj process and renders the aggregation results in equation (9) invalid. Intuitively, multiple transition periods

introduce heterogeneity and history dependence of the productivity exposures and require us to keep track

of the age distribution as a state variable.

To avoid computational complexity, we restrict our attention to the following simple form of the φj

function:

φj =





0 j = 0

φ1 j = 1

1 j = 2, ...

,

which allows the transition to happen in two periods. Previous versions of the model correspond to the

special case with φ1 = 1.
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In this case, the social planner’s problem can be made recursive by including last-period physical invest-

ment as an additional state variable. To this aim, we use Xt to denote the total measure of production units

constructed at time t − 1 and continue to use Kt to denote the productivity-adjusted stock of production

units at time t. The laws of motion of Kt and Xt can be written as follows:

Kt+1 = (1− δK)Kt +Xt [πt+1 − 1] +̟t+1G(It, St), (30)

Xt+1 = (1− δK)̟t+1G(It, St),

πt+1 = e−
1−α
α (1−φ1)(xt+σaεa,t+1) ∀t.

The social planner’s problem is the same as before except that we replace equation (9) with equation (30),

and the value function, V (Kt, Xt, St, xt, At), now contains the additional state variable Xt.

Quantitative Results. We consider two calibrations of the φj function. In the first, we set φ1 = 0 so

that new production units have zero exposure to aggregate productivity shocks for two periods. In the second

calibration, we set φ1 = 0.5 so that the correlation with aggregate productivity shocks of new production

units is 0 in its first period, 0.5 in its second period, and 1 from the third period on. We report our results

in the last two rows of Table 9. Multiple transition periods enhance the positive exposure of the return on

tangible capital and the negative exposure of return on intangible capital to long-run productivity shocks.

Consequently, these extensions allow us to reduce the volatility of long-run productivity shocks relative to

previous calibrations, while still maintaining high equity and value premiums. As a result, the negative

correlation between consumption and hours worked induced by long-run shocks is dampened, and our model

produces a strong co-movement of consumption and labor, closely matching this moment in the data. All

other quantitative implications of the model remain largely unchanged.

VI Conclusion

In this study, we present a general equilibrium asset pricing model with long-run productivity shocks as in

Croce (2008) and intangible capital modeled as storable investment options as in Ai (2009). We document

that in the data, new investment is less exposed to aggregate productivity shocks than is capital of older

vintages. We incorporate this feature in our model and show that the lower exposure of new investment is
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quantitatively important in accounting for (1) the high equity premium, (2) the high volatility of the stock

market return, and (3) the large spread in both expected returns and cash-flow duration across book-to-

market-sorted portfolios in the data.

Several remarks are in order. First, as in Ai (2009), we have allowed idiosyncratic shocks to the quality

of investment options. In our setting, we have assumed that these shocks are i.i.d. While unrealistic, this

assumption simplifies our aggregation results, making our model very tractable and enabling us to avoid the

need to keep track of the cross-sectional distribution of option quality. Allowing for more general processes

of the quality of the options is a fruitful extension that we leave for future research.

Second, considering a more general setting with heterogeneous firms will allow us to implement portfolio

sorting exercises in the context of our current model, to study firms’ transition among value and growth

portfolios, and to confront the model with a wider set of empirical evidence at the portfolio level, as done

by Ai and Kiku (2009). Based on their insights, we are optimistic that the basic intuition in this paper will

remain valid even with heterogeneous firms.

Finally, we believe that our model provides a valuable general equilibrium framework for the measurement

of intangible capital by exploring the information from both the quantity and pricing sides of the economy.

Specifically, a structural estimation of our DSGE model employing both time-series data on macroeconomic

aggregates and cross-section data on equity returns may shed new light on the accumulation of intangibles

in the US.
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Appendix A: Aggregation of Production Units

Lemma 1 Suppose there are m types of firms. For i = 1, 2, 3, · · ·m, the productivity of the type i firm is

denoted by A (i), and the total measure of the type i firm is denoted by K (i). The production technology of

the type i firm is given by

y (i) = [A (i)n (i)]
1−α

,

where n (i) denotes the labor hired at firm i. The total labor supply in the economy is N . Then total output

is given by

Y =

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]α
[A (1)N ]

1−α
.

Proof. Without loss of generality, we assume that firms of the same type employ the same amount of labor.

In this case, the total output in the economy is given by

Y = max

m∑

i=1

K (i)A (i)
1−α

n (i)
1−α

(A.1)

subject to

m∑

i=1

K (i)n (i) = N

The first-order condition of the above optimization problem implies that for all i,

n (i)

n (1)
=

(
A (i)

A (1)

) 1−α
α

Using the resource constraint, we determine the labor employed in firm 1:

m∑

i=1

K (i)

(
A (i)

A (1)

) 1−α
α

n (1) = N

This implies that

n (1) =

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]−1

N (A.2)
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Therefore, the total production is given by

Y =

m∑

i=1

K (i)A (i)
1−α

[(
A (i)

A (1)

) 1−α
α

n (1)

]1−α

=
[
A (1)

− 1−α
α n (1)

]1−α m∑

i=1

K (i)A (i)
1−α
α

=

[
m∑

i=1

K (i)A (i)
1−α
α

]α
N1−α

= A (1)

[
m∑

i=1

K (i)

(
A (i)

A (1)

) 1
α

]α
N1−α

Plugging in the expression for n (1) in equation (A.2), we have

Y =


A (1)

−
1−α
α

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]−1

N



1−α

m∑

i=1

K (i)A (i)
1−α
α

=

[
m∑

i=1

K (i)A (i)
1−α
α

]α
N1−α

=

[
m∑

i=1

K (i)

[
A (i)

A (1)

] 1−α
α

]α
A (1)

1−α
N1−α

as needed.

At time t, there are t+ 1 types of operating production units in the economy, namely, production units

of generation −1, 0, 1, · · · , t− 1. The measures of these production units are (1− δK)
t
K0, (1− δK)

t−1
M0,

(1− δ)
t−2

M1, · · · , Mt−1. Using the above lemma, at date t, the total production in the economy is given

by

Yt = At


(1− δK)

t
K0 +

t−1∑

j=0

(1− δK)
t−j−1

Ej

(
Ajt
At

) 1−1

α



α

N1−α
t .

Clearly, if we define the {Kt}
∞

t=0 according to (9), the aggregate production function can be summarized as

in (5).
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Appendix B: Estimation Details and Aggregate Data Sources

B.1 Robustness Analysis for Firm-level Regressions

Endogeneity and the Dynamic Error Component Model. We follow Blundell and Bond (2000) and

write the firm-level production function as follows:

ln yi,t = zi + wt + α1 ln ki,t + α2 lnni,t + vi,t + ui,t (B.1)

vi,t = ρvi,t−1 + ei,t,

where zi, wt and vi,t indicate a firm fixed effect, a time-specific intercept, and a possibly autoregressive

productivity shock, respectively. The residuals from the regression are denoted by ui,t and ei,t and are

assumed to be white noise processes. The model has the following dynamic representation:

∆ ln yi,j,t = ρ∆ ln yi,j,t−1 + α1,j∆ ln ki,j,t − ρα1,j∆ ln ki,j,t−1 + α2∆ lnni,j,t − ρα2∆ lnni,j,t−1 (B.2)

+ (∆wt − ρ∆wt−1) + ∆κi,t,

where κi,t = ei,t+ui,t− ρui,t−1. Let xi,j,t = {ln (ki,j,t) , ln (ni,j,t) , ln (yi,j,t)}. Assuming that E [xi,j,t−lei,t] =

E [xi,j,t−lui,t] = 0 for l > 0 yields the following moment conditions:

E [xi,i,t−l∆κi,t] = 0 for l ≥ 3

E [∆xi,i,t−l∆κi,t] = 0 for l ≥ 3.

that are used to conduct a consistent GMM estimation of (B.2). Given the estimates α̂1,j and α̂2,j, log

productivity of firm i is computed as:

ln âi,j,t = yi,j,t − α̂1,jki,j,t − α̂2,jni,j,t. (B.3)

We apply this method for regressions (5)–(6) and (9)–(10) of Table B.1. In all specifications, the corre-

lation between firm and aggregate productivity is increasing in capital age, consistent with our main results

reported in Table 2.

Endogeneity and fixed effects. An alternative way to estimate the production function avoiding en-

dogeneity issues is to work with the following regression:

ln yi,j,t = vj + zi,j + wj,t + α1,j ln ki,j,t + α2,j lnni,j,t + ui,j,t. (B.4)

The parameters vj , zi,j , and wjt indicate an industry dummy, a firm fixed effect, and an industry-specific

time dummy, respectively. The residual from the regression is denoted by ui,j,t. Given our point estimate of

α̂1,j and α̂2,j , we can use equation (B.3) to estimate ∆ai,j,t. Given this estimation of firms’ productivity, we

proceed as before in estimating equation (19). The results are summarized in regression (1)–(4) and (7)–(8)
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Table B.1: Exposure to Aggregate Risk by Firm Age

Regr. Age Sample E.M. ξ3 ξ4 Obs. Firms

(1) F All FE 0.011*** -0.003 70899 7333
(2) F ∆at > 0 FE 0.013*** -0.004 59385 7224
(3) K-5 All FE 0.426** -0.120*** 82791 8012
(4) K-5 ∆at > 0 FE 0.880** -0.133*** 63717 7828
(5) K-5 All ECM 0.494** -0.146*** 82787 8010
(6) K-5 ∆at > 0 ECM 0.862** -0.159*** 63713 7826
(7) K-15 All FE 0.383*** -0.014*** 32127 2928
(8) K-15 ∆at > 0 FE 0.511*** -0.016*** 25955 2876
(9) K-15 All ECM 0.425*** -0.019*** 32130 2929
(10) K-15 ∆at > 0 ECM 0.510*** -0.022*** 25958 2877

Notes - This table reports firms’ risk exposure by age. All estimates are based on the following second-
stage regression: ∆ ln ai,j,t = ξ0i + ξ1∆ lnAt + ξ2AGEi,j,t + ξ3AGEi,j,t ·∆ lnAt + ξ4B/Mi,j,t + εijt. In col.
“Age”, F, K-5 and K-15 denote firm age, capital age with T=5, and capital age with T=15, respectively.
All regressions denoted by an even number are computed on a sub-sample including only years of positive
productivity growth to control for firms exit. “E.M.” stands for Estimation Method used in the first stage to
estimate ∆ai,j,t. We use FE to denote our Fix Effect procedure described in (B.4) and ECM for the dynamic
Error Component Model of Blundell and Bond (2000) described in (B.2). We use ∗, ∗∗, and ∗ ∗ ∗ to indicate
p-values smaller than 0.105, 0.05, and 0.01, respectively. Standard errors available upon request.

of Table B.1 and are consistent with those reported in Table 2.

Sample Selection Bias. If exits caused by exposure to negative aggregate productivity shocks are

correlated with firm age, they can induce an upward bias in our estimate of ξ3, the coefficient that measures

variation in productivity exposure due to age. We correct for sample selection bias in Regressions (2) and

(3) of Tables 2 and 3. Our result that firms’ exposure to aggregate productivity shocks is increasing in age

is robust even after we control for potential sample selection bias.

We implement the Heckman (1979) two-stage procedure in regression (2). First, we project an indicator

variable of firms’ exit on a vector of observables, including the Altman (2000) Score, size (measured by total

book value of assets in real terms), size squared, R&D expenditure-sales ratio, earnings over sales, capital-

labor ratio, and aggregate productivity growth. Second, we compute the implied Inverse Mills Ratio (IMR)

(see Greene (2002)) and include it as an additional independent variable in regression (19). In regression

(3), we include observations only in years with positive aggregate productivity shocks. Overall, our point

estimate for ξ3 is positive and significant across all specifications.
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B.2 Aggregate Data Sources

Consumption (Ct). Per capita consumption data are from the National Income and Product Accounts

(NIPA) annual data reported by the Bureau of Economic Analysis (BEA). The data are constructed as the

sum of consumption expenditures on nondurable goods and services (Table 1.1.5, lines 5 and 6) deflated by

corresponding price deflators (Table 1.1.9, lines 5 and 6).

Physical Investment (It). Physical investment data are also from the NIPA tables. We measure physical

investment by fixed investment (Table 1.1.5, line 8) minus information processing equipment and software

(Table 5.5.5, line 3) deflated by its price deflator (Table 1.1.9, line 8). Information processing equipment and

software is interpreted as investment in intangible capital and is therefore subtracted from fixed investment.

Measured Output (YM,t). It is the sum of total consumption and physical investment, that is, Ct + It.

We exclude government expenditure and net export because not explicitly modelled in our economy. Notice

also that the NIPA tables do not account for Jt over the sample 1929–2003.

Intangible Investment (Jt). We follow the procedure in Corrado et al. (2006) to construct a measure

of intangible investment from 1953 to 2003. We include expenses in brand equity, firm-specific resources,

R&D and computerized information. Prior to 1953 data are not available. Data and notes on our sources

are available upon request.

Labor (Nt). It is measured as the total number of full-time and part-time employees as reported in the

NIPA table 6.4. Data are annual from 1929 to 2003. In table 9, we divide N by total population.

Physical Capital (Kt). We follow Hall (2001) and construct capital according to the following recursion:

Kt = (1 − δK)Kt−1 + It, where δK = .11 as in our calibration. This recursion is initialized in 1929 by

imposing K1929 = I1929/δK as in Hall (2001).

Asset returns. Both the market returns and the HML factor are from the Fama-French dataset available

online on K. French’s webpage:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F Research Data Factors.zip.

Risk-free rate. The nominal risk-free rate is measured by the annual 3-month T-Bill return. The real

risk-free rate is computed by subtracting realized inflation from the nominal risk-free rate.
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Appendix C: Calculation of the Macaulay Duration and Details of

Model Extensions

C.1 Duration.

In this section, we derive a recursive relation that can be used to calculate the Macaulay duration of growth

options and assets in place defined in (25). We first prove the following lemma.

Lemma 2 Let MDt and Pt be the time-t Macaulay duration and present value of the cash flow process

{CFt}
∞
t=1, respectively; then

MDt · Pt = Et [Λt+1 · CFt+1] + Et [Λt+1(1 +MDt+1)Pt+1] . (C.1)

Furthermore, if CFt = CF1,t + CF2,t for all t, then

MDt · Pt = Et [Λt+1 (CF1,t+1 + CF2,t+1)] + Et [Λt+1(1 +MD1,t+1)P1,t+1] . . . (C.2)

+ Et [Λt+1(1 +MD2,t+1)P2,t+1] ,

where Pi,t and MDi,t denote the price and Macaulay duration of cash flow CFi,t for i = 1, 2.

Proof. By the definition of Macaulay duration,

MDt · Pt = Et




∞∑

j=1

jΛt,t+jCFt+j




= Et [Λt,t+1CFt+1] + Et


Et+1




∞∑

j=2

jΛt,t+jCFt+j






= Et [Λt,t+1CFt+1]

+Et


Λt,t+1


Et+1




∞∑

j=2

(j − 1)Λt+1,t+jCFt+j


+ Et+1




∞∑

j=2

Λt+1,t+jCFt+j








= Et [Λt,t+1 (CFt+1 +MDt+1Pt+1 + Pt+1)] ,

as needed.

Equation (C.1) can then be proved by applying the definition of present value and duration separately for

cash flow {CF1,t}
∞

t=1 and {CF2,t}
∞

t=1.

Let MDS,t denote the Macaulay duration of a growth option created at the end of period t. Let MDK,t

refer to the Macaulay duration of a generation-0 production unit survived until the end of period t. We show
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that MDS,t and MDK,t satisfy the following recursive relation:

MDS,t · qS,t = −Et

[
Λt+1

It+1

St+1

]
+ Et

[
Λt+1

G (It+1, St+1)

St+1
(1 +MDK,t+1)qK,t+1̟t+1

]
. . . (C.3)

+ Et

[
Λt+1

(
1−

G (It+1, St+1)

St+1

)
(1 +MDS,t+1)qS,t+1(1 − δS)

]
,

MDK,t · qK,t = Et

[
Λt+1

(
αyt+1 −

Jt+1

Kt+1

)]
+ Et [Λt+1(1− δK)(1 +MDK,t+1)qK,t+1] . . . (C.4)

+ Et

[
Λt+1

Jt+1

Kt+1
(1 +MDS,t+1)qS,t+1

]
.

Consider a growth option at the end of period t. In period t + 1 after the quality of the option, θ, is

revealed, there are two possibilities. If θ ≥ θ∗t+1 = GI (I t, St), then the option is exercised. In this case, the

cash flow in period t+ 1 is − 1
θ , and the option becomes a generation t+ 1 production unit, which generates

cash flow equivalent to ̟t+1 generation-0 production units. In the case θ < GI (I t, St), the option is not

exercised and survives to the next period with probability 1− δS , in which case it generate the cash flow of

a period t+1 growth option. Note that the above argument provides a cash flow decomposition of a growth

option at period t. By lemma 2, we have

MDS,t · qS,t = Et

[
Λt,t+1 ·

∫

θ≥GI(It,St)

[
−
1

θ
+ (1 +MDK,t+1)̟t+1qK,t+1

]
f (θ) dθ

]

+Et

[
Λt,t+1 ·

∫

θ<GI(It,St)

[(1− δS) (1 +MDS,t+1) qS,t+1] f (θ) dθ

]
.

Using the results in Ai (2009), the integrals can be written as functions of the aggregate quantities:

MDS,t · qS,t = Et

[
Λt,t+1 ·

[
−
It+1

St+1
+
G (It+1, St+1)

St+1
(1 +MDK,t+1)̟t+1qK,t+1

]]

+Et

[
Λt,t+1 ·

G (It+1, St+1)

St+1
[(1− δS) (1 +MDS,t+1) qS,t+1]

]
,

as needed.

We can decompose the cash flow of a production unit as well. The total output of a period-t production

unit is used for three purposes: consumption; tangible investment that produces new-generation production

units; and intangible investment that creates new blueprints, which are associated with three difference

sources of future cash flows. Equation (C.4) can then be established by applying lemma 2 to the above cash

flow decomposition. By solving the system of recursive equations (C.3)–(C.4) we obtain the pair of Macaulay

durations, (MDK,t,MDS,t).

57



C.2 Microeconomic foundation of the Adjustment Cost Function H

Here we show that the law of motion of intangible capital in equation (29) arises as the result of a concave

production function of new blueprints. Suppose consumption goods, new blueprints, and new investment

goods are produced in production units. Let c, i and j denote the amount of general output used to produce

consumption goods, investment goods, and blueprints, respectively. Normalize the price of consumption

goods to 1, and denote qS and qI the price of blueprints and investment goods, respectively. In this case,

the profit maximization problem of a typical production unit can be written as:

max
c,i,j,n

[c+ qI i+ qSh(j)− wn]

c+ i+ j = (An)1−α .

In equilibrium we must have qI = 1. In addition, optimality requires qS = 1/h′(j), which implies that all

production units produce the same amount of blueprints. We continue to use K to denote the total measure

of production units. The total amount of resources used to produce blueprints is therefore J = j ·K, and the

total amount of blueprints produced is K · h(J/K) in this economy. After denoting H(J,K) = h(J/K)K,

the law of motion of intangible capital can be written as in equation (29).

The function H , which resembles adjustment costs in neoclassical models, is homogenous of degree one

and concave in (J,K). Accordingly, we specify H in the spirit of Jermann (1998) as follows:

H(J,K) =

[
a1

1− 1/ξ

(
J

K

)1−1/ξ

+ a2

]
K,

where 1/ξ determines the concavity of H and the parameters {a1, a2} satisfy the following two steady state

conditions: H(J,K) = J and HJ(J,K) = 1.

C.3 Linking the Aggregator G to Microeconomic Evidence

In Section IV.A of the paper, we calibrate the CES aggregator, G (I, S), to match macroeconomic moments.

Here we describe a procedure that links the functional form of G (I, S) to microeconomic evidence on the

market-to-book ratio of new Initial Public Offering (IPO) firms.

The theoretical link between G and the market-to-book ratio of exercised options.

Using the results in Ai (2009), the CES aggregator, G (I, S) implies that θi,t is an i.i.d. draw from the

following distribution:

P (θi,t ≤ θ) =

∫ θ

0

ν−ξxξ−1

[ν−ξxξ−1 − 1]
1+ 1

1−1/ξ

dx, θ ∈ [0,+∞). (C.5)

In our model, the time-t market value of a newly created production unit is ̟tpK,t. Its book value is the

value of investment goods used to implement the blueprint in the last period, 1
θi,t−1

. Therefore the market-to-
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Figure C.4 – Book-to-Market Distribution for New Production Units.

Notes - The circles refer to our Benchmark Model, while the stars refer to IPO.s data from the CDS data
set. Our annual sample starts in 1970 and ends in 2009 and includes 22,116 observations.

book ratio of a new production unit at time t is θi,t−1̟tpK,t. Note that not all blueprints are implemented.

By Proposition 1, a blueprint i is implemented in period t− 1 if and only if θi,t−1 ≥ θ∗t−1 = GI (It−1, St−1).

An empirical proxy for the market-to-book ratio of newly exercised options. The above

argument links the truncated density f to the distribution of market-to-book ratios of newly exercised options

across firms at a given time. The market-to-book ratios of the firms in our COMPUSTAT-CRSP data set, in

contrast, reflect the market-to-book ratio of options exercised by the same firm at different points in times.

For this reason, we consider the market-to-book ratio of new IPO firms a better proxy for that of newly

exercised options. We think of implementation of blueprints as initial public offering, and we compare the

cross-section distribution of the market-to-book ratio of newly exercised options in our simulation with that

of the new IPO firms in the SDC Platinum data set.

Details of the Simulation Procedure. In our simulation, we allow the productivity of production

units to have an idiosyncratic component εit:

Ati,t = Att · ε
i
t.

We set E
[
εit
]
= 1 and choose V ar

[
εit
]
to match the cross-sectional dispersion of productivity in our COM-

PUSTAT data. In this case, all aggregation results in our model remain unchanged. The only difference is

that the market-to-book ratio of firms i becomes εitθi,t−1̟tpK,t.

We simulate the time series of macroeconomic quantities from our model. Note that St measures the
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Table C.2 Calibration for Model Extensions

Extension 1 2 3 4

Preference parameters

Discount factor β 0.97 0.98 0.98 0.98
Risk aversion γ 10 29 29 29
Labor adjusted Risk aversion 10 10 10 10
Intertemporal elasticity of substitution ψ 2.0 2.0 2.0 2.0

Production function/Aggregator parameters

Capital share α 0.3 0.3 0.3 0.3
Depreciation rate of physical capital δK 11% 11% 11% 11%
Depreciation rate of intangible capital δS 11% 11% 11% 11%
Weight on physical investment ν 0.88 0.93 0.85 0.85
Elasticity of substitution η 2.50 3.8 1.60 1.60
Adjustment Costs ξ 5 5 5 5

TFP parameters

Average growth rate µ 2.0% 2.0% 2.0% 2.0%
Volatility of short-run risk σa 5.08% 4.40% 5.38% 4.98%
Volatility of long-run risk σx 0.86% 0.75% 0.64 0.75
Autocorrelation of expected growth ρ 0.925 0.925 0.925 0.925
Time-0 Risk exposure of new investment φ0 0 0 0 0
Time-1 Risk exposure of new investment φ1 1 1 0 0.5

Notes - This table reports the parameter values used for our calibrations referring to the model extensions
studied in section V. All models are calibrated at an annual frequency. The labor adjusted risk aversion is
computed as γ/α (see Swanson (2012)). Extension 1 features adjustment costs on intangible investment. In
Extension 2 we also add endogenous labor. In Extension 3 and 4 we retain adjustment costs and endogenous
labor and set φ1 to 0 and 0.5, respectively, to study 2-period transitions of productivity exposure.

amount of blueprints in period t; therefore in each period we sample from the distribution (C.5) a number of

independent draws of θi,t proportional to St. We compute the market-to-book ratio for all new production

units which are constructed from the implemented blueprints. This procedure gives a panel of market-to-

book ratios of newly established production units which can be used to plot the empirical density. In Figure

C.2 , we compare this density (denoted by circles) to the observed empirical distribution (denoted by dots)

of the market-to-book ratio of new IPO firms in the SDC Platinum data set. Our sample ranges from 1970

to 2009 and includes 44,922 firms. Figure C.2 suggests that our choice of the G (I, S) function conforms

well with the microeconomic evidence on the cross-sectional distribution of market-to-book ratio of new IPO

firms.
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