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We propose to measure growth opportunities by firms’ exposure to idiosyncratic volatility news. Theoret-
ically, we show that the value of a growth option increases in idiosyncratic volatility but its response to

volatility of aggregate shocks can be either positive or negative depending on option moneyness. Empirically,
we show that price sensitivity to variation in idiosyncratic volatility carries significant information about firms’
future investment and growth even after controlling for conventional proxies of growth options such as book-
to-market and other relevant firm characteristics. Consistent with our theoretical arguments, we also find that
firm’ exposure to aggregate volatility, while priced, does not help predict their future growth. Option-intensive
firms identified using our idiosyncratic volatility-based measure earn a lower premium than do firms that rely
more heavily on assets in place.
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1. Introduction
We propose a volatility-based measure of growth
options owned by firms. Our idea originates from the
conventional wisdom that option payoffs increase in
volatility of the underlying cash flows. According to
the standard real-options models that typically make
no distinction between aggregate and idiosyncratic
risks, price exposure to volatility news should con-
tain information about growth opportunities avail-
able to firms. We argue that the source of variation
does matter for this result to hold. We show that the
value of a growth option increases with idiosyncratic
volatility but its response to volatility of aggregate
shocks is ambiguous. Guided by our theoretical anal-
ysis, we propose to measure options by exposure to
idiosyncratic volatility news. We show that, empir-
ically, it carries significant information about cross-
sectional differences in firms’ future investment and
growth even after controlling for conventional proxies
of growth options. We also find that option-intensive
firms, identified by high sensitivity to idiosyncratic
volatility, earn a lower premium compared with low-
exposure asset-in-place intensive firms.

Unobservable growth opportunities are typically
proxied by various valuation ratios such as market
to book, price to earnings, etc. Valuation-based prox-
ies, however, have significant limitations because they
may vary across firms for many different reasons. For
example, any heterogeneity in firms’ current and/or
future productivity in the presence of adjustment

costs or differences in riskiness of assets in place will
generally lead to cross-sectional differences in market-
to-book ratios even in the absence of any growth
options. Our volatility-based measure is not subject to
these types of biases and, as we show, is supplemen-
tary to the traditional proxies.

In the empirical literature and among practitioners,
high valuation ratios are commonly associated with
high growth-option intensity. Theoretical asset pricing
models, however, have different implications for the
sign of this relationship. For example, in the models
of Berk et al. (1999), Gomes et al. (2003), and Carlson
et al. (2004), market-to-book ratios and growth-option
intensity are negatively correlated. Growth options in
these models are riskier than assets in places, and
to account for the value premium, low market-to-
book firms (i.e., value firms) are required to be option
intensive. In Kogan and Papanikolaou (2010, 2014),
growth options are also riskier than assets in place
because of higher exposure to investment-specific
shocks. However, because investment-specific risks in
their model carry a negative premium, growth-option
intensive firms have high valuations. In Ai and Kiku
(2013) and Ai et al. (2013), growth options are less
risky than assets in place, and market-to-book ratios
and growth options are positively related. Given the
very different predictions as to what market-to-book
proxies for, a nonvaluation-based measure of growth
options could help us better understand the economic
mechanism of the value premium.
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Our measure of growth options is motivated by
the insight that option payoffs respond positively to
volatility news. We argue, however, that the stan-
dard intuition applies only to idiosyncratic volatility
and cannot be generalized to volatility of aggregate
risks. To gain intuition, consider a real option with
a fixed strike price. An increase in volatility raises
the option value—this is the traditional (partial equi-
librium) effect that pertains to all types of volatil-
ity. Aggregate uncertainty, however, has an additional
discount rate effect. High aggregate volatility lowers
the risk-free rate and, hence, the discount rate applied
to the strike asset. In a broad class of economic mod-
els, high aggregate uncertainty also raises risk premia
and, therefore, the discount rate applied to the under-
lying cash flow. These general equilibrium implica-
tions lower the option payoff, working in the opposite
direction to the traditional partial equilibrium effect.
The overall response of option payoffs to aggregate
volatility risks is, therefore, ambiguous and, as we
show, depends on moneyness. For options close to
the exercise threshold, the general equilibrium effect
dominates and option payoffs respond negatively
to aggregate volatility shocks. For deep out-of-the-
money options, the partial equilibrium effect prevails
and option payoffs increase with aggregate volatility.

Our theoretical analysis suggests that the amount
of growth options owned by firms is best measured
by price sensitivity to idiosyncratic volatility news.
Other volatility-based measures (based on aggregate
or total volatility) may be contaminated by the dis-
count rate effect. We, therefore, distinguish between
two types of volatility in our empirical work. We
measure time variation in idiosyncratic volatility by
variation in firm-level volatility that is orthogonal
to fluctuations in aggregate uncertainty. Firm-level
volatility and aggregate uncertainty are measured by
realized variances of equity returns and returns of the
aggregate market portfolio, respectively.1

We first show that in the data, firm exposure
to idiosyncratic volatility shocks (denoted by �ID)
is largely positive, whereas exposure to aggregate
volatility risks (�A) is mostly negative. That is, equity
prices tend to increase on positive news about idiosyn-
cratic volatility and tend to fall when aggregate uncer-
tainty in the economy is high. We then show that,
controlling for book-to-market and other firm char-
acteristics, firms that are highly sensitive to variation
in idiosyncratic volatility are expected to grow and
invest at a high rate as they exercise their growth

1 Time variation in volatility has already been well established.
Bollerslev et al. (1992) provide a survey of the early literature
and evidence on aggregate volatility, and Andersen et al. (2001),
Campbell et al. (2001), and Brandt et al. (2010) discuss time-series
dynamics of firm-level volatility.

options. In contrast, equity response to aggregate
volatility does not appear to be informative about
cross-sectional differences in growth opportunities.

Specifically, we document a steep monotonically
increasing pattern in sales and investment growth
rates across portfolios sorted on exposure to idiosyn-
cratic volatility. The average annual growth in sales
almost doubles and average investment growth
changes from −0.7% to 8.1% from the bottom to
the top quintile portfolios. In addition, firms with
high �ID are characterized by high R&D spending
and high Tobin’s Q, low leverage, and low dividend
yields, all of which are characteristic of growing firms.
For example, the average dividend yield of firms in
the top quintile is only 1.5%, whereas it is about
3% for firms in the bottom quintile. Similarly to the
value premium, we find that firms with high exposure
to idiosyncratic volatility (i.e., option-intensive firms)
carry lower premia relative to low-�ID firms.

In a regression setting, we show that exposure to
idiosyncratic volatility, by itself, is a significant pre-
dictor of future investment. Importantly, it provides
additional information about firms’ future invest-
ment decisions (hence, available growth options) over
and beyond the conventional predictors. The effect
of idiosyncratic-volatility exposure is both statisti-
cally and economically significant after we control
for book-to-market, Tobin’s Q, past investment, size,
and other relevant characteristics. Quantitatively, a
one standard deviation increase in �ID results in a
significant 4% increase in one-year ahead investment
growth. Put differently, firms in the top �ID-quintile
invest by 10% more than otherwise identical firms in
the bottom portfolio do. We also show that, control-
ling for book to market and size, idiosyncratic volatil-
ity exposure has a negative effect on expected returns.
A one standard deviation increase in ID-volatility
(idiosyncratic volatility) beta lowers the next year
return by about 2.2%, on average.

Exposure to aggregate volatility news is also neg-
atively related to expected returns. Firms with large
negative �A carry a substantially higher premium
compared with zero-exposure firms. Thus, consistent
with the long-run risk literature, aggregate volatil-
ity risks carry a negative price (Bansal and Yaron
2004). The difference in average returns between the
bottom and top quintile portfolios ranked by �A is
about 4% per annum. When it comes to growth
options, we find no significant evidence that expo-
sure to aggregate volatility helps predict firms’ future
investment. These findings confirm our theoretical
argument. The partial-equilibrium effect (that pushes
option prices up) and the discount rate effect (that
pushes prices down) work against each other, which
makes it hard to learn about available growth options
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by looking at equity exposure to aggregate volatility
shocks.

Our theoretical analysis is related to a large litera-
ture on (real) option pricing. Although a positive
effect of idiosyncratic volatility on option payoffs is
well established (see Black and Scholes 1973, Merton
1973, McDonald and Siegel 1986, and Dixit and
Pindyck 1994), our paper formalizes this result in a
stochastic-volatility model and emphasizes the differ-
ence between idiosyncratic and aggregate volatility.
We model the option exercise problem in a Markovian
setup similar to recent models in the capital structure
literature, for example, Hackbarth et al. (2006), Chen
(2010), and Bhamra et al. (2010).

The effect of aggregate volatility on asset prices
has been emphasized in the macrofinance literature.
Bansal et al. (2005, 2014) and Boguth and Kuehn
(2013) show that aggregate volatility risks carry sig-
nificant premia in equity markets. Bollerslev et al.
(2009) and Drechsler and Yaron (2011) explore impli-
cations of aggregate volatility for exchange-traded
index options. Bloom (2009) and Bloom et al. (2011)
consider equilibrium implications of volatility shocks
in frameworks with irreversible investment. Duarte
et al. (2012) study the relationship between aggregate
volatility shocks and aggregate investment in a gen-
eral equilibrium model with production.

Our paper is also related to the literature that
explores the implications of option exercise and in-
vestment decisions for the cross section of asset re-
turns, for example, Berk et al. (1999), Gomes et al.
(2003), Carlson et al. (2004), Zhang (2005), Cooper
(2006), Novy-Marx (2007), Garlappi and Yan (2011),
Papanikolaou (2011), and Bhamra and Shim (2011)
among others. Different from these papers, our focus
is on providing a measure of growth options that can
be used to test theory. Kogan and Papanikolaou (2010,
2014) also propose a theoretically motivated measure
of growth opportunities based on return sensitivity to
investment-specific shocks that empirically are prox-
ied by returns of a long/short portfolio of invest-
ment producers and consumption-good producers.
Our papers complement each other and present cor-
roborative evidence that option-intensive firms carry
lower premia than do firms with abundant assets
in place.

More generally, our paper contributes to the
broader literature that studies option valuation and
investment decisions. Detemple and Sundaresan
(1999) develop a framework for option valuation in
the presence of trading restrictions. Henderson (2007)
and Hugonnier and Morellec (2007) analyze the impli-
cations of market incompleteness on investment and
investment timing decisions. Miao and Wang (2007)
extend the real-option approach to an environment
where agents make joint decisions on consumption,

investment, and portfolio selection, and emphasize
the different effects of systematic and undiversifiable
idiosyncratic risks on option exercise decisions.

The rest of the paper is organized as follows.
Section 2 provides a theoretical analysis of growth-
option exposure to volatility news. We consider two
economies that feature variation in either idiosyn-
cratic or aggregate volatility and characterize the
dynamics of growth options in each of them. In §3
we present evidence that in the data, firms’ exposure
to variation in idiosyncratic volatility is informative
about firms’ future investment decisions and growth.
We also show that, empirically, firms’ exposure to
aggregate volatility news does not help identify
option-intensive firms. Section 4 provides concluding
remarks.

2. Volatility Shocks and
Option Returns

In this section, we provide a theoretical analysis of
the relationship between option payoffs and volatil-
ity shocks. We distinguish between two types of
volatility—volatility of aggregate shocks and volatil-
ity of idiosyncratic shocks—and characterize the re-
sponse of growth options to each type of volatility
news. We also highlight differences in volatility expo-
sure between growth options and assets in place.

2.1. Setup of the Model
Consider an economy where a representative agent
has intertemporal preferences described by the Kreps
and Porteus (1978) utility with a constant relative risk
aversion parameter, �, and a constant intertemporal
elasticity of substitution (IES), �. Time is continuous
and infinite. We follow Duffie and Epstein (1992a)
and represent preferences as a stochastic differential
utility.

We assume that the dynamics of aggregate con-
sumption are described by the following stochastic
process:

dCt =Ct6�C dt +�C4�t5 dBt71 (1)

where 8Bt9t≥0 is a one-dimensional standard Brownian
motion, and 8�t9t≥0 is a two-state Markov process with
state space ä = 8�H1 �L9, where �H > �L. The transition
probability of �t over an infinitesimal time interval ã
is given by

[

1 −�Hã �Hã

�Lã 1 −�Lã

]

0 (2)

An asset in place is a project that generates cash
flows, Dt , that follow

dDt =Dt

[

�D dt +�8�C4�t5 dBt +�D4�t5 dB
i
t9
]

1 (3)
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where Brownian motion Bt is the aggregate shock that
affects consumption and dividends growth simulta-
neously, and Bi

t is an idiosyncratic shock. The param-
eter � allows the model to account for leverage and
differences in volatility of dividend and consumption
growth rates. We assume that the project is subject to
random termination that arrives at a Poisson rate �
per unit of time.

A growth option is the right to obtain the above
project by making an irreversible investment of one
unit of consumption goods. That is, the owner of the
option has the right to adopt the project at any time
at a fixed cost before it is terminated.

We consider two special cases of the above general
setup:

Case 1. Economy with idiosyncratic volatility
shocks:

�C4�5= �1 �D4�5= �1 for � = �H1 �L0 (4)

Case 2. Economy with aggregate volatility shocks:

�C4�5= �1 �D4�5= �1 for � = �H1 �L0 (5)

In the economy with idiosyncratic volatility, aggregate
volatility is constant and changes in volatility of divi-
dend growth are purely idiosyncratic. In the economy
with aggregate volatility shocks, fluctuations in cash-
flow volatility are perfectly correlated with changes in
volatility of aggregate consumption. The latter setup
allows us to capture the general equilibrium effect of
variation in volatility of aggregate shocks. We use the
two economies to highlight the equilibrium effect of
volatility news on option values.

We make the following assumptions on the param-
eters of the model.

Assumptions2 The parameters of the model satisfy

�+
1
2
�

(

1 −
1
�

)

�2
C4�5−

(

1 −
1
�

)

�C > 01

for � = �H1 �L (6)

and

�+�+
1
�
�C −�D +

1
2
�

(

2�− 1 −
1
�

)

�2
C4�5 > 01

for � = �H1 �L0 (7)

As we show in the appendix, condition (6) ensures
that the lifetime utility of the agent is finite, and
assumption (7) guarantees that the present value of
cash flows is finite.

Under the above assumptions, in both economies,
the value of assets in place, denoted by VA4�1D5, is a
linear function of dividends. That is,

VA4�1D5= a4�5D1 (8)

where a4�5 is the price-dividend ratio. As we show
in the appendix, in the economy with idiosyncratic
volatility shocks, the price-dividend ratio is con-
stant: a4�H 5= a4�L5. In the economy with time-varying
aggregate volatility, the price-dividend ratio depends
on the current state, �, and is provided in the
appendix.

We use VO4�1D5 to denote the value of a growth
option in state � with current level of dividend D
and use D̂4�5 to denote the optimal option exercise
threshold in state �. The value function VO4�1D5 in
both economies permits closed-form solutions and
is detailed in Proposition 1. For simplicity, here we
assume D̂4�L5 < D̂4�H 5.2

Proposition 1. On 601 D̂4�L57, the value of growth
options is given by

VO4�H1D5 = K1D
�1 +K2D

�21
(9)

VO4�L1D5 = K1e1D
�1 +K2e2D

�21

and on 4D̂4�L51 D̂4�H 57,

VO4�H1D5 = a0D+ b0 +A1D
�1 +A2D

�21
(10)

VO4�L1D5 = a4�L5D− 11

where the constants e1, e2, and �1, �2, �1, �2 are given in
Equations (41), (46), and (47), respectively, in §A.1 of the
appendix.

The optimal option exercise rule is given by a pair of
option exercise thresholds, D̂4�5 for � = �H , �L, such that
it is optimal to exercise the growth option in state � if and
only if D ≥ D̂4�5, for � = �H , �L. The coefficients, K1, K2,
A1, and A2 along with the optimal option exercise threshold
are jointly determined by the value-matching and smooth-
pasting conditions:

VO4�1 D̂4�55 = a4�5D̂4�5− 11

¡

¡D
VO4�1 D̂4�5 = a4�51

for � = �H1 �L1 (11)

and

VO4�H1 D̂
+4�H 55 = VO4�H1 D̂

−4�H 551 (12)¡

¡D
VO4�H1 D̂

+4�H 55 =
¡

¡D
VO4�H1 D̂

−4�H 550

Proof. See §A.1 of the appendix.

2 As we show in the next subsection of the paper, the condition
D̂4�L5 < D̂4�H 5 is always satisfied in the economy with idiosyncratic
shocks. In §2.3, we provide a sufficient condition under which this
condition holds in the economy with aggregate shocks. Closed-
form solutions can still be obtained whenever the above condition
is violated.
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2.2. The Effect of Shocks to
Idiosyncratic Volatility

We first consider the economy with time-varying
idiosyncratic volatility that corresponds to Equa-
tion (4). As we argue in Proposition 2, high volatil-
ity of idiosyncratic shocks is always associated with
a high option value and a delay in option exercise.
This result is consistent with the intuition in the stan-
dard real-options theory. The real-options literature
typically considers a constant volatility setup, offer-
ing comparative statics for options with different but
constant volatilities. Our model incorporates stochas-
tic volatility and allows us to explore the effect of
volatility news on option returns.

Proposition 2. In the economy with time-varying
idiosyncratic volatility, an increase in volatility raises
option values and the option exercise threshold, that is,

VO4�H1D5 > VO4�L1D51 for all D1

and
D̂4�H 5 > D̂4�L50

Proof. See §A.3 of the appendix.

We illustrate the result of the above proposition
in Figures 1 and 2. The time-series parameters used
in constructing this example are chosen to match
the first two moments of annual U.S. consumption
and dividend growth rates, and our preference con-
figuration implies preference for early resolution of

Figure 1 (Color online) Value of Growth Options: The Case of
Idiosyncratic Volatility

0 0.05 0.10 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dividend

Low volatility 

High volatility 

Exercise threshold (low volatility)

Exercise threshold (high volatility)

Notes. This figure plots the value of growth options as a function of the cur-
rent level of dividends in the low idiosyncratic volatility state (dashed line)
and that in the high idiosyncratic volatility state (solid line). The figure cor-
responds to the economy with time-varying idiosyncratic volatility.

Figure 2 (Color online) Exposure to Idiosyncratic Volatility of Assets
in Place and Growth Options

0 0.05 0.10 0.15

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Dividend

Growth options
Assets in place

Notes. This figure plots the change in the value of assets in place (solid line)
and growth options (dashed line) as the economy shifts from the low to the
high volatility state. The figure corresponds to the economy with time-varying
idiosyncratic volatility.

uncertainty. The full list of parameter values is pre-
sented in Table 1. The solid line in Figure 1 shows
the value of growth options in the high volatility state
(�H ); the dashed line represents option values in the
low volatility state (�L). The option exercise thresh-
old in the low and high volatility states is depicted
as a square and a circle, respectively. As the figure
shows, the value of growth options is always higher
in the high volatility state than in the state when
idiosyncratic volatility is low. High volatility is also

Table 1 Parameter Configuration of the
Example Economies

Preference parameters

� 0.02
� 2.0
� 2.0

Consumption/cash flow

�C 0.02
� 0.01
�H 0.03
�L 0.01
� 0.02
�D 0.05
� 0.12
� 3.00

Note. This table presents the parameter configura-
tion used in numerical examples of the economies
with time-varying idiosyncratic volatility and time-
varying aggregate volatility.
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associated with a high option exercise threshold due
to the option value of waiting.

Figure 2 plots exposure of the two types of assets
to idiosyncratic volatility risks. The solid line is the
ratio of the value of assets in place in two volatil-
ity states, VA4�H1D5/VA4�L1D5; the dashed line is the
corresponding ratio of the value of growth options,
VO4�H1D5/VO4�L1D5. Notice that the value of growth
options always responds positively to volatility news,
whereas the value of assets in place does not. That is,
VO4�H1D5/VO4�L1D5 > 1 and VA4�H1D5/VA4�L1D5= 1.
As the figure also shows, sensitivity of option returns
to idiosyncratic volatility shocks is higher the further
the option is from the option exercise threshold. Thus,
asset exposure to variations in idiosyncratic volatility
is informative about (i) the type of the asset (option
versus asset in place) and (ii) moneyness of growth
options.

2.3. The Effect of Shocks to Aggregate Volatility
In contrast to idiosyncratic volatility, in a general
equilibrium setting, aggregate volatility risks affect
the stochastic discount factor and, therefore, asset
prices. Qualitatively, general equilibrium implications
of aggregate volatility for option values depend on
preference parameters. We assume that preference
parameters satisfy � > 1 > 1/�. As shown in Bansal
and Yaron (2004), these preferences ensure a rise in
discount rates at times of high aggregate uncertainty
and are consistent with the empirical evidence of
countercyclical dynamics of risk premia.

Consider the economy with time-varying aggre-
gate volatility described in Equation (5). Let D̂=

max8D̂4�H 51 D̂4�L59 denote the maximum of the option
exercise thresholds. The following proposition char-
acterizes the response growth options to aggregate
volatility shocks.

Proposition 3. Consider the economy with time-
varying aggregate volatility and assume that �= 1.3 Sup-
pose that

�+�+
1
�
�C −

1
2
�

(

1 +
1
�

)

�2 > 41 + 2�54�D +��251

for � = �H1 �L1 (13)

then
(1) there exists a unique D∗ ∈ 401 D̂5 such that

VO4�H1D5 > VO4�L1D51 for all D ∈ 401D∗51

and

VO4�H1D5 < VO4�L1D51 for all D>D∗3

3 The assumption of �= 1 is not critical. We impose it only to sim-
plify the sufficient condition and to facilitate its interpretation. The
more general condition that allows for arbitrary values of � is given
in inequality (57) in §A.4 of the appendix.

(2) The option exercise thresholds satisfy D̂4�H 5 >
D̂4�L5.

Proof. See §A.4 of the appendix.

Fluctuations in aggregate volatility have two effects
on option values: the standard volatility (or par-
tial equilibrium) effect and the discount rate (or
general equilibrium) effect. Whereas the first effect
raises options’ payoffs, the second one causes growth-
option values to decline. Depending on moneyness
of growth options, one or the other dominates and
determines the sign of option exposure to aggregate
volatility risks.

Consider first options that are close to the option
exercise threshold. Note that under our assumptions
on preferences, prices of asset in place are depressed
in states of high aggregate uncertainty: a4�H 5 < a4�L5.
Intuitively, high aggregate volatility states are asso-
ciated with high risk premia and, therefore, low
price-to-dividend ratios. Hence, at-the-money growth
options also respond negatively to aggregate volatility
risks: a4�H 5D̂−1 =VO4�H1 D̂5 < VO4�L1 D̂5= a4�L5D̂− 1.
Moreover, given that options are levered positions on
assets in place, their values decline more on posi-
tive news about aggregate uncertainty compared with
assets in place. By continuity, options that are suffi-
ciently close to the option exercise threshold will also
have negative exposure to aggregate volatility. That is,
for options that are soon or about to be exercised, dis-
count rate effect dominates and an increase in aggre-
gate volatility leads to a decline in option values.

As options move further away from the option
exercise threshold, the partial equilibrium effect
becomes more important and, under the condition
provided in Proposition 3, eventually dominates the
negative discount rate effect. Consider an option that
is deep out of the money. An increase in aggregate
volatility has a twofold effect. The general equilibrium
effect is still present, pushing the option value down.
At the same time, an increase in aggregate volatil-
ity raises the probability that the option will even-
tually end up in the money, pushing its value up.
Deep out of the money, the partial equilibrium effect
outweighs the discount rate effect. As a result, suffi-
ciently out-of-the-money options have positive expo-
sure to aggregate volatility risks. Note that, in contrast
to the case of idiosyncratic volatility, the relationship
between option values and aggregate volatility is not
uniform: option values increase with volatility when
they are deep out of the money but decline when they
are close to the option exercise threshold.

Depending on parameter values, the general equi-
librium effect may or may not dominate over the
entire domain of option moneyness. Proposition 3
provides a sufficient condition for the discount
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Figure 3 (Color online) Value of Growth Options: The Case of
Aggregate Volatility
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Notes. This figure plots the value of growth options as a function of the cur-
rent level of dividends in the low aggregate volatility state (dashed line) and
that in the high aggregate volatility state (solid line). The figure corresponds
to the economy with time-varying aggregate volatility.

rate effect to get ultimately overrun by the stan-
dard volatility effect.4 Intuitively, inequality in Equa-
tion (13) requires effective depreciation to be high
enough relative to the risk premium. The left-hand
side of Equation (13) is the sum of the depreciation
rate of assets in place and the risk-free interest rate.5

Note that the general equilibrium channel affects the
value of growth options through their terminal (on
exercise) payoff. Higher risk aversion enhances the
general equilibrium effect through an increase in risk
premia. But, if the interest rate or depreciation rate
are relatively high, then the general equilibrium effect
dies off fast enough and the partial equilibrium effect
becomes dominant for sufficiently out-of-the-money
options. The proposition also shows that, provided
Equation (13) holds, the option exercise threshold is
governed by the partial equilibrium effect of volatility
and it is optimal to delay option exercise in the high
volatility state.

We illustrate Proposition 3 in Figures 3 and 4 using
the same set of parameter values as in Table 1. Fig-
ure 3 plots the value of growth options in the high
aggregate volatility state (solid line) and that in the
low aggregate volatility state (dashed line). In the

4 As we show in §A.4 of the appendix, the conclusion of the propo-
sition holds under a more general condition, provided in Equa-
tion (57). We find it to be satisfied for a wide range of plausible
parameter values.
5 To be precise, �+ 41/�5�C −

1
2�41 + 1/�5�2 is the risk-free interest

in the economy with constant aggregate volatility �.

Figure 4 (Color online) Exposure to Aggregate Volatility of Assets in
Place and Growth Options
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Notes. This figure plots the change in the value of assets in place (solid line)
and growth options (dashed line) as the economy shifts from the low to the
high volatility state. The figure corresponds to the economy with time-varying
aggregate volatility.

region close to the option exercise threshold, the gen-
eral equilibrium effect dominates and option values
are higher when aggregate volatility is low. In con-
trast, for deep out-of-the-money options, aggregate
volatility has a positive effect on option values. In this
region, the general equilibrium effect is dominated
by the conventional volatility channel because of a
higher likelihood that options end up in the money
before they disappear.

Figure 4 presents exposure of assets in place and
growth options to aggregate volatility risks. Notice
that VA4�H1D5/VA4�L1D5 = a4�H 5/a4�L5 < 1, i.e, the
value of assets in place declines on positive volatil-
ity news because of an increase in risk premia.
The response of growth options, VO4�H1D5/VO4�L1D5,
can be higher or lower than the response of assets
in place. When options are considerably out of
the money, their values increase in volatility. These
options are less risky than assets in place and, in
fact, deep out-of-the-money options provide insur-
ance against aggregate volatility shocks. Options that
are close to the option exercise threshold are more
sensitive to discount rate risks and, therefore, respond
more negatively to volatility innovations than do
assets in place.

There are three important implications of our the-
oretical analysis. First, the value of growth options
always increases with idiosyncratic volatility. Hence,
price exposure to idiosyncratic volatility news should
certainly be informative about differences in growth
opportunities across firms. Second, the response of
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growth options to volatility of aggregate shocks
is ambiguous: it can be either positive or nega-
tive depending on option moneyness. Third, growth
options may have either higher or lower exposure
to aggregate volatility news compared with assets in
place. The latter two implications suggest that expo-
sure to aggregate volatility is unlikely to reveal dif-
ferences in option intensity across firms. To summa-
rize, from the theoretical point of view, the amount of
growth options owned by firms is best measured by
price sensitivity to variation in idiosyncratic volatility.
Measures based on aggregate (hence, total) volatility
may be contaminated by the discount rate effect and
may be powerless to distinguish between growth and
asset-in-place intensive firms.

3. Empirical Evidence
Motivated by our theoretical results, we propose
to measure growth options by firms’ sensitivity to
idiosyncratic volatility news, and in this section,
we explore its ability to identify option-intensive
firms. In particular, we examine if equity exposure
to variation in idiosyncratic volatility contains infor-
mation about firms’ future investment, growth, and
expected returns. We also test the predictive content
of exposure to aggregate volatility (“aggregate volatil-
ity beta”) for future investment decisions of firms.

3.1. Firm Data
All the cross-sectional data come from Compustat
and the Center for Research in Securities Prices. We
focus on nonfinancial firms whose common shares
are traded on NYSE, AMEX, and Nasdaq. We collect
return and price series, the number of outstand-
ing shares, capital expenditure (to measure invest-
ment), property, plant and equipment (to measure
the amount of capital), expenditure on research and
development (R&D), book value of assets, sales, and
cash holdings. For each firm in the sample, we com-
pute its book-to-market ratio as in Fama and French
(1993), its financial leverage as a ratio of short- and
long-term debt to the sum of debt and market value
of equity, and Tobin’s Q as a ratio of the sum of mar-
ket capitalization, book value of preferred equity and
long-term debt less inventories and deferred taxes
to the sum of book value of common and preferred
equity and long-term debt. In addition, for every firm
we construct a measure of operating leverage using
“market operating leverage” of Novy-Marx (2011),
defined as a ratio of operating costs to market value of
assets. Operating costs consist of costs of goods sold
and selling, general, and administrative expenses; the
market value of assets is computed as book value of
assets plus market capitalization minus book value
of equity. We use data sampled on daily, monthly,
and annual frequency. Monthly and annual data are

converted to real using the consumer price index from
the Bureau of Labor Statistics. The overall coverage of
the data is from 1964 to 2012.

3.2. Aggregate and Idiosyncratic Volatility
Measures

We measure aggregate and firm-level volatility by
realized variance of equity returns.6 Monthly series of
aggregate variance are constructed by summing up
squared daily returns of the aggregate market port-
folio. Since our focus is on volatility news and their
effect on prices, we work with innovations rather
then levels. Aggregate volatility news is extracted by
applying an AR(1) filter to the logarithm of the mar-
ket variance.7 We choose to measure aggregate volatil-
ity using market equity rather than consumption data
since the latter are not available at high frequencies.

Idiosyncratic volatility is constructed in two steps.
First, we estimate firm-level volatility as in Campbell
et al. (2001) and Brandt et al. (2010) using industry-
adjusted daily returns. In particular, for firm i that
belongs to industry J , its variance in month t is mea-
sured as

V FL
i1 t =

∑

d∈t

4Ri1 d − R̄J 1 d5
21 (14)

where Ri1 d and R̄J 1 d are daily returns of firm i and
industry J , respectively.8 We find that the average cor-
relation between firm-level and aggregate volatility is
fairy high, of about 28%. Thus, the industry adjust-
ment alone is not sufficient to remove all system-
atic variation. To further isolate purely idiosyncratic
movements in volatility, we orthogonalize firm-level
variance with respect to aggregate variation. Specifi-
cally, innovation in idiosyncratic volatility of firm i in
month t (denoted by � ID

i1 t ) is measured by the residual
in the following regression:

vFL
i1 t = ki10 + ki11v

M
t + ki12v

FL
i1 t−1 +� ID

i1 t 1 (15)

where vFL
i1 t ≡ log4V FL

i1t 5, and vM
t is the logarithm of the

aggregate market variance. An autoregressive term is
included to filter out any remaining persistence. Note
that our estimation procedure aims to identify time
variation in firm-specific volatility without taking a
strong stand on the asset pricing model that governs
equity returns.

3.3. Exposure to Idiosyncratic Volatility
To explore the predictive ability of ID-volatility betas
for future investment, we sort firms on their exposure

6 We use the terms “volatility” and “variance” interchangeably.
7 Strong time dependence in volatility series has been well recognized
in the literature (e.g., Bollerslev et al. 1992, Andersen et al. 2001).
8 We use the 30-industry classification available at Kenneth French’s
data library. Allowing for nonunit industry betas does not affect
our empirical evidence. We provide a more detailed discussion of
the robustness of our findings below.
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Table 2 Sorting on Exposure to Idiosyncratic Volatility

Panel A: Portfolio characteristics at formation

Portfolio �ID Tobin’s Q R&D/Assets

Low −0.030 (0.004) 1.11 [1.11, 1.13] 3.62 [3.17, 3.43]
2 0.004 (0.004) 1.10 [1.11, 1.13] 2.56 [3.16, 3.43]
3 0.028 (0.004) 1.08 [1.11, 1.13] 2.55 [3.16, 3.43]
4 0.054 (0.004) 1.10 [1.11, 1.13] 2.96 [3.16, 3.43]
High 0.102 (0.005) 1.32 [1.11, 1.13] 5.47 [3.16, 3.43]
High − Low 0.132 (0.006) 0.21 [−0.02, 0.02] 1.86 [−0.21, 0.20]

Panel B: Portfolio characteristics over the holding period

Portfolio Return ãSales ãI

Low 7.48 [5.27, 7.66] 2.57 [2.92, 4.19] −0.65 [0.87, 3.56]
2 6.04 [5.28, 7.67] 3.59 [2.92, 4.19] 0.89 [0.88, 3.57]
3 7.63 [5.28, 7.67] 3.93 [2.92, 4.20] 4.35 [0.93, 3.59]
4 7.13 [5.28, 7.66] 4.22 [2.92, 4.19] 5.06 [0.88, 3.57]
High 5.29 [5.27, 7.64] 4.67 [2.91, 4.18] 8.05 [0.87, 3.60]
High − Low −2.18 [−1.88, 1.88] 2.10 [−1.00, 1.00] 8.71 [−2.14, 2.14]

Notes. This table presents characteristics of portfolios sorted on exposure to idiosyncratic volatility. In panel A,
idiosyncratic volatility beta (�ID), Tobin’s Q, and the ratio of R&D expenditure to lagged assets (R&D/Assets) are
computed at the time when portfolios are formed. In panel B, average return (Return), sales growth (ãSales), and
investment growth (ãI) are computed over the one-year holding period. The standard errors of portfolio �ID ’s based
on the Newey and West (1987) estimator with four lags are reported in parentheses. Numbers in brackets represent
95% confidence intervals of the corresponding moments under the null that �ID ’s contain no information about
firms’ real assets. Portfolios are value weighted and rebalanced annually; the entries correspond to time-series
averages over the 1967–2012 sample period; R&D/Assets, Return, ãSales , and ãI are expressed in percentages.

to idiosyncratic volatility and compare growth-related
characteristics of the resulting portfolios. We measure
idiosyncratic volatility exposure, which we denote by
�ID, using three-year rolling window regressions. In
particular, at the end of a given year, we regress
the logarithm of firm returns on innovations in its
idiosyncratic volatility using monthly data over the
previous three years. We then sort firms on their ID-
volatility exposure into five value-weighted portfolios
and hold them for one year. The next December, we
reestimate volatility betas by rolling the estimation
window one year forward, and repeat the sorting pro-
cedure. Table 2 provides a description of the sorted
portfolios. We show two sets of statistics: in panel A
we report characteristics at the time when portfolios
are formed and in panel B we present portfolio char-
acteristics over the holding period.

Consistent with the theoretical prediction, we find
that equity returns have mostly positive exposure to
news in idiosyncratic volatility—with the exception of
the bottom quintile, the estimated betas are positive.9

9 The estimates reported in Table 2 correspond to the time-series
averages of value-weighted portfolio �ID’s. The time-series aver-
ages of the cross-sectional medians are very similar. Note that the
estimate of �ID could potentially be downward biased because of
the leverage effect discussed in Black (1976). This is likely to be the
case because �̂ID’s tend to decline with both financial and operating
leverage as we show in §3.4. Hence, the true exposure to idiosyn-
cratic volatility is likely to be higher (i.e., more positive) relative to
the reported estimates.

That is, equity prices tend to increase in response to
a rise in idiosyncratic volatility. As we argued earlier,
a positive response is likely to be driven by growth
options and its magnitude depends on the amount
and moneyness of options available to firms. The
cross-sectional heterogeneity in �ID’s is substantial, in
particular, the difference in average betas of the top
and bottom quintile portfolios is around 0.13 with a
t-statistic of 21.7. Table 3 further shows that firms’
exposure to idiosyncratic volatility is fairly persistent.
The average probability of a firm remaining in the
same portfolio from one year to the next is around
45% and the probability of staying in the same bin or
transition to the nearest portfolio is 78%, on average.

Table 3 Transition Probabilities Across �ID-Sorted Portfolios

To

Low 2 3 4 High

From
Low 0056 0025 0011 0006 0003
2 0024 0037 0024 0011 0004
3 0011 0025 0034 0023 0008
4 0006 0012 0024 0037 0022
High 0003 0004 0009 0023 0061

Notes. This table reports frequencies of transition across quintile portfolios
sorted on exposure to idiosyncratic volatility (�ID). Transition probabilities
are measured by the fraction of firms that migrate from one bin in year t

to another bin in year t + 1. The entries correspond to time-series averages
over the 1967–2012 sample period.
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We find that firms with high exposure to idiosyn-
cratic volatility are characterized by high Tobin’s Q,
high cash holdings, low amount of capital, and low
financial leverage. High-�ID firms account for only 4%
of the total capital, whereas low-�ID firms contribute
a much larger share, of about 31%, to the total capital
stock. Firms in the top portfolio, on average, have a
12% ratio of cash to assets and a 20% ratio of debt
to firm value. The corresponding statistics of firms
in the bottom portfolio are 7% and 25%, respectively.
In addition, firms with high exposure to idiosyncratic
volatility tend to spend more on research and devel-
opment compared with the others. The ratio of R&D
expense to lagged assets of the top quintile portfolio
is 5.5%, which is about 2% larger than that of the rest
of the market.

As panel B shows, forward-looking characteristics
also vary substantially across portfolios sorted on
idiosyncratic volatility exposure. Firms with high �ID

feature higher growth in sales and investment in the
year following the portfolio formation compared with
low-exposure firms. As �ID increases, the average
growth in sales increases monotonically from 2.6%
to 4.7%. The difference in investment growth rates
is more striking: the average growth of investment
changes from −0.7% to 8.1% from the bottom to the
top quintile portfolios.

To confirm that the observed cross-sectional differ-
ences in investment rates and other growth charac-
teristics are significant and not simply due to a lucky
draw, we run a Monte Carlo simulation under the null
that �ID’s contain no information about firms’ real
assets. In particular, for every sample year t, we draw
�ID’s from their time-t cross-sectional distribution and
match them randomly with time-t firms. We then con-
struct five portfolios by sorting firms on the randomly
assigned exposure, repeat simulations 10,000 times,
and construct confidence intervals of portfolio charac-
teristics under the null. The 2.5- and 97.5-percentiles
of Monte Carlo distributions are reported in Table 2 in
brackets next to the corresponding sample moments.
Our simulations show that under the null, all portfo-
lios feature almost identical distributions of average
investment and sales growth rates. That is, if idiosyn-
cratic volatility exposure were not informative about
firms’ real assets, it would be extremely unlikely to
detect differences in average growth rates across �ID-
sorted portfolios of the magnitude that we observe in
the data. For example, under the null, with 95% con-
fidence, the difference in average investment growth
rates of the top and bottom portfolios would lie in
between −2014% and 2014%, whereas in the data the
spread in mean growth rates is equal to 8.71%. Like-
wise, the observed difference in average sales growth
rates between low- and high-exposure portfolios is
strongly significant.

Firms with higher exposure to idiosyncratic volatil-
ity tend to be more volatile relative to firms with
low �ID’s, although the relationship between expo-
sure to idiosyncratic volatility and total variation is
not monotone. The standard deviation of portfolio
returns changes from 19% for the bottom quintile to
16% for the middle quintile and to 27% for the top
quintile. We find a similar J -shaped pattern in the
level of idiosyncratic volatility across �ID-sorted port-
folios. That is, firms with high exposure to idiosyn-
cratic volatility that are characterized by high future
investment and growth tend to feature high idiosyn-
cratic variation of equity returns. This evidence is
consistent with Cao et al. (2008) and Kogan and
Papanikolaou (2013), who establish a positive rela-
tionship between the level of idiosyncratic risk and
firms’ growth opportunities. We will further examine
the link between the level of firm-specific variation,
price exposure to idiosyncratic volatility, and future
investment in §3.7.

We also find that high-�ID firms are characterized
by high prices, low dividends, and low expected
returns. The sample mean of the price-dividend ratio
of the top quintile portfolio is almost 159, whereas
it is only 42 for the bottom quintile. As idiosyn-
cratic volatility exposure goes up, the average return
declines from about 7.5% to 5.3%. This evidence
should not be interpreted as a puzzle. Firm-specific
volatility is purely idiosyncratic. Hence, exposure to
innovations in idiosyncratic volatility should not be
priced. However, if, as we argue, ID-volatility expo-
sure provides a signal about relative composition of
firms’ assets, and growth options and assets in place
have different risk characteristics, then sorting on
idiosyncratic volatility beta would reveal differences
in systematic risks and risk premia of growth and
value assets. Our findings suggest that growth-option
intensive firms carry smaller premia compared with
asset-in-place intensive firms, which is consistent with
theoretical predictions in Ai and Kiku (2013), Kogan
and Papanikolaou (2014), and Ai et al. (2013, 2014).

The observed cross-sectional differences in risk pre-
mia are hard to reconcile within the capital asset pric-
ing model (CAPM). In the data, contrary to the CAPM
prediction, it is the portfolio that earns the lowest
premium that features the highest covariation with
the market. The top quintile portfolio that on average
earns only 5.3% has the CAPM beta of 1.35. For com-
parison, the bottom portfolio that yields 7.5% aver-
age rate of return has a significantly lower market
beta of 0.99, and the CAPM alpha of the high-minus-
low strategy is −401% per annum. The failure of the
CAPM to explain the cross-sectional risk-return trade-
off in this context is similar to its mispricing of book-
to-market sorted portfolios. Growth-intensive firms in
the data, identified by either low book-to-market ratio
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or high ID-volatility beta, have high CAPM betas but
low premia, whereas asset-in-place intensive firms,
those with high book-to-market or low exposure to
ID-volatility, have low market betas but carry high
premia.

3.4. Controlling for Book-to-Market and Leverage
The empirical evidence presented in Table 2 shows
that, unconditionally, idiosyncratic volatility exposure
is able to predict firms’ future investment and growth.
The one-dimensional sort, however, cannot reveal if
idiosyncratic volatility betas provide additional infor-
mation beyond what we can learn from the conven-
tional, book-to-market-based classification of growth
and value. To address this issue, we consider a dou-
ble sort on book to market and �ID. We first sort all
firms into three book-to-market portfolios, then we
split each BM (book-to-market ratio) bin into three
portfolios with low, medium, and high ID-volatility
beta. Portfolios are value weighted and rebalanced on
an annual frequency.10 Table 4 presents some of the
key characteristics of the resulting portfolios. To con-
serve space, we report statistics only for corner port-
folios, those at the intersection of low and high book-
to-market and low and high ID-volatility beta.

The evidence in Table 4 confirms the well-known
ability of book-to-market ratio to identify option-
intensive firms. Portfolios with a low ratio of book
to market feature significantly higher R&D expen-
diture and invest at a much higher rate relative
to firms with high book-to-market characteristic. In
fact, whereas firms in the low book-to-market port-
folio have strongly positive investment growth rates,
high-BM firms undergo a decline in investment, on
average.

Importantly, we find that after controlling for book-
to-market characteristic, exposure to idiosyncratic
volatility helps further separate out high and low
expected growth firms, especially across firms with
low BM ratio. The average sales growth of low-BM
and low-�ID firms is about 6.05%. Keeping BM
ratio fixed, the growth rate increases to 11.1% for
firms with high idiosyncratic volatility exposure. The
increase in investment growth is more pronounced.
The average investment growth of firms with low
book-to-market ratio more than triples from 4.9% to
16.2% as firms’ exposure to idiosyncratic volatility
changes from low to high. The increase in both aver-
age sales and investment growth rates is strongly sta-
tistically significant.

Note that firms with low book-to-market ratios are
typically firms with relatively large market capitaliza-
tion. Hence, the evidence of a significant �ID-effect

10 Empirical evidence based on an independent two-dimensional
sort is very similar to the one presented here.

Table 4 Double Sort on BM and Exposure to Idiosyncratic Volatility

Panel A: Portfolio characteristics at formation

BM �ID R&D/Assets

Portfolio Low BM High BM Low BM High BM Low BM High BM

Low �ID 0036 1043 −00016 −00019 503 108
High �ID 0034 1041 00084 00069 708 109

Panel B: Portfolio characteristics over the holding period

Return ãSales ãI

Portfolio Low BM High BM Low BM High BM Low BM High BM

Low �ID 6024 10073 6005 −0077 4091 −5057
High �ID 3076 10086 11013 0046 16015 −0082

Notes. This table shows characteristics of portfolios sorted on BM and
exposure to idiosyncratic volatility (�ID). Portfolios are constructed by first
sorting firms into three book-to-market portfolios, and then dividing each
BM bin into three idiosyncratic volatility beta portfolios. The table presents
four portfolios with opposite characteristics: low and high BM, and low and
high �ID . In panel A, book-to-market ratio (BM), �ID , and R&D to lagged
assets (R&D/Assets) are computed at the time when portfolios are formed.
In panel B, average return (Return), sales growth (ãSales), and growth in
investment (ãI) are computed over the one-year holding period. Portfolios
are value weighted and rebalanced annually; the entries correspond to time-
series averages over the 1967–2012 period; R&D/Assets, return, ãSales , and
ãI are expressed in percentages.

among firms with low BM ratios suggests that it is
not driven by very small firms. Indeed, controlling for
size, we find that the effect is especially strong for
medium and large firms. In particular, across medium-
sized firms, those with low ID-volatility exposure
have, on average, a 6.3% decline in investment,
whereas those with high exposure to idiosyncratic
volatility tend to increase investment by 6%.

In Table 5 we examine the interaction between
exposure to idiosyncratic volatility and leverage. Sam-
ple characteristics of portfolios double sorted on
either financial or operating leverage and �ID’s are
presented in panels A and B, respectively. First, notice
that the cross-sectional dispersion in �ID’s varies little
with leverage. For example, for firms with low degree
of financial leverage, the spread in �ID’s for the top
and bottom portfolios is 0.10, and among firms with
high financial leverage, the corresponding difference
is a similar 0.09 (both spreads are highly significant).
Thus, the cross-sectional variation in �ID’s is not sim-
ply driven by differences in firms’ leverage.

Second, similar to book to market, firm leverage is
strongly negatively correlated with future investment
and growth—firms with low degree of financial or
operating leverage invest more and grow faster com-
pared with highly levered firms. Yet, leverage does
not account for all cross-sectional variation in growth
rates. A substantial fraction of variation in future
investment growth is explained by the cross-sectional
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Table 5 Double Sort on Leverage and Exposure to Idiosyncratic
Volatility

Panel A: Financial leverage

Financial leverage �ID ãI

Portfolio Low FL High FL Low FL High FL Low FL High FL

Low �ID 0004 0054 −00018 −00019 7094 −4086
High �ID 0004 0053 00084 00074 20012 −0051

Panel B: Operating leverage

Operating leverage �ID ãI

Portfolio Low OL High OL Low OL High OL Low OL High OL

Low �ID 0038 1070 −00017 −00018 2057 −2014
High �ID 0035 1068 00080 00078 8022 4072

Notes. This table shows characteristics of portfolios sorted on leverage and
exposure to idiosyncratic volatility (�ID). Panels A and B correspond to finan-
cial leverage (FL) and operating leverage (OL), respectively. Portfolios are
constructed by first sorting firms into three leverage portfolios, and then
dividing each bin into three idiosyncratic volatility beta portfolios. The table
presents four portfolios with opposite characteristics: low and high lever-
age, and low and high �ID . Financial/operating leverage and �ID are com-
puted at the time when portfolios are formed, investment growth (ãI) is com-
puted over the one-year holding period. Portfolios are value weighted and
rebalanced annually; the entries correspond to time-series averages over the
1967–2012 period; ãI is expressed in percentages.

differences in firms’ exposure to idiosyncratic volatil-
ity. For example, as �ID changes from low to high,
average investment growth rates increase from 7.9%
to 20.1%, from 1.1% to 9.1%, and from −409% to
−005% for low, median, and high financial leverage
firms, respectively. All the differences are statistically
significant, with t-statistics varying between 3.1 and
5.9. Similarly, average sales growth rates are also sig-
nificantly higher for firms with high exposure com-
pared with low-�ID firms.

3.5. Idiosyncratic Volatility Exposure and
Future Investment

To formally quantify the extent to which idiosyncratic
volatility exposure is able to account for unobservable
growth opportunities, we test its ability to forecast
firms’ future investment. We consider two specifica-
tions. In the first specification, we use ID-volatility
betas to run the following predictive regression:

log
Īi1 t+k

Ii1 t
=�0 +��ID

i1 t +�Xi1 t +ui1 t+11 (16)

where the left-hand side variable is the logarithm of
cumulative (annualized) investment growth of firm i
(i.e., Īi1 t+k ≡ 41/k5

∑k
j=1 It+j ), �ID

i1 t is firm-i exposure to
idiosyncratic volatility at time t, and Xi1t is a vector
of controls. Our focus here is on the magnitude and
significance of the slope coefficient �.

In our second specification, instead of using volatil-
ity exposure directly, we use dummy variables that
represent the location of each firm within ID-volatility
beta-sorted portfolios. That is, we estimate

log
Īi1 t+k

Ii1 t
=�0 +

5
∑

p=2

�jD
4p5
i1 t +�Xi1 t +ui1 t+11 (17)

where D
4p5
i1 t is a dummy variable that equals one if

firm i belongs to portfolio p at time t, and all other
variables are defined as in Equation (16). One poten-
tial advantage of the second specification is that it
might help reduce firm-specific noise coming from the
estimated betas.

We consider several variations of each specifica-
tion: with and without firm fixed effects (FE), and
with and without controls. In regression specifications
with control variables, we include firm characteris-
tics that are known to predict future investment. We
use ratios of sales to assets, cash to capital, book to
market, and investment to capital, as well as firm
market share, return, and Tobin’s Q. Predictability of
the one-year ahead investment growth (i.e., k = 1) is
presented in Table 6. The four columns (“Model I”–
“Model IV”) correspond to different regression spec-
ifications. Panel A reports the estimate of � in
Equation (16), panel B shows the estimates of �j

in specification (17), and t-statistics are reported in
parentheses. To ensure robustness of our inference to
both cross-sectional dependence in errors and resid-
ual correlation across time, we cluster standard errors
by firm and time.

Table 6 Idiosyncratic Volatility Exposure and Future Investment
Growth

Model I Model II Model III Model IV

Panel A: Using �ID

� 0.87 (4.52) 1.49 (7.59) 0.55 (4.90) 0.73 (6.58)

Panel B: Using portfolio position
�2 0.06 (6.85) 0.06 (6.92) 0.02 (3.57) 0.02 (3.58)
�3 0.09 (10.69) 0.10 (11.21) 0.04 (5.36) 0.05 (5.76)
�4 0.11 (9.75) 0.14 (13.29) 0.06 (6.80) 0.06 (6.69)
�5 0.14 (7.71) 0.22 (16.44) 0.09 (7.23) 0.10 (8.20)

Firm FE No Yes No Yes
Controls No No Yes Yes

Notes. This table documents predictability of firms’ investment growth rate,
log4It+1/It 5, by their exposure to idiosyncratic volatility. In panel A, � is the
regression coefficient on the idiosyncratic volatility beta (�ID); in panel B,
�j is the slope coefficient on a dummy variable that equals one if a firm
belongs to the j-quintile portfolio of firms sorted on �ID . The four columns,
“Model I”–“Model IV,” correspond to different regression specifications with
and without firm fixed effects, and with and without controls. The set of con-
trols comprises the ratios of sales to assets, cash to capital, book to market,
investment to capital, Tobin’s Q, market share, and firm return. Numbers in
parentheses are t-statistics based on standard errors clustered by firm and
time. The data span the 1967–2012 period.
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The first two columns show that exposure to
idiosyncratic volatility, by itself, is a strongly signif-
icant predictor of future investment growth. Firms
with higher ID-volatility betas invest at a much
higher rate than do firms that are less sensitive to
idiosyncratic volatility news. This evidence is consis-
tent across the two specifications in Equations (16)
and (17) and is robust to the inclusion of firm fixed
effects. Controlling for firm characteristics makes the
magnitude of the �ID-effect decline, and yet it remains
strongly significant. The estimates of � in the last two
columns are all positive, and the estimates on portfo-
lio dummies, �̂j , are monotonically increasing across
quintiles. Quantitatively, controlling for firm charac-
teristics and fixed effects, a one standard deviation
increase in idiosyncratic volatility exposure results
in a significant 4% increase in investment growth.
Put differently, firms in the top �ID-sorted portfo-
lio invest by 10% more than do otherwise iden-
tical firms in the bottom portfolio. This evidence
reveals that firms’ exposure to idiosyncratic volatility
contains significant independent information about
firms’ future investment decisions (hence, available
growth options) over and beyond what is already cap-
tured by such powerful predictors as cash balances,
book-to-market ratio, past investment, and returns.11

We should add that similar to the evidence based
on double-sorted portfolios discussed above, in a
regression setting, �ID and the conventional mea-
sures of growth options seem to complement rather
than compete with each other in predicting invest-
ment growth. For example, in our most compre-
hensive specification (Model IV reported in panel A
of Table 6), all three proxies, �ID, Tobin’s Q, and
book to market, are significant predictors of firms’
future investment with t-statistics of 6.58, 2.88, and
−2094, respectively. Earlier, Grullon et al. (2012)
found that sensitivity of stock returns to total firm
volatility is correlated with conventional measures
of growth options. Unlike them, we discriminate
between idiosyncratic and aggregate components of
volatility, and show that exposure to idiosyncratic
volatility is not simply related to the traditional
proxies but provides independent information about
firms’ future investment. We also highlight the
importance of separating idiosyncratic and aggregate

11 Consistent with a large body of literature that followed Fazzari
et al. (1988), we find that investment is highly sensitive to cash
flows even after controlling for investment opportunities using
Tobin’s Q, book-to-market, and �ID . In a frictionless environment,
a significant cash-flow effect may arise because of measurement
errors or identification issues (e.g., Erickson and Whited 2000,
Gomes 2001, Alti 2003). The existence of financial constraints may
amplify the effect of cash flows on investment and, like some argue,
accounts for the observed investment-cash-flow sensitivity (e.g.,
Moyen 2004, Almeida and Campello 2007).

Table 7 Idiosyncratic Volatility Exposure, Future Investment, and
Returns

ãI I/K Return

Estimate t-stat. Estimate t-stat. Estimate t-stat.

One year 0073 6058 0061 5076 −0041 −1089
Two year 0062 5019 0051 4033 −0021 −1080
Three year 0061 5074 0048 4055 −0012 −2014

Notes. This table documents predictability of the (annualized) cumula-
tive one-, two-, and three-year ahead investment growth (ãI), investment
rate (I/K), and return (return) by firms’ exposure to idiosyncratic volatil-
ity. Regression specifications include firm fixed effects and control for firm
characteristics. The return regression controls for firms’ sales-to-assets and
book-to-market ratios, investment rate, and market capitalization. In invest-
ment regressions, the set of controls is augmented by the ratio of cash to
capital, Tobin’s Q, and firm return. The t-statistics are based on standard
errors clustered by firm and time. The data span the 1967–2012 period.

volatility movements for both understanding price
reaction to different volatility news and for accurate
measurement of growth options.

As discussed earlier, price sensitivity to idiosyn-
cratic volatility captures not only the relative amount
of growth options but also their moneyness. There-
fore, we expect the effect of ID-volatility exposure
on future investment to be persistent because options
that are sufficiently out of the money may not be able
to reach the option exercise threshold that soon and
may spur investment only several years later. We test
this hypothesis in Table 7. It shows the response of
one-, two- and three-year ahead cumulative invest-
ment growth and investment rate to ID-volatility
betas, controlling for firm fixed effects and firm char-
acteristics. Investment-to-capital ratio of firm i for
horizon k is defined as log4Īi1 t+k/Ki1 t5, where Īi1 t+k is
the cumulative (annualized) investment and Ki1 t is the
book value of firm capital at time t. Consistent with
our hypothesis, we find that firms with higher sen-
sitivity to idiosyncratic volatility feature higher rates
of investment relative to firms with low exposure
even three years out. The magnitude of the estimated
slope tends to decline with the horizon but it remains
statistically significant. For example, for investment
rate, the estimated coefficients are 0.61, 0.51, and 0.48
for horizons of one-, two- and three-years, respec-
tively, with the corresponding t-statistics of 5.76, 4.33,
and 4.55.

The last set of columns in Table 7 characterizes the
effect of idiosyncratic volatility exposure on future
firm returns. The evidence is based on the regression
specification (16) where the left-hand side variable is
replaced by the cumulative (annualized) return. We
narrow a set of controls to firm characteristics that
are known to capture variation in expected returns
and remain statistically significant. In particular, we
control for sales-to-assets and book-to-market ratios,
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investment rate, and market capitalization, and we
include firm fixed effects. We find that idiosyn-
cratic volatility exposure has a negative effect on
expected returns. Quantitatively, a one standard devi-
ation increase in ID-volatility beta lowers next-year
return by about 2.2%. The effect is significant at the
10% level at the one- and two-year horizons, and
at the 5% level at the three-year horizon. This evi-
dence is consistent with the well-known value pre-
mium. In the data, growth firms identified by low
book-to-market ratio on average have lower rates of
returns compared to value or high book-to-market
firms. We identify growth firms by their high expo-
sure to idiosyncratic volatility and also find that they
carry low expected returns even after controlling for
book-to-market and size.

3.6. Robustness
To confirm our findings we conduct a series of robust-
ness checks. First, we construct idiosyncratic volatil-
ity by adjusting returns using the Fama and French
(1993) three-factor model instead of industry portfo-
lios. Second, we use our benchmark volatility series
but vary the length of the estimation window over
which ID-volatility exposure is measured. We con-
sider two alternatives: two- and five-year windows
that are not too short or too long. Table 8 presents
average growth rates in sales and investment of
quintile portfolios ranked on alternative ID-volatility
betas. For brevity, we report only two characteristics,
because other cross-sectional patters are both qualita-
tively and quantitatively consistent with our bench-
mark findings. As the table shows, our empirical
evidence is robust—across the alternative measures,
exposure to idiosyncratic volatility is highly infor-
mative about future investment and growth. Sorting
on alternative ID-volatility betas results in a mono-
tonic increase in future sales growth and generates
a sizable spread in average investment growth rates
between high- and low-exposure firms. For example,
with the Fama–French adjustment, the difference in
investment growth between the top and the bottom
portfolios exceeds 10%. In regression settings, alterna-
tive ID-volatility exposure remains a significant pre-
dictor of firms’ future investment after controlling for
firm characteristics. To conserve space, this evidence
is not presented and is available upon request.

We focus on quintile portfolios to ensure that they
are not too thin. In a decile sort, the cross-sectional
dispersion in investment growth and returns is fur-
ther amplified. In particular, the difference in average
sales growth between the top and the bottom decile
portfolios is 3.2% (5.5% vs. 2.3%), the spread in aver-
age investment growth is 13% (10.2% vs. −208%), and
the dispersion in average returns is 6.2% (3.5% of the

Table 8 Robustness

FF-adjusted Two-year window Five-year window

Portfolio ãSales ãI ãSales ãI ãSales ãI

Low 2048 −0051 2045 −0075 3008 0082
2 3061 1056 3060 1019 3003 1027
3 3073 2072 3086 3010 3072 3010
4 4080 6005 4086 5050 4007 5017
High 5031 9089 5021 8002 5053 7052

Notes. This table reports average sales growth (ãSales) and investment
growth (ãI) of portfolios sorted on exposure to idiosyncratic volatility. In
the first set of columns (FF-adjusted), idiosyncratic volatility is constructed
by adjusting firm returns using the Fama–French three-factor model. In the
other columns, idiosyncratic volatility betas are measures using either a two-
year or a five-year estimation window. Portfolios are value weighted and
rebalanced annually; the entries correspond to time-series averages over the
1967–2012 sample period and are expressed in percentages.

high ID-volatility beta portfolio versus 9.7% of the
bottom decile).12

3.7. Idiosyncratic Volatility: Exposure vs. Level
Idiosyncratic volatility has recently attracted a lot of
attention in the asset pricing literature. Campbell et al.
(2001), Cao et al. (2008), and Brandt et al. (2010) focus
on understanding time-series dynamics of aggregate
idiosyncratic volatility. Ang et al. (2006, 2009) ana-
lyze the cross-sectional relationship between the level
of idiosyncratic volatility and average returns. Kogan
and Papanikolaou (2013) and Guo and Savickas (2008)
explore the relationship between idiosyncratic volatil-
ity level and firm’ growth opportunities. Our paper
aims to understand if price sensitivity to idiosyncratic
volatility news reveals information about growth
options owned by firms.

Ang et al. (2006, 2009) show that firms with a high
level of idiosyncratic volatility have puzzlingly low
average returns. As we show, firms with high expo-
sure to idiosyncratic volatility also carry low premia
and, in addition, are expected to invest at a high
rate. It is possible that because the level of idiosyn-
cratic volatility and exposure to firm-specific volatil-
ity are positively correlated our findings are just a
restatement of the idiosyncratic volatility puzzle. We
argue, however, that it is not the case. Table 9 pro-
vides evidence in support of our argument. It shows
average returns and investment growth rates of 3 × 3
portfolios constructed by double-sorting firms accord-
ing to the level of their idiosyncratic volatility and
ID-volatility exposure. We present evidence based on
two sorts. In panel A, we first rank firms on the
level of idiosyncratic volatility, and then divide the re-
sulting portfolios into three �ID bins. In panel B, we

12 These moments are based on our benchmark measure of �ID .
Alternative measures produce similar evidence.
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Table 9 Double Sort on ID-Volatility Level and ID-Volatility Exposure

Return ãI

Portfolio Low ID Med ID High ID Low ID Med ID High ID

Panel A. Conditional sort
Low �ID 6058 8097 7003 0045 −1094 −2082
Med �ID 6076 8004 5047 2063 2067 6001
High �ID 6087 7034 2005 4026 6099 9095

Panel B. Independent sort
Low �ID 6054 8061 5075 0066 −1078 −6030
Med �ID 7007 7087 6087 3005 2075 3060
High �ID 7010 7051 3023 5074 6096 8056

Notes. This table shows characteristics of 3×3 portfolios sorted on the level
of ID and exposure to idiosyncratic volatility (�ID). In panel A, we first rank
firms on the level of idiosyncratic volatility, and then divide the resulting port-
folios into three �ID bins. In panel B, portfolios are the intersection of two
independent sorts. Average return (return) and growth in investment (ãI)
are computed over the one-year holding period and are expressed in per-
centages. Portfolios are value weighted and rebalanced annually; the entries
correspond to time-series averages over the 1967–2012 period.

present the intersections of portfolios sorted indepen-
dently on each characteristic.13

Is high idiosyncratic volatility informative about
future investment? Sometimes but not always. For
firms with relatively high ID-volatility betas, average
investment growth overall increases with the level of
firm-specific volatility. However, among firms with
low sensitivity to idiosyncratic volatility, the pattern
in investment growth is completely the opposite—in
this cohort, highly volatile firms tend to cut down
their future investment. For example, based on an
independent sort, investment growth of firms with
high �ID increases from 5.7% to 8.6% when idiosyn-
cratic volatility changes from low to high but across
firms with low �ID it declines from 0.7% to −603%,
respectively. In contrast, high exposure to ID-volatility
consistently signals high investment growth for any
level of idiosyncratic volatility. Controlling for the
level of firm-specific volatility, average investment
growth monotonically increases in �ID in both sorts.
The spread in average growth rates between high and
low ID-volatility beta portfolios varies between 5%
and 15%.

Similar to our earlier evidence, expected returns
tend to decline in ID-volatility exposure (except for
firms with a low level of idiosyncratic volatility that
feature no discernible dispersion in mean returns).
Under the two sorting schemes, as �ID changes from
low to high, the average return declines by about 1.4%
and 3.8% for firms with median and high level of
idiosyncratic volatility, respectively. Consistent with

13 In Table 9, we continue to rely on our benchmark measure of
idiosyncratic volatility and exposure. The evidence based on alter-
native measures discussed in the robustness section above is very
similar.

idiosyncratic volatility puzzle literature, we find that
firms with a high level of idiosyncratic volatility have
low rates of return. What is interesting is that this
result appears to be strong only among firms with
high �ID. For them, the average return declines by
about 4.3%, on average, as the level of firm-specific
volatility changes from low to high. For firms with
low and median ID-volatility exposure, the corre-
sponding spread is only 0.5%.

3.8. Exposure to Aggregate Volatility and
Future Growth

As we showed both theoretically and empirically,
exposure to idiosyncratic volatility is informative
about cross-sectional differences in growth options. In
this section we examine if price sensitivity to aggre-
gate volatility risks is also able to reveal differences in
growth characteristics across firms. Table 10 presents
summary statistics of portfolios sorted on exposure
to news about aggregate volatility. Aggregate volatil-
ity exposure, which we denote by �A, is estimated
similarly to ID-volatility betas by running three-year
rolling window regressions of log equity returns on
innovations in aggregate volatility.

We find exposure to aggregate volatility to be
largely negative. That is, equity prices tend to fall dur-
ing times of high economic uncertainty, which is con-
sistent with price reaction of portfolio-level returns
documented in Bansal et al. (2005, 2014). In our sam-
ple, four out of five firms experience low returns
when market volatility goes up. This is a manifes-
tation of the discount rate effect—high aggregate
uncertainty rises risk premia and lowers asset prices.
Aggregate volatility risks carry a negative price. Firms
with high exposure to aggregate uncertainty (i.e.,
firms with highly negative �A) earn high risk premia.
The average return is monotonically declining in �A,
with firms in the bottom quintile earning about 9%

Table 10 Sorting on Exposure to Aggregate Volatility

Formation period Holding period

Portfolio �A Tobin’s Q R&D/Assets Return ãSales ãI

Low −00093 1022 5014 8087 4001 0067
2 −00056 1011 3044 8080 3047 2077
3 −00036 1010 2071 7084 3007 1083
4 −00018 1011 2065 6020 3038 2026
High 00006 1015 3015 4095 4047 2058

Notes. This table presents characteristics of portfolios sorted on exposure
to aggregate volatility. Aggregate volatility beta (�A), Tobin’s Q, and the ratio
of R&D expenditure to lagged assets (R&D/Assets) are computed at the
time when portfolios are formed. Average return (Return), sales growth
(ãSales), and investment growth (ãI) are computed over the one-year hold-
ing period. Portfolios are value weighted and rebalanced annually; the entries
correspond to time-series averages over the 1967–2012 sample period;
R&D/Assets, Return, ãSales , and ãI are expressed in percentages.
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Table 11 Aggregate Volatility Exposure and Future Investment Growth

Model I Model II Model III Model IV

Panel A: Using �A

� 0.415 (1.25) 0.482 (1.79) 0.304 (1.77) 0.256 (1.50)

Panel B: Using portfolio position
�2 0.021 (1.60) −0.003 (−0.28) −0.001 (−0.13) 0.002 (0.32)
�3 0.030 (1.69) −0.002 (−0.13) −0.004 (−0.49) 0.011 (1.40)
�4 0.035 (1.81) 0.007 (0.51) −0.009 (−1.03) 0.008 (0.88)
�5 0.026 (1.10) 0.016 (0.90) 0.003 (0.30) 0.013 (1.24)

Firm FE No Yes No Yes
Controls No No Yes Yes

Notes. This table documents predictability of firms’ investment growth rate,
log4It+1/It 5, by their exposure to aggregate volatility. In panel A, � is the
regression coefficient on the aggregate volatility beta (�A); in panel B, �j is
the slope coefficient on a dummy variable that equals one if a firm belongs to
the j-quintile portfolio of firms sorted on �A. The four columns, “Model I”–
“Model IV,” correspond to different regression specifications with and with-
out firm fixed effects, and with and without controls. The set of controls
comprises the ratios of sales to assets, cash to capital, book to market and
investment to capital, Tobin’s Q, market share, and firm return. Numbers in
parentheses are t-statistics based on standard errors clustered by firm and
time. The data span the 1967–2012 period.

and firms in the top quintile earning only 5% per
annum.

Although we find a strong and robust dispersion
in risk premia, we observe no discernible pattern in
investment- and growth-related characteristics across
portfolios sorted on exposure to aggregate volatil-
ity. Along some characteristics, such as Tobin’s Q,
leverage, and R&D spending, firms with low aggre-
gate volatility betas appear marginally more option-
intensive relative to firms with high betas. However,
the average investment growth of the top quintile
portfolio turns out to be higher than that of the bot-
tom portfolio (2.6% vs. 0.7%), and the correlation
between aggregate volatility betas and future growth
in sales is virtually zero. We also fail to find any con-
clusive variation in future investment and sales across
portfolios sorted on �A after we control for either
book to market or size.

Table 11 shows more rigorously that sensitivity of
equity prices to aggregate volatility news does not
help predict future firm-level investment in a signifi-
cant way. The table presents the estimates of the slope
coefficients in panel regressions of one-year ahead
investment growth on aggregate volatility beta. We
exploit the same specifications as in Equations (16)
and (17) replacing ID-volatility betas with �As. As the
table shows, the �A-effect is positive but lacks signif-
icance even if firm controls are excluded.

To further highlight differences between exposure
to aggregate and idiosyncratic volatility news, we
consider a double sort on the two betas. Table 12
presents characteristics of 3 × 3 portfolios constructed
by raking firms independently on �A and �ID. As the

Table 12 Double Sort on Exposure to Volatility

Panel A: Portfolio characteristics at formation

�A �ID R&D/Assets

Portfolio Low �A High �A Low �A High �A Low �A High �A

Low �ID −00072 −00003 −00023 −00017 401 300
High �ID −00080 −00003 00085 00073 503 400

Panel B: Portfolio characteristics over the holding period

Return ãSales ãI

Portfolio Low �A High �A Low �A High �A Low �A High �A

Low �ID 10008 5004 3020 3003 −1095 0056
High �ID 7083 4022 3094 5093 6023 8074

Notes. This table shows characteristics of portfolios sorted on exposure to
aggregate and idiosyncratic volatility (�A and �ID , respectively). The four
portfolios presented in the table correspond to portfolios with opposite
characteristics in the 3 × 3 sort. In panel A, �A, �ID , and R&D to lagged
assets (R&D/Assets) are computed at the time when portfolios are formed.
In panel B, average return (Return), sales growth (ãSales), and growth in
investment (ãI) are computed over the one-year holding period. Portfolios
are value weighted and rebalanced annually; the entries correspond to time-
series averages over the 1967–2012 period; R&D/Assets, Return, ãSales ,
and ãI are expressed in percentages.

table shows, cross-sectional differences in investment
characteristics are primarily driven by differences in
exposure to idiosyncratic volatility. Controlling for �A,
average R&D spending, sales, and investment growth
increase by about 1%, 2%, and 8%, respectively, from
low- to high-�ID bins. The dispersion across �A-terciles
is conflicting and, if anything, is quite weak. To sum-
marize, we find no convincing evidence that expo-
sure to aggregate volatility helps differentiate between
option- and asset-in-place-intensive firms.

4. Conclusion
We argue, both theoretically and empirically, that
price exposure to idiosyncratic volatility news is infor-
mative about cross-sectional differences in growth
opportunities. We introduce two types of volatility
risks in a standard real-option setting: risks due to
variation in volatility of idiosyncratic shocks, and
risks due to variation in volatility of aggregate
shocks. Because variation in idiosyncratic volatility
has no effect on marginal utility, growth-option values
always rise on positive news in idiosyncratic volatil-
ity. In contrast, because of the discount-rate effect,
the response of growth options to aggregate volatility
news is ambiguous. Under fairly general and empir-
ically plausible conditions, an increase in aggregate
volatility raises discount rates and lowers valuations.
Hence, the discount rate and the conventional volatil-
ity channels work against each other. We show that, in
general, the discount-rate effect dominates for options
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that are close to the option exercise threshold, and the
traditional volatility effect dominates when options
are deep out of the money. We also show that the
response of growth options to aggregate volatility
news may exceed or be lower than the corresponding
exposure of assets in place.

Guided by our theoretical results, we propose to
measure growth-option intensity by firms’ exposure
to idiosyncratic volatility news. We show that in
the data, equity exposure to innovations in idiosyn-
cratic volatility is a significant predictor of firms’
future investment and growth. Importantly, informa-
tion carried by idiosyncratic volatility exposure is not
subsumed by the conventional measures of growth
such as book-to-market ratio or Tobin’s Q, and helps
identify option-intensive firms even after controlling
for relevant firm characteristics. We also show that
firms with high exposure to idiosyncratic volatility,
on average, have lower premia compared with firms
that show low response. This evidence suggests that
growth options are less risky than assets in place
and confirms the well-known differences in risk pre-
mia in the cross section of book-to-market sorted
portfolios. Further, we find no significant evidence
that exposure to aggregate volatility is informative
about cross-sectional differences in the relative com-
position of firms’ assets. In all, our paper emphasizes
the importance of distinguishing between idiosyn-
cratic and aggregate volatility shocks in understand-
ing firms’ growth opportunities.
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Appendix

A.1. Proof of Proposition 1
We first derive the pricing kernel of the economies with
aggregate and idiosyncratic volatility shocks. The represen-
tative agent’s intertemporal preference is represented by the
Kreps and Porteus (1978) utility with constant relative risk
aversion parameter � and constant intertemporal elasticity
of substitution parameter �. We use 8Vt9t≥0 to denote the

utility process of the representative agent. The representa-
tive consumer’s preference is specified by a pair of aggre-
gators 4f 1A5 such that

dVt =
[

−f 4Ct1Vt5−
1
2A4Vt5��V 4t5�

2]dt +�V 4t5 dBt 0 (18)

We adopt the convenient normalization A4v5 = 0 (Duffie
and Epstein 1992b), and we denote the normalized aggre-
gator by f̄ . In this case, f̄ 4C1V 5 is

f̄ 4C1V 5=
�

1 − 1/�
C1−1/� − 441 −�5V 541−1/�5/41−�5

441 −�5V 541−1/�5/41−�5−1
0 (19)

Because of the homogeneity of the utility function, it can be
represented as

V 4�1C5=
1

1 −�
H4�5C1−� (20)

for some function H4�5. Under assumption (6), H4�5 is
given by

H4�H 5 =

{

1
�

[

�+
1
2
�

(

1 −
1
�

)

�2
C4�H 5−

(

1 −
1
�

)

�C

−
1 − 1/�

1 −�
�4�− 15

]}−41−�5/41−1/�5

H4�L5 =

{

1
�

[

�+
1
2
�

(

1 −
1
�

)

�2
C4�L5−

(

1 −
1
�

)

�C

−
1 − 1/�

1 −�
�4�−1

− 15
]}−41−�5/41−1/�5

1

where �≥ 1 is the unique solution to the following equation
on 401�5:

�−41−1/�5/41−�5
=

[

�+
1
2
�

(

1 −
1
�

)

�2
C4�L5−

(

1 −
1
�

)

�C

−
1 − 1/�

1 −�
�4�−1

− 15
]

·

[

�+
1
2
�

(

1 −
1
�

)

�2
C4�H 5−

(

1 −
1
�

)

�C

−
1 − 1/�

1 −�
�4�− 15

]−1

0 (21)

The above results apply to both the economy with
idiosyncratic volatility shocks and the economy with aggre-
gate volatility shocks as special cases. In the economy with
idiosyncratic volatility shocks, �C4�H 5 = �C4�L5 = � and
�= 1. In this case, H4�H 5 = H4�L5. In the economy with
aggregate volatility shocks, �C4�H 5 > �C4�L5 and � > 1.
Given our assumption of � > 1, high aggregate volatility is
associated with lower utility of the representative agent.

Let 8�t9
�
t=0 denote the marginal utility process of the

representative agent. To derive an explicit expression of
the law of motion of �t , it is convenient to represent the
Markov process 8�t9

�
t=0 as integration with respect to count-

ing processes:
d�t =ã�4�−

t 5
′dNt1 (22)

where
ã= �H − �L1

and
N4t5= 6NHt1NLt7

′
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are independent counting processes with intensity � (for
simplicity, we assume that NHt and NLt have the same inten-
sity parameter, �). The function �4�5 in Equation (22) is
given by

�4�5= 6−I8�H 94�51 I8�L94�57
′1

where I8x9 is the indicator function

I8x94y5=

{

1 if y = x1

0 if y 6= x0

Using the results in Duffie and Epstein (1992b),

d�t

�t

=
df̄C4Ct1Vt5

f̄C4Ct1Vt5
+ f̄V 4Ct1Vt5 dt0 (23)

Using Equations (20) and (23), one can show that

d�t =�t6−r̄ 4�t5 dt −��C4�5 dBt −��4�
−

t 5
′dNt71

where

r̄ 4�L5 = �+
1
�
�C −

1
2
�

(

1 +
1
�

)

�2
C4�L5

+
1/� −�

1 −�
�4�−1

− 151 (24)

r̄ 4�H 5 = �+
1
�
�C −

1
2
�

(

1 +
1
�

)

�2
C4�H 5

+
1/� −�

1 −�
�4�− 151 (25)

and
��4�5= 641 − �̂5I8�H 94�51 41 − �̂−15I8�L94�571

with �̂ = �41/�−�5/41−�5. Using the expression for the pricing
kernel, it is straightforward to show that the risk-free inter-
est rate of the economy, denoted r4�5, is given by

r4�L5 = �+
1
�
�C −

1
2
�

(

1 +
1
�

)

�2
C4�L5

+�

[

1 − �̂−1
+

1/� −�

1 −�
4�−1

− 15
]

1

(26)
r4�H 5 = �+

1
�
�C −

1
2
�

(

1 +
1
�

)

�2
C4�H 5

+�

[

1 − �̂+
1/� −�

1 −�
4�− 15

]

0

It follows that r4�L5 ≥ r4�H 5, that is, high volatility is asso-
ciated with low interest rates.

We introduce the following notation:

�H = �+ r̄ 4�H 5+���2
C4�H 53 �L = �+ r̄ 4�L5+���2

C4�L50

The value of assets in place is summarized by the following
lemma.

Lemma 1. The value of assets in place is linear in dividend as
in (8), where

a4�L5 =
�H −�D +�41 + �̂−15

4�H −�D +�54�L −�D +�5−�2
1 (27)

a4�H 5 =
�L −�D +�41 + �̂5

4�H −�D +�54�L −�D +�5−�2
0 (28)

In addition, a4�L5 = a4�H 5 in the economy with idiosyncratic
volatility shocks. Under the assumption � > 1 > 1/�, a4�L5 >
a4�H 5 in the economy with aggregate volatility shocks.

Proof. Let CF 4�1D5 be a continuous function of 4�1D5,
let � be a stopping time, and let BD4�1D5 be a twice contin-
uously differentiable function of 4�1D5. Let V 4�1D5 denote
the value function of an asset that pays cash flow at rate
CF 4�t1Dt5 for all t < � and pays B4��1D� 5 at time � :

V 4�1D5 = E

[

∫ �

0

�t

�0
CF 4�t1Dt5 dt

+
��

�0
B4��1D� 5

∣

∣

∣

∣

�0 = �1D0 =D

]

0 (29)

Standard results imply that V 4�1D5 is twice continuously
differentiable, and for all t < � , it satisfies

�tCF 4�t1Dt5+L6�tV 4�t1Dt57= 01 (30)

where

L6�tV 4�t1Dt57= lim
ã→0

1
ã
Et6�t+ãV 4�t+ã1Dt+ã5−�tV 4�t1Dt571

and V 4��1D� 5= BD4��1D� 5 at time � .
Using generalized Ito’s formula, Equation (30) can be

written as

6r̄4�5+�7V 4�1D5

=CF 4�1D5+
¡

¡D
V 4�1D5D6�D −��2

C4�57

+
1
2

¡2

¡D2
V 4�1D5�26�2

C4�5+�2
D4�57

+ I8�H 94�5�6�̂V 4�L1D5−V 4�H1D57

+ I8�L94�5�6�̂
−1V 4�H1D5−V 4�L1D570 (31)

The valuation of assets in place is a special case where
CF 4�1D5 = D and � = �. In this case, V 4�1D5 is linear and
Equation (31) implies that a4�5 is given by Equations (27)
and (28). This completes the proof of Lemma 1. �

Below, we study the solutions to a quartic equation,
which characterizes the value function of the growth
options. We denote

�2
L = �26�2

C4�L5+�2
D4�L571 (32)

�2
H = �26�2

C4�H 5+�2
D4�H 571 (33)

�L = �D −���2
C4�L51 (34)

�H = �D −���2
C4�H 51 (35)

and

rL = r̄ 4�L5+�+�1 (36)

rH = r̄ 4�H 5+�+�0 (37)

Let fL4�5 and fH 4�5 be the following quadratic functions
of �:

fL4�5 = 1
2�

2
L�

2 +
(

�L −
1
2�

2
L

)

�− rL1

fH 4�5 = 1
2�

2
H�

2 +
(

�H − 1
2�

2
H

)

�− rH 0
(38)

As we show in Lemma 4 in the next section, the quartic
equation that characterizes the solution to the ODE in Equa-
tion (31) is

fH 4�5fL4�5−�2
= 00 (39)

The following lemma characterizes the solution to a class
of quadratic functions that will be useful in analyzing the
solutions to Equation (39).
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Lemma 2. Suppose r > 0, then the quadratic equation

1
2�

2�2
+
(

�− 1
2�

2)�− r = 01

has one and only one positive solution. If r > �> 0, then the
positive solution is strictly greater than 1.

Using Lemma 2, it is straightforward to verify that under
the assumptions on the parameter values in Equations (6)
and (7), the quadratic equation fL4�5 = 0 has two roots, �−

L

and �+

L that satisfy �−
L < 0 < 1 <�+

L . Similarly, fH 4�5= 0 has
two roots that satisfy �−

H < 0 < 1 <�+

H . We define

�min = min8�+

L 1�
+

H 91 �max = max8�+

L 1�
+

H 90 (40)

Lemma 3. Equation (39) has two strictly positive roots
that satisfy 1 <�1<�2. In addition, fH 4�5, fL4�5 < 01 and
4d/d�5fH 4�51 4d/d�5fL4�5 > 0 for all � ∈ 411�min5. Finally,
�1 ∈ 411�min5.

Proof. First, we show that Equation (39) has two posi-
tive roots, which we denote as �1 and �2, that satisfy �1 ∈

411�min5 and �2 ∈ 4�max1�5. To see this, note that fH 415
fL415−�2 = 4rL−�L54rH −�H 5−�2 > 0 and fH 4�min5fL4�min5−
�2 = −�2 < 0. Also, fH 4�max5fL4�max5 − �2 = −�2 < 0 and
fH 4�5fL4�5−�2 > 0 for � large enough.

Similarly, we can verify that Equation (39) also has two
negative roots. Because Equation (39) can have at most four
real roots, �1 and �2 are the only two positive roots of Equa-
tion (39). Finally, for �> 1, 4d/d�5f i4�5= �2

i �+ 4�i −
1
2�

2
i 5 >

�i+
1
2�

2
i > 0 for i =H1L. This completes the proof. �

For i = 1121 we define

e4�i5=
−f H 4�i5

��̂
=

��̂−1

−f L4�i5
1 (41)

where the second equality holds because �1 and �2 are solu-
tions to Equation (39). The following corollary characterizes
the signs of e4�15 and e4�25.

Corollary 1. e4�15 > 0 and e4�25 < 0.

Proof. Note that �1 ∈ 411�min5 and 4d/d�5fH 4�5 > 0 for
�> 1 implies that fH 4�15 < 0. Therefore, e4�15 > 0. Similarly,
�2 ∈ 4�min1�5 implies that e4�25 < 0. �

The value of growth options is given by the following
lemma.

Lemma 4. Let e1 = e4�15 and e2 = e4�25, then the value of
growth options is given by Equations (9) and (10) in Proposi-
tion 1, where the option exercise thresholds, D̂4�H 5 and D̂4�L5
and the constants K1, K2, A1, and A2 are determined by the
value-matching and smooth pasting conditions in Equations (11)
and (12). In addition, K1> 0.

Proof. The valuation of options can be viewed as
a special case of (29), where CF 4�1D5 = 0, B4��1D� 5 =

V 4��1D� 5−1 and the stopping time � takes the following
form:

� = inf8t2 Dt > D̂4�H 51 �t = �H 9∪ 8t 2 Dt > D̂4�L51 �t = �L91

where the option exercise threshold D̂4�5 is chosen opti-
mally to maximize the value of the option. Equation (30)
implies that the value of options must satisfy

r̄ 4�H 5VO4�H1D5 =
¡

¡D
VO4�H1D5D6�D−���2

C4�H 57

+
1
2

¡2

¡D2 VO4�H1D5�2D26�2
C4�H 5+�2

D4�H 57

+�6�̂VO4�L1D5−VO4�H1D57 (42)

and

r̄ 4�L5VO4�L1D5 =
¡

¡D
VO4�L1D5D6�D−���2

C4�L57

+
1
2

¡2

¡D2 VO4�L1D5�2D26�2
C4�L5+�2

D4�L57

+�6�̂−1V 4�H1D5−V 4�L1D570 (43)

We guess that VO4�1D5 takes the form of b4�5D�. Then
Equations (42) and (43) can be written as

r̄ 4�H 5b4�H 5D
�

= �b4�H 5D
�6�D −���2

C4�H 57

+
1
2b4�H 5�4�− 15D��26�2

C4�H 5+�2
D4�H 57

+�6�̂b4�L5− b4�H 57D
�

and

r̄ 4�L5b4�L5D
�

= �b4�L5D
�6�D −���2

C4�L57

+
1
2b4�L5�4�− 15D��26�2

C4�L5+�2
D4�L57

+�6�̂−1b4�H 5− b4�L57D
�0

Assume that D̂4�L5 < D̂4�H 5, then for D ∈ 401 D̂4�L55,
VO4�1D5 = b4�5D� for � = �H1 �L, and the above equations
imply that b4�5 and � must jointly satisfy

1
2�

26�2
C4�H 5+�2

D4�H 57�
2b4�H 5

+
[

�D−���2
C4�H 5−

1
2�

26�2
C4�H 5+�2

D4�H 57
]

�b4�H 5

− 6�+�+ r̄ 4�H 57b4�H 5+��̂b4�L5= 0 (44)

and

1
2�

26�2
C4�L5+�2

D4�L57�
2b4�L5

+
[

�D −���2
C4�L5−

1
2�

26�2
C4�L5+�2

D4�L57
]

�b4�L5

− 6�+�+ r̄ 4�L57b4�L5+��̂−1b4�H 5= 00 (45)

Here, � is the eigenvalue of the quadratic eigenvalue
problem in Equations (44) and (45), and 6b4�H 51 b4�L57 is the
corresponding eigenvector. We normalize b4�H 5 = 1. Using
notations defined in Equations (32)–(37), Equations (44) and
(45) can be written as

1
2
�2
H�

2
+

[

�H −
1
2
�2
H

]

�− rH = −b4�L5��̂1

1
2
�2
L�

2
+

[

�L −
1
2
�2
L

]

�− rL = −
��̂−1

b4�L5
0

Clearly, � must satisfy the quartic Equation (39) and the cor-
responding normalized eigenvector is 611 e4�57, where e4�5
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is defined by (41). The general solution to (42) and (43) is
therefore of the form

VO4�H1D5=

4
∑

j=1

KjD
�j 1 VO4�L1D5=

4
∑

j=1

Kje4�j5D
�j 0

The boundary condition VO4�105 = 0 implies that K3 =

K4 = 0.
Under the assumption D̂4�L5 < D̂4�H 5, for D ∈

4D̂4�L51 D̂4�H 55, VO4�L1D5= a4�L5D−1. Therefore, VO4�H1D5
must satisfy

r̄ 4�H 5VO4�H1D5 =
¡

¡D
VO4�H1D5D6�D−���2

C4�H 57

+
1
2

¡2

¡D2 VO4�H1D5�2D26�2
C4�H 5+�2

D4�H 57

+�6�̂4aLD− 15−V O4�H1D570

This implies that in this region, VO4�H1D5 is of the form

VO4�H1D5= a0D+ b0 +A1D
�1+A2D

�21

where

a0 =
��̂aL

6�+�+ r̄ 4�H 57− 6�D−���C4�H 57
1

b0 = −
��̂

�+�+ r̄ 4�H 5
1 (46)

and �1 > 0 >�2 are given by

�112 = ±

√

[

�D−���C4�H 5

�26�2
C4�H 5+�2

D4�H 57
−

1
2

]

+
26�+�+ r̄ 4�H 57

�26�2
C4�H 5+�2

D4�H 57

−

[

�D−���C4�H 5

�26�2
C4�H 5+�2

D4�H 57
−

1
2

]

0 (47)

Finally, the constants, K1, K2, A11A2, and the option exer-
cise thresholds D̂4�L5 and D̂4�H 5 are determined by the fol-
lowing value-matching and smooth pasting conditions:

VO4�L1 D̂4�L55 = a4�L5D− 11
(48)¡

¡D
VO4�L1 D̂4�L55 = a4�L53

VO4�H1 D̂4�H 55 = a4�H 5D− 11
(49)¡

¡D
VO4�H1 D̂4�H 55 = a4�H 53

VO4�H1 D̂
+4�H 55 = VO4�H1 D̂

−4�H 551 (50)¡

¡D
VO4�H1 D̂

+4�H 55 =
¡

¡D
VO4�H1 D̂

−4�H 550

To prove the last part of the lemma, note that because
�1 <�2, as D → 0, the value of the option is dominated by
the first term, that is,

VO4�L1D5=K1e4�15D
�1 + o4D�1 51

VO4�H1D5=K1D
�1 + o4D�1 50

Because option value must be positive, K1 > 0 must
hold. This completes the proof of the lemma and therefore
Proposition 1. �

A.2. Several Useful Results
Here we establish several useful results for the general
model specified in Equations (1)–(3). This will prepare us
for the proofs of Propositions 2 and 3.

Lemma 5. Let �̂H denote the unique solution to the quadratic
equation

fH 4�5+��̂= 0 (51)

on 411�max5, and �̂L be the unique solution to

fL4�5+��̂−1
= 0 (52)

on the same interval, where �max is defined in Equation (40).
Then �̂H < �̂L implies that �̂H <�1 < �̂L and e4�15 < 1.

Proof. By Lemma 3, 4d/d�5f H 4�5, 4d/d�5f L4�5 > 0 for
� > 1. This implies that �̂H < �+

H and �̂L < �+

L , where �+

H

and �+

L are the positive solutions to fH 4�5= 0 and fL4�5= 0,
respectively. In addition, by Lemma 2, both Equations (51)
and (52) have a unique positive root that is strictly greater
than 1. Therefore, �̂H1 �̂L ∈ 411�max5.

Note that �1 is the unique solution to (39) on 411�max5.
Suppose �̂H < �̂L. To see that �̂H < �1 < �̂L, note that
because both fH 4�5 and fH 4�5 are strictly increasing on
4�̂H1 �̂L5, we have

fH 4�̂H 5= −��̂1 fH 4�̂L5 >−��̂1

and
fL4�̂H 5 <−��̂−11 fL4�̂L5= −��̂−10

These imply

fH 4�̂H 5fL4�̂H 5−�2 > 01 fH 4�̂L5fL4�̂L5−�2 < 00

Therefore, �1 must lie in the open interval 4�̂H1 �̂L50 Because
on 4�̂H1 �̂L5, fH 4�5 >−��̂ and fL4�5 <−��̂−1, we must have
e4�15 < 1 by the definition of e4 · 5 in Equation (41). �

Corollary 2. A sufficient condition for �̂H < �̂L is

1
2�

24�2
H−�2

L5�̂L

−
{ 1

2�
24�2

H−�2
L5+��6�2

C4�H 5−�2
C4�L57

}

> 00 (53)

Proof. Note that fH 4�̂H 5 + �� = 0 by the definition of
�̂H . Because fH 4�5 is a strictly increasing function of � on
411�max5, to prove �̂H < �̂L, it is enough to show that

fH 4�̂L5+��̂ > 00 (54)

Because fL4�̂L5−��̂−1 = 0 by the definition of �̂L, inequality
(54) is equivalent to fH 4�̂L5−��̂ > fL4�̂L5+��̂−1. Using the
definition of fH 4�5 and fL4�5 in (38), we have

6fH 4�5−��̂7−6fL4�5+��̂−17

= 1
2�

24�2
H−�2

L5�
2
−
{ 1

2�
24�2

H−�2
L5+��6�2

C4�H 5−�2
C4�L57

}

�

−6r4�H 5−r4�L571 (55)

where r4�5 is the risk-free interest rate given in Equa-
tion (27). Because r4�H 5 ≤ r4�L5, and �̂L > 0, (53) is a suffi-
cient condition for 6fH 4�̂L5−��̂7− 6fL4�̂L5+��̂−17 > 0. �
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A.3. Proof of Proposition 2
Note that in the economy with idiosyncratic volatility
shocks, �C4�5= � is a constant, and �D4�5= � for � = �H1 �L.
Following the notation in Lemma 4, we denote e1 = e4�15
and e2 = e4�25. We first prove the following lemma.

Lemma 6. In the economy with idiosyncratic shocks, 0 <
e1 < 10

Proof. Because �C4�H 5 = �4�L5 = � , condition (53) in
Corollary 2 becomes

1
2�

24�2
H−�2

L5�̂L − 1
2�

24�2
H − �2

L5 > 01

which is clearly true because �̂L > 1. �
In the case of idiosyncratic volatility, the value function

of assets in place can be simplified to VA4�1D5= aD, where

a = a4�L5= a4�H 5

=
1

�+�+ 41/�5�C + 1
2�42�− 1 − 1/�5�2 −�D

0

Let D̂max = max8D̂4�H 51 D̂4�L59. We first prove the following
lemma.

Lemma 7. In the economy with idiosyncratic volatility shocks,
VO4�H1D5 > VO4�L1D5 on 401 D̂max5.

Proof. We first show that one of the following two cases
must be true. Case 1: VO4�H1D5 > VO4�L1D5 for all D ∈

401 D̂max5; Case 2: VO4�H1D5 < VO4�L1D5 for all D ∈ 401 D̂max5.
To see this, note that VO4�H105 = VO4�L105 = 0. Also, value
matching implies VO4�H1 D̂max5 = VO4�L1 D̂max5 = aD̂max − 1.
Because both value functions are continuously differen-
tiable, 4¡/¡D5VO4�H1D5 and 4¡/¡D5VO4�L1D5 must cross at
least once on 401 D̂max5. To establish that either Case 1 or
Case 2 must be true, it is enough to show that the deriva-
tives cross each other at most once on 401 D̂max5.

First, let D̂min =min8D̂4�H 51D̂4�L59. 4¡/¡D5VO4�H1D5 and
4¡/¡D5VO4�L1D5 can not cross each other on 4D̂min1D̂max5.
Assume without loss of generality that D̂min =D̂4�H 5 and
D̂max =D̂4�L5. Then 4¡/¡D5VO4�H1D5=a on 4D̂min1D̂max5.
Also, 4¡/¡D5VO4�L1D5<a because V 4�L1D5 is strictly convex
and 4¡/¡D5VO4�L1D̂max5=a. Therefore, 4¡/¡D5VO4�H1D5=
4¡/¡D5VO4�L1D5 cannot happen on 4D̂min1D̂max5. Similarly,
we can rule out the possibility of 4¡/¡D5VO4�H1D5=
4¡/¡D5VO4�L1D5 on 4D̂min1D̂max5 for the case of D̂4�H 5>D̂4�L5.

On 401 D̂min5,

¡

¡D
VO4�L1D5 = �1K1e1D

�1−1
+�2K2e2D

�2−11

¡

¡D
VO4�H1D5 = �1K1D

�1−1
+�2K2D

�2−10

The solution to 4¡/¡D5VO4�L1D5 = 4¡/¡D5VO4�H1D5 is
given by

D =

[

41 − e15�1K1

4e2 − 15�2K2

]1/4�2−�15

1 (56)

which is unique.
Next, we show that Case 2 cannot be true. It is enough

to show that VO4�H1D5 > VO4�L1D5 for some D ∈ 401 D̂min5.
Consider

VO4�H1�5

VO4�D1�5
=

K1�
�1 +K2�

�2

K1e1�
�1 +K2e2�

�2
0

For �→ 0, the first terms in the numerator and denominator
dominate because 1 <�1 <�2. We have

VO4�H1�5

VO4�D1�5
→

K1�
�1

K1e1�
�1

=
1
e1

> 1

by Lemma 6. This completes the proof. �
Finally, note that VO4�H1D5 > VO4�L1D5 for all D on

401 D̂max5 and VO4�H1 D̂max5= VO4�L1 D̂max5= aD̂max−1 imply
D̂4�H 5 > D̂4�L5.

A.4. Proof of Proposition 3
Note that in the economy with aggregate volatility shocks,
�C4�5 = � for � = �H1 �L, and �D4�5 = � is a constant. We
continue to denote e1 = e4�15 and e2 = e4�25. We first prove
that e1 < 1.

Lemma 8. Suppose that in the economy with aggregate
volatility shocks,

�+�+
1
�
�C −

1
2
�

(

1 +
1
�

)

�2 >

(

1 +
2�
�

)

4�D +���251

for � = �H1 �L1 (57)

then 0 < e1 < 1.

Proof. Because �C4�5 = � for � = �H1 �L, condition (53)
in Corollary 2 becomes

1
2�

24�2
H−�2

L5�̂L−
{ 1

2�
24�2

H−�2
L5+��6�2

H−�2
L7
}

> 01

which is equivalent to �̂L > 1 + 42�5/�.
Note that

�̂+

L =

[

1
2

−
�D−���2

C4�L5

�26�2
C4�L5+�27

]

+

√

[

1
2

−
�D−���2

C4�L5

�26�2
C4�L5+�27

]2

+
26�+r4�L57

�26�2
C4�L5+�27

0 (58)

Using Equation (58), �̂L > 1 + 42�5/� can be written as

26�+r4�L57

�26�2
C4�L5+�27

>

(

1+
2�
�

)2

+2
[

1+
2�
�

][

�D−���2
C4�L5

�26�2
C4�L5+�27

−
1
2

]

1

which can be simplified to

�+ r4�L5 > 6�D+���27

(

1+
2�
�

)

0 (59)

Using the expression for the real interest rate in Equa-
tion (27), we can show that inequality (57) is sufficient for
condition (59). �

Now we show that the conclusions of Proposition 3
are true under the condition that e1 ∈ 40115. We con-
tinue to denote D̂max = max8D̂4�H 51 D̂4�L59 and D̂min =

min8D̂4�H 51 D̂4�L59.
We first prove the existence of D∗. Note that at D̂max,

VO4�L1D5= a4�L5−1 >VO4�H1D5= a4�H 5−1. We now show
that for � ∈ 401 D̂max5 and � small, VO4�L1�5 < VO4�H1�5. This
is true because

VO4�H1�5

VO4�D1�5
=

K1�
�1 +K2�

�2

K1e1�
�1 +K2e2�

�2
→

1
e1

> 1 as �→ 00
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Because both VO4�L1D5 and VO4�H1D5 are continuous, there
must be a D∗ ∈ 401 D̂max5 such that VO4�L1D

∗5= VO4�H1D
∗5.

Next, we prove that D̂4�L5 < D̂4�H 5 by contradiction. Sup-
pose that this is not true, that is, D̂4�L5 ≥ D̂4�H 5. Note
that VO4�H1D5 must satisfy the value-matching and smooth
pasting conditions at D̂4�H 5, that is,

K1D̂4�H 5
�1+K2D̂4�H 5

�2 = a4�H 5D̂4�H 5− 11 (60)

�1K1D̂4�H 5
�1−1

+�2K2D̂4�H 5
�2−1

= a4�H 50 (61)

The above equations imply that K1 must satisfy

K1 =
�2 − 1

D̂4�H 5
�1 4�2 −�15

[

a4�H 5D̂4�H 5−
�2

�2 − 1

]

0 (62)

Note also, because D̂4�L5≥ D̂4�H 5, at D̂4�H 5, VO4�L1D5 must
satisfy

K1e1D̂4�H 5
�1+K2e2D̂4�H 5

�2 = a4�H 5D̂4�H 5−1 + �01 (63)

�1K1e1D̂4�H 5
�1−1

+�2K2e2D̂4�H 5
�2−1

= a4�H 5�11 (64)

for some �0 ≥ 0 and �1 ∈ 40115. Equation (63) is true
because VO4�L1D5≥ aLD− 1 for D ≤ D̂4�L5. The second
equality is due to the convexity of the value function
4¡/¡D5VO4�L1D5 ≤ aL for D ≤ D̂4�L5. Jointly, Equations (60)
and (61) imply

K1 =
�2−1

D̂4�H 5
�1 4�2−�15

1
e1

·

[

�2−�1

�2−1
a4�L5D̂4�H 5−

�2

�2−1
41 − �05

]

0 (65)

Given that �0 ≥ 0, �1 ∈ 40115 and e1 ∈ 40115, the expression
in Equation (65) is strictly larger than the expression in
Equation (62), which is a contradiction. This establishes that
D̂4�L5< D̂4�H 5.

Lastly, we prove that the intersection of VO4�H1D5 and
VO4�L1D5, D∗, must be unique. First, consider the case
where there exists a D∗ ∈ 401 D̂4�L57. In this case, VO4�L1D5=

VO4�H1D5 can only happen on 401 D̂4�L57 and can happen at
most once. To see that VO4�L1D5= VO4�H1D5 can only hap-
pen on 401 D̂4�L57, note that on 4D̂4�L51 D̂4�H 57, VO4�L1D5 ≥

a4�L5D−1 > a4�H 5D−1 = VO4�H1D5. To see that VO4�L1D5=

VO4�H1D5 at most once on 401 D̂4�L57, note that in this
region, VO4�1D5 is of the form in Equation (9); therefore, the
solution to VO4�L1D5= VO4�H1D5 on 401 D̂4�L57 must satisfy

D =

[

41 − e15K1

4e2 − 15K2

]1/4�2−�15

1 (66)

and must be unique.
Second, consider the case where there exists a D∗ ∈

4D̂4�L51 D̂4�L57. In this case, VO4�L1D5 and VO4�H1D5 can
only cross once on 4D̂4�L51 D̂4�L57, because in this region,
4¡/¡D5VO4�L1D5 = a4�L5 > a4�H 5 ≥ 4¡/¡D5VO4�H1D5. This
completes the proof.
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