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Abstract

We propose a production-based general equilibrium model to study the link between timing of

cash flows and expected returns both in the cross section of stocks and along the aggregate

equity term structure. Our model incorporates long-run growth news with time-varying

volatility and slow learning about the exposure that firms have with respect to these shocks.

Our framework provides a unified explanation of the stylized features of the slope of the

term structure of equity returns, its variations over the business cycle, and the negative

relationship between cash-flow duration and expected returns in the cross section of book-

to-market-sorted portfolios.
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1 Introduction

The link between the timing of equity cash flows and equity expected returns has been studied

both in the cross section of stocks and in the aggregate. Working with aggregate cash-flow strips,

Binsbergen et al. (2012), Binsbergen et al. (2013), and Binsbergen and Koijen (2016, 2017) docu-

ment several stylized facts on the term structure of equity returns, that is, the relationship between

the return on claims to aggregate dividend strips and their maturity. First, the slope of the term

structure varies substantially over time and is significantly negative in the Great Recession. Sec-

ond, the returns on short-term dividend claims have higher volatility but lower market beta than

an index on aggregate dividends. Third, the CAPM βs of claims to aggregate dividends are coun-

tercyclical and this time variation of βs decreases with maturity. In addition, the literature on the

cross section of expected returns documents a negative relationship between cash-flow duration

and expected returns in book-to-market-sorted portfolios (Da (2009), Dechow et al. (2004)).

In this article, we propose a novel production-based model to provide a unified explanation

of the relationship between the timing of cash flows and their expected returns both for the

aggregate stock market dividends and for the cross section of book-to-market-sorted portfolios.

We construct a vintage capital model in which individual firms have imperfect information about

their productivity and have to learn about it over time. In this setting, the endogenous response

of firms’ investment and payout to news about future productivity can explain the relationship

between cash-flow duration and risk premia documented in the above literature.

While the term structure of real interest rates is determined by the properties of the stochastic

discount factor alone, the term structure of equity returns depends on the dynamics of both the

stochastic discount factor and that of the cash-flow process. In endowment economy models (see,

among others, Lettau and Wachter (2007, 2011) and Santos and Veronesi (2010)), dividends are

exogenously specified. On the other hand, in investment-based partial equilibrium models (for

example, those of Zhang (2005); Liu et al. (2009); Lin and Zhang (2007)) the stochastic discount
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factor is often taken as given. Therefore, the empirical evidence on the term structure of equity

returns does not provide a direct discipline on the aforementioned models. However, the negative

relationship between dividend maturity and expected returns during recessions does provide a

litmus test of general equilibrium production models in which both payouts and the pricing kernel

are simultaneously and endogenously determined.

We start by showing that the equity term structure evidence constitutes a challenge in a large

class of neoclassical growth models (henceforth RBC). In a setting with production, the total

payout to investors is given by

Payout = (1 – Labor Share)×Output – Cost of Investment.

In the data, the volatility of labor share is fairly small, about 2% per year (Choi and Rois-

Rull (2009)), and is therefore calibrated to be constant in most RBC models. However, RBC

models produce an investment process that is highly volatile and procyclical with respect to

contemporaneous productivity shocks. As a result, over the short horizon, investment acts like a

hedge and the total payout is countercyclical. This endogenous correlation structure implies that

short-maturity dividend strips command a negative risk premium and that the term structure of

equity returns is unambiguously upward sloping along the cycle. Both implications are inconsistent

with the empirical evidence on equity term structure.1

Our model resolves the above puzzle by building on the long-run risk framework of Bansal

and Yaron (2004). In our model, investment responds strongly and positively to contemporaneous

productivity shocks, as in the data. However, its reaction to news about future productivity

shocks is negative upon impact. As a result, the total payout to the household increases upon the

arrival of good long-run news. Therefore, the impulse response to contemporaneous productivity

1Boguth et al. (2012) point out some limitations of the empirical evidence in Binsbergen et al. (2012, 2013).
The implications for the term structure of equity obtained from the standard RBC model are strongly rejected
even under the most conservative interpretation of the empirical evidence.
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shocks leads to an upward-sloping term structure of dividends, while the response of investment

to news shocks provides a mechanism for a high risk premium for short-term dividend strips and

a downward-sloping term structure over short maturities that is absent in the RBC model.

Guided by the above theoretical insights, we provide novel evidence for the time-varying relative

volatility of news shocks and contemporaneous productivity shocks that can account for the time

variation in the slope of term structure. We show that the volatility of the persistent component

of productivity shocks exhibits substantial variation over time, and it peaks during recessions.

When incorporated into our model, our productivity-based volatility factors produce a procyclical

term structure slope which turns negative during severe recessions, consistent with the data. In

addition, the presence of two risk factors, long-run and short-run productivity risks, allows our

model to capture the failure of CAPM in the data.

The key feature of our model, that is, the fact that investment responds negatively to news

shocks upon impact, is due to a novel learning mechanism. In our economy, firms have heteroge-

nous exposure to aggregate productivity shocks. Adolescent firms have limited information about

their exposure to aggregate shocks but receive noisy signals from which they learn over time. Ado-

lescent firms therefore are less capable of taking advantage of advances in aggregate productivity,

and the correlation between their output and aggregate productivity is lower than that of firms

with full information.

In this setup, upon a positive news shock about aggregate productivity, investment does not

immediately increase because the learning mechanism dampens the substitution effect: new invest-

ment creates adolescent firms that are less capable of taking advantage of technological progress

and hence do not represent appealing investment opportunities. At the same time, most of the

existing mature firms have full information, and their productivity is expected to rise in the fu-

ture because they can take full advantage of the new productivity frontier. The income effect

therefore is positive and dominates. As a result, consumption increases but investment falls upon

positive news shocks. Over time, as news materializes and productivity eventually goes up, so
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does investment.

As in Ai et al. (2012), we model assets in place as physical capital, and the stock of new business

ideas and investment opportunities as intangible capital. This setup allows us to micro-found value

stocks (stocks with a high book-to-market ratio) as the claim to physical asset–intensive firms and

growth stocks (stocks with a low book-to-market ratio) as the equity of intangible capital–intensive

firms.

Because physical capital and intangible capital are complements, the negative response of

physical investment with respect to positive news shocks is associated with drops in the payoff

to claims to intangible capital. Equivalently, intangible capital provides insurance against news

shocks, and hence it commands a lower risk premium, consistent with the value premium empirical

evidence. As a result, our model also accounts for the negative relationship between cash-flow

duration and expected returns in the cross section.

Related literature. Several other papers have proposed alternative economic channels for the

downward-sloping term structure of equity returns. In endowment economies, Andries et al. (2017)

focus on the preference side and propose horizon-dependent risk aversion as an explanation for the

term structure of equity risk compensation. Croce et al. (2015) obtain a downward-sloping term

structure in a long-run risk model with limited information and bounded rationality. Hasler and

Marfe (2017) present a rare-disaster model with recursive preferences and study their implications

on the term structure of interest rates and the term structure of dividends. Belo et al. (2014)

study the implications of capital structure and corporate payout decisions on the term structure

of equity returns.

In production economies, Kogan et al. (2013) show that their model with investment-specific

shocks is also consistent with the negative slope of the term structure of equity returns.2 Favilukis

and Lin (2013) and Marfe (2017) produce a downward-sloping term structure of equity returns by

2See also Papanikolaou (2011) and Kogan and Papanikolaou (2014, 2010, 2012).
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means of wage rigidity and a time-varying labor share.

Our paper is also related to the literature on the cross section of equity returns, specifically the

value premium. Berk et al. (1999), Gomes et al. (2003), Carlson et al. (2004), and Cooper (2006)

propose equilibrium models of the value premium by explicitly modeling the heterogeneous risk

exposure of assets in place and growth options. Zhang (2005) and Gala (2005) focus on models of

adjustment cost. Dechow et al. (2004), and Da (2009) provide empirical evidence on the difference

in cash-flow duration for value versus growth stocks.

None of the above-mentioned papers focuses on the variations of the slope of the term structure

of dividends over the business cycle or links it to the empirical evidence on the time-varying

volatility of productivity news shocks, nor do they study the link between cash-flow duration

and expected returns along the aggregate equity term structure and in the cross section of stocks

jointly.

The learning mechanism that we emphasize in this paper is related to the literature that studies

the impact of learning on asset market valuations. David (1997) and Veronesi (2000) study how

learning and information affect both asset valuations and the risk premium on the equity market.

Pastor and Veronesi (2009) present a model in which learning impacts the life-cycle dynamics of

firms and their exposure to aggregate risks. The implication of their model that young firms are

less exposed to aggregate shock than older firms is consistent with ours.

The remainder of the paper is organized as follows. In the next section, we present our

model. In section 3, we study the term structure of equity returns in our setting with learning,

and we compare it to a neoclassical RBC model with convex adjustment costs. In section 4,

we introduce our empirical evidence on time-varying productivity-based volatility factors and

explore the implications of our model for the dynamics of the term structure slope. We test novel

predictions of our model in section 5 and conclude in section 6.
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2 Model Setup

The key element of our model is that firms learn about their exposure to aggregate productivity

over time. In equilibrium, heterogeneity in information translates into heterogeneity in risk expo-

sures. In this section, we first describe a tractable analytical framework that models learning with

heterogeneous productivity. We then incorporate learning into a general equilibrium model with

production and derive the equilibrium conditions.

2.1 Aggregation with learning

We provide aggregation results supporting the key learning mechanism of our model, that is, that

when firms are uncertain about their exposure to aggregate productivity shocks, more information

allows them to take better advantage of aggregate technological progress, and therefore they feature

a high exposure to aggregate shocks.

The static problem. We start with a static setup similar to that of Melitz (2003) and Hsieh

and Klenow (2009). Consider a group of firms that produce intermediate inputs, yj, that can be

transformed into output Y using a CES production function:

Y =

[∫
(yj)

η−1
η dj

] η
η−1

, (1)

Firm j combines capital and labor to produce output using a Cobb-Douglas production technology,

yj = Ajk
α
j n

1−α
j . (2)

We assume that Aj = eβj∆a, where ∆a is a common shock that affects the productivity of all firms

and βj is the firm-specific exposure to the common shock ∆a. To facilitate a closed-form solution,

we assume that conditioning on the common shock ∆a, βj ∼ i.i.d.N(µ, 1
∆a
σ2). Before making its
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production decision, firm j observes only a noisy signal of its own exposure, sigj:

sigj = βj + εj, (3)

where εj ∼ i.i.d.N.(0, 1
∆a
τ 2). The signal sigj helps firm j make more efficient capital and labor

choices. The parameter τ 2 determines the level of noise in firm signals. When τ = 0, firms have

perfect information about their exposure to the common shock. As τ 2 increases, firms are less

certain about their exposure to common shocks, and input choices are less efficient. In the extreme

case in which τ →∞, signals are not informative at all.

We define the aggregate production function as

F (K,N) ≡ max
{kj ,nj}

[∫ (
Ajk

α
j n

1−α
j

) η−1
η dj

] η
η−1

(4)

subject to :

∫
kj = K, (5)∫

nj = N, (6)

where for each j, the choices of {kj, nj} must be measurable with respect to firm j’s information.

That is, kj and nj can only be functions of the signal sigj. In Lemma 3 in the appendix, we prove

that the optimality of resource allocation implies that the aggregate production can be written as

Y = AKαN1−α, where

A =

[∫ (
Es

[
A

η−1
η

])η
ds

] 1
η−1

. (7)

For simplicity, we assume that µ = 1− 1
2

(η−1)
η
σ2 thoughout the paper. As we show below, this is

a normalization assumption that implies that the exposure of aggregate productivity to ∆a is 1

in the case of no information (τ = ∞). The following lemma provides the functional form of the

aggregate productivity A and analyze its elasticity with respect to the common shock ∆a.
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Lemma 1 The aggregate production function is given by

F (K,N) = AKαN1−α,

where ln A = λ (τ 2) ∆a, and λ (τ 2) is defined as

λ
(
τ 2
)
≡

(
1 +

1

2

(η − 1)2

η

σ4

σ2 + τ 2

)
. (8)

The exposure of aggregate productivity to common shocks, λ(τ 2), is decreasing in the amount

of noise in the signals, τ 2. In addition,

lim
τ2→∞

λ
(
τ 2
)

= 1,

and

λ∗ ≡ lim
τ2→0

λ
(
τ 2
)

= 1 +
1

2

(η − 1)2

η
σ2. (9)

Proof. See appendix A.

The result of the above lemma is intuitive. Better information allows firms to allocate capital

and labor more efficiently across each other and, as a result, the level of the aggregate productivity

shock A increases with information precision because λ(τ 2) is decreasing in τ 2. The upper bound

on the exposure is attained under full information and is denoted by λ∗. Below we extend the

above setup to a multiperiod setting.

The infinite-horizon setting. To build up our fully dynamic model, we first present an ag-

gregation result where firm j productivity, Aj,t, is determined by the following stochastic growth

process:

Aj,t = exp

[
t∑

s=0

βj,s∆as

]
, (10)
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where {∆as}ts=0 is a sequence of shocks common across all firms. For s = 0, 1, · · · , t, βj,s is

the exposure of firm j’s productivity with respect to the common shock ∆as. Here we assume

that each firm observes only one signal about its own exposure to the current-period common

productivity shock, βj,t, in every period t. For simplicity, we also assume that firms learn only

from the observed signals but not from the history of realized output.

To avoid keeping track of the distribution of firms with heterogenous information, we assume

that there are two groups of firms: (i) mature firms, which know the exact value of
{
βj,s
}t
s=0

, and

(ii) adolescent firms, which in each period t, observe a noisy signal about βj,t. Let K̂ denote the

total measure of mature firms and K̄ be the total measure of adolescent firms. Also, let N̂ and N̄

denote the total labor input of mature firms and adolescent firms, respectively.

Extending the setup of the static model to the dynamic enviroment, we assume that the

distribution of βj,t is i.i.d. across j and t, and follows a normal distribution with mean µ =

1− 1
2

(η−1)
η
σ2 and variance 1

∆at
σ2. In each period t, adolescent firms observe a signal for βj,t of the

following form:

sigj,t = βj,t + εj,t, (11)

where εj,t ∼ N(0, 1
∆at

τ 2
t ) for all t. Given these assumptions, we can derive the posterior distribution

of Aj,t and apply equation (7) to recover the aggregate production function, which is given by the

following lemma.

Lemma 2 The total output of all mature firms, Ŷt, is

Ŷt = ÂtK̂
α
t N̂

1−α
t , with ln Ât = exp

[
t∑

s=0

λ∗∆as

]
, (12)

where λ∗ is defined as in Lemma 1. The total output of all adolescent firms, Ȳt, is

Ȳt = ĀtK̄
α
t N̄

1−α
t , with ln Āt = exp

[
t∑

s=0

λ
(
τ 2
s

)
∆as

]
, (13)
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where λ (·) is defined as in equation (8).

Proof. See appendix A.

The above lemma highlights the basic learning mechanism in our model. Because adolescent

firms have less information about their
{
βj,s
}t
s=0

, they are less capable of taking advantage of

technological progress, and hence their aggregate productivity has a lower elasticity with respect

to common shocks than that of mature firms (λ (τ 2
s) ≤ λ∗, ∀s).

Under our specification, equation (12) implies that the law of motion of the productivity of

mature firms satisfies

ln Ât+1 − ln Ât = λ∗∆at+1, (14)

and the law of motion of adolescent firms is

ln Āt+1 − ln Āt = λ
(
τ 2
t

)
∆at+1. (15)

Aggregation with perpetual learning. It is clear from the above discussion that adolescent

firms are less sensitive to aggregate productivity shocks because they do not fully observe their

exposures,
{
βj,s
}t
s=0

. If we allow for long-term growth, that is, E[∆at+1] > 0, with λ (τ 2
s) < λ∗ ∀s,

the lower exposure to aggregate productivity implies that adolescent firms will be less productive

than mature firms on average. With E[∆at+1] > 0, equations (14) and (15) together imply that

this difference will accumulate over time, and the economy cannot have a balanced growth path.

To guarantee balanced growth, we keep the specification of productivity in equation (10) and

allow for perpetual learning, that is, we allow firms to receive new signals about the entire history

of their exposure coefficients in every period t. We describe this process below:

• In period 0, lnAj,0 = βj,0∆a0, where βj,0 ∼ N(µ, 1
∆a0

σ2) and adolescent firms have no

additional information about their βj,0.

• In period 1, lnAj,1 = βj,0∆a0 + βj,1∆a1, where βj,s ∼ N
(
µ, 1

∆as
σ2
)

and s = 0, 1. Each
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adolescent firm observes a signal, s1
0 = βj,0 + ε1

0, where ε1
0 ∼ N(0, 1

∆a0
τ 2

0) to update its belief

about βj,0 and lower its posterior variance to 1
∆a0

1
σ−2+τ−2

0

.

• In period 2, lnAj,1 = βj,0∆a0 +βj,1∆a1 +βj,2∆a2, where βj,s ∼ N
(
µ, 1

∆as
σ2
)

and s = 0, 1, 2.

Each adolescent firm observes a signal on βj,1, s1
1 = βj,1 + ε1

1, where ε1
1 ∼ N(0, 1

∆a1
τ 2

0) to

lower is posterior variance to 1
∆a0

1
σ−2+τ−2

0

. In addition, under perpetual learning, this firm

also receives a signal about its previous exposure, βj,0, s1
0 = βj,0+ε1

0, where ε1
0 ∼ N(0, 1

∆a0
τ 2

1).

As a result, it lowers further the posterior variance of βj,0 to 1
∆a0

1
σ−2+τ−2

0 +τ−2
1

.

Similarly, for t = 3, 4, · · · , each adolescent firm observes a sequence of signals, sts = βj,s+εts, where

εts ∼ N(0, 1
∆as

τ 2
t−s−1) for s = 0, 1, · · · , t − 1 and updates its believes on all previous exposure

coefficients, {βj,s}t−1
s=0.

In this setup, over time, firms will be constantly learning their exposures and improving their

productivity, which allows us to modify equation (15) and ensure balanced growth. In appendix A,

we show that the sequence {τ t}∞t=0 can be specified as a function of a parameter ρs ∈ (0, 1) so that

the ratio between the productivity of adolescent firms and that of mature firms, χt+1 ≡ ln
(

Ât+1

Āt+1

)
,

is stationary and follows an AR(1) process:

χt+1 = ln

(
Ât+1

Āt+1

)
= ρsχt + (λ∗ − 1) ∆at+1. (16)

In addition, the law of motion of Āt can be specified recursively with χt being the only state

variable:

ln Āt+1 − ln Āt = (1− ρs)χt + ∆at+1. (17)

Together with (14), the above two equations fully specify the aggregate productivity of adolescent

firms and mature firms.
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Summary of the micro-foundation of learning. At the micro-level, σ and the sequence

{τ 2
t}
∞
t=0 are the primitive parameters of the model. The parameter σ is the dispersion of firms’

exposure to the economy-wide common productivity. Intuitively, higher dispersion implies more

benefit of reallocating resources across firms. As shown in equation (9), this implies that mature

firms who have complete information about
{
βj,s
}t
s=0

are more exposed to aggregate shocks.

Thanks to perpetual learning, adolescent firms can eventually obtain full information about

their exposures. This condition rules out permanent gaps between the productivity of adolescent

and mature firms and guarantees balanced growth. As shown in equation (A8)–(A9), the sequence

of variances of the signals, {τ 2
t}
∞
t=0, is increasing in ρs. Intuitively, higher values of τ 2

t imply

that adolescent firms’ information is less precise and, as a result, the productivity gap between

adolescent firms and mature firms can persist for many periods.

In our quantitative exercise, we do not directly specify the micro parameters σ and {τ 2
t}
∞
t=1.

Rather, we calibrate the macro parameters λ∗ and ρs from empirical evidence on the difference in

the exposure of young and old firms with respect to aggregate productivity shocks.

Finally, given the dynamics of the productivity of adolescent and mature firms, Āt and Ât,

we specify aggregation production as the solution to the following optimal resource allocation

problem:

F (Ât, Āt, K̂t, K̄t, Nt) = max
N̂t,N̄t

{
ÂK̂α

t N̂
1−α
t + ĀtK̄

α
t N̄

1−α
t

}
(18)

subject to : N̂t + N̄t = Nt.

Despite featuring substantial heterogeneity across firms, the production side of our model can

be summarized by the production of a representative firm with the production function Yt =

F (Ât, Āt, K̂t, K̄t, Nt), where the law of motion of productivity is given by (14), (17), and (16).
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2.2 The full model

Preferences. Time is discrete and infinite, with t = 1, 2, 3, · · · . The representative agent has

Kreps and Porteus (1978) preferences, as in Epstein and Zin (1989):

Vt =

{
(1− β)u (Ct, Nt)

1− 1
ψ + β

(
Et
[
V 1−γ
t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

, (19)

where Ct and Nt denote, respectively, the total consumption and total hours worked at time t.

For simplicity, we consider a Cobb-Douglas aggregator for consumption and leisure:

u (Ct, Nt) = Co
t (1−Nt)

1−o.

We normalize Nt = 1 in the case of inelastic labor supply, i.e., when o = 1.

Output producers. The specification of aggregate output and individual firm output are as

summarized in equations (14), (17), (16), and (18). Following the long-run risks literature, we

specify the stochastic process for the common productivity ∆at as follows:

∆at+1 = µ+ xt + eσaεa,t+1, (20)

xt+1 = ρxt + eσxεx,t+1, εa,t+1

εx,t+1

 ∼ i.i.d.N


 0

0

 ,
 1 0

0 1


 , t = 0, 1, 2, · · · .

According to the above specification, short-run productivity shocks, εa,t+1, affect contemporaneous

output directly but have no effect on future productivity growth. Shocks to long-run productivity,

represented by εx,t+1, carry news about future productivity growth rates but do not affect current

output. The log standard deviations of these shocks, σa and σx, are constant over time.
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Firm dynamics. For parsimony, we assume that all firms are subject to the same exit rate, δ.

For tractability, we assume that in each period the surviving adolescent firms, (1− δ)K̄t, become

mature with a constant probability φ. Under this assumption, the law of motion of the mass of

mature firms, K̂, can be written as

K̂t+1 = (1− δ) K̂t + (1− δ)φK̄t.

Note that in our setup, maturity and age are positively but not perfectly correlated. The parameter

φ determines the speed of transition probability from adolescence to maturity in each period.

New firms are created by combining ideas and physical investment goods. We use St to denote

the total measure of ideas or, equivalently, the total stock of intangible capital at time t. As in

Ai et al. (2012), the total measure of new firms that can be created with total investment It is

determined by a concave and constant return-to-scale production function G (It, St).

Under these conditions, the law of motion of the total measure of young firms, K̄t, can be

written as

K̄t+1 = (1− δ) (1− φ) K̄t +G (It, St) . (21)

Intangible capital. We now specify the law of motion of intangible capital. Let St denote the

total stock of intangibles available at time t. We follow Ai et al. (2012) in modeling intangible

capital as a stock of growth options:

St+1 = [St −G (It, St)]× (1− δS) + Jt, (22)

where Jt represents intangible investments at time t.

Each growth option can be used to build one unit of new firms. Under this normalization,

G (It, St) is also the total amount of growth options exercised at time t. Ai et al. (2012) provide a

micro-foundation for the aggregator G (It, St) by modeling explicitly the competition among ideas
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with heterogenous quality. We adopt an aggregator G with constant elasticity of substitution

between physical investment and intangible capital,

G (I, S) =
(
νI1− 1

η + (1− ν)S1− 1
η

) 1
1−1/η

, (23)

which conforms well to the data on the cross section of book-to-market ratios, as in Ai et al.

(2012).

Equation (22) can therefore be interpreted as follows. At time t, the agent has a mass St of

available growth options. If options are exercised optimally and the total amount of investment

goods used to exercise options is It, then [St −G (It, St)]× (1− δS) is the total amount of growth

options left at the end of the period after depreciation. Jt is the amount of growth options newly

produced in period t.

To complete the model, we note that consumption, investment in physical capital, and invest-

ment in intangible capital must sum up to total output:

Ct + It + Jt = F (Ât, Āt, K̂t, K̄t, Nt).

2.3 Equilibrium conditions

In our economy, standard welfare theorems apply, and we can construct equilibrium prices and

quantities from the solution to the planner’s problem. Let Λt,t+1 be the one-step-ahead stochastic

discount factor:

Λt,t+1 = β

(
Ct+1

Ct

)−1(ut+1

ut

)1− 1
ψ

 Vt+1

Et

[
V 1−γ
t+1

] 1
1−γ


1
ψ
−γ

. (24)
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Given the equilibrium quantities, we can show that the cum-dividend price of young firms, pK̄,t, that of

the mature firms, pK̂,t, and that of the ideas, pS,t, must jointly satisfy the following recursions:

pK̄,t = αĀt

(
K̄t

N̄t

)α−1

+ (1− δ)
{

(1− φ)E
[
Λt,t+1pK̄,t+1

]
+ φE

[
Λt,t+1pK̂,t+1

]}
, (25)

pK̂,t = αÂt

(
K̂t

N̂t

)α−1

+ (1− δ)E
[
Λt,t+1pK̂,t+1

]
, (26)

pS,t =
1− ν
ν

(
It
St

) 1
η

+ (1− δS)E [Λt+1pS,t+1] . (27)

According to equation (25), the value of adolescent firms is determined by the marginal product of

its capital in the current period, αĀt

(
K̄t
N̄t

)α−1

, plus the continuation value of their future payoffs.

Conditional on surviving to the next period with probability 1−δ, adolescent firms become mature

with probability φ and pay pK̄,t+1 going forward. With probability 1−φ, they stay in adolescence,

i.e., they continue to have limited information on their βs and pay the continuation value pK̂,t+1.

Equation (26) implies that the cum-dividends marginal value of mature firms equals the ex-

pected present value of the marginal product of old capital adjusted for the survival probability

1 − δ. Similarly, equation (27) states that the cum-dividend value of a unit of intangible capi-

tal is equal to the present value of its marginal product, 1−ν
ν

(
It
St

) 1
η
, accounting for the survival

probability of 1− δS.

Using the above notation, the optimality for investment in physical capital and intangible

capital can be written as

E
[
Λt+1pK̄,t+1

]
− 1

GI (It, St)
= (1− δS)E [Λt+1pS,t+1] , (28)

1 = E [Λt+1pS,t+1] . (29)

The left-hand side of equation (28) measures the net marginal benefit of exercising an additional

option, that is, the present value of one additional unit of young physical capital net of the 1
GI(It,St)
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exercise cost.

The right-hand side of equation (28) is, in contrast, the opportunity cost of exercising an

additional option, i.e., the market value of an unexercised option adjusted for the probability

of death. Finally, equation (29) prescribes that intangible investment must be set so that the

ex-dividend value of growth options equals their marginal production cost.

2.4 Term structures

Given a sequence of cash flows, {CFt}∞t=0, the time t present value of the time t + n component

of the cash-flow sequence is denoted by Pt,t+n and can be computed as follows:

Pt,t+n = Et[Λt,t+nCFt+n] n = 1, 2, . . . ,

where Λt,t+n = Λt,t+1 × Λt+1,t+2 × · · · × Λt+n−1,t+n is the n-step-ahead discount factor that can be

computed from the one-step-ahead stochastic discount factors. The one-period return of the claim

to CFt+n from period t to t+ 1 is simply Pt+1,t+n

Pt,t+n
. We are interested in studying the risk premium,

RPt(n), on this return for different maturities n:

RPt (n) = Et

[
Pt+1,t+n

Pt,t+n
− rft

]
, n = 1, 2, · · · ,

where rft = 1
E[Λt,t+1]

is the one-period risk-free interest rate. The term structure of a cash-flow

sequence {CFt}∞t=0 refers to the link between RPt(n) and n. Borrowing the terminology from the

literature on the term structure of interest rates, we will call RPt(n) the risk premium on the

zero-coupon equity with maturity n.

While the term structure of real interest rates is determined by the properties of the stochastic

discount factor alone, the term structure of equity returns depends on the dynamics of both the

stochastic discount factor and that of the cash-flow process. Our goal is to study the slope of the
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term structure of equities in the general equilibrium model we developed above, where both the

stochastic discount factor and the cash flows are endogenously determined in equilibrium.

Binsbergen et al. (2012) and Binsbergen et al. (2013) present evidence for substantial variations

in the slope of the term structure over time. In particular, Binsbergen et al. (2012) document a

significant negative slope of the term structure for the aggregate stock market during recessions.

Standard RBC models predict an unambiguously positive slope in the term structure of equity

returns, and are therefore inconsistent with the data. In the rest of the paper, we study the term

structure of equity return in our learning model in two steps. In section 3, we analyze our learning

model with homoscedastic productivity shocks and contrast it with the standard RBC model.

Although without time-varying volatility the slope of the term structure is constant over time,

this analysis allows us to demonstrate that our learning mechanism creates a downward-sloping

term structure, especially when long-run productivity shocks are important.

Guided by this intuition, in section 4 we provide empirical evidence on the time-varying volatil-

ity of productivity shocks and incorporate this feature into our learning model. We show that

countercyclical variations in the relative volatility of productivity shocks allow our model to ac-

count for the variation in both the slope of the term structure and the market equity premium.

3 The Unconditional Term Structure

In this section we calibrate our benchmark learning model and compare it to one without learning

and without intangible capital, which we call RBC. This is essentially the production economy

studied in Croce (2014), and it can be obtained as a special case of our setting under two conditions:

(i) τ 2
j,t = 0, ∀j,∀t, that is, all firms have full information about their productivity; and (ii) the

G (I, S) function in equation (21) is replaced by the following capital adjustment cost function:

G (I,K) = K

[
α0 +

α1

1− 1/ξ

(
I

K

)1− 1
ξ

]
.
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Table 1: Calibrated Parameter Values

Preference parameters
Effective risk aversion γ · o 10
Intertemporal elasticity of substitution ψ 2
Discount factor β 0.98
Leisure weight o 0.33
Technology parameters

Capital share α 0.3
Depreciation rate of physical capital δ 9.9%
Depreciation rate of intangible capital δS 9.9%
Weight on physical investment in G ν 92.5%
Elasticity of substitution in G η 12
Learning parameters

Percentage share of firms with limited information φ 0.70
transitioning to full information

Productivity exposure of firms with full information λ∗ 6
Diffusion of information: cointegration speed ρs 0.96
Common productivity parameters

Average growth rate λ∗µ 00.02
Volatility of short-run risk λ∗ exp(σa) 5.65%
Relative volatility of long-run risk exp(σx)/ exp(σa) 00.12
Autocorrelation of expected growth ρx 0.965

This table reports the parameter values used for our annual calibrations. The benchmark model features
both tangible and intangible capital, as well as full- and limited-information firms.

We first describe our calibration and then present the quantitative results.

3.1 Calibration

We list our calibrated parameter values in table 1. The discount rate (β), risk aversion (γ), and

intertemporal elasticity of substitution (ψ) are set as in standard long-run risk models. The weight

of leisure in the utility function (o) is chosen to match the average share of hours worked, that is,

N = 1/3 in steady state.

Both the capital share (α) and capital depreciation rate (δ) are standard in the RBC literature.

The parameters governing the accumulation of growth options are chosen in the spirit of Ai et al.
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(2012). For parsimony, the depreciation of intangible capital (δS) is set equal to that of physical

capital. The shape of the aggregator G (I, S) is determined by two parameters, the weight on

physical investment, ν, and the elasticity η. As in Ai et al. (2012), we choose them to jointly

match the steady-state consumption–tangible investment ratio and the consumption–intangible

investment ratio.3

Our calibration of the parameters of the aggregate productivity shocks is standard in the long-

run productivity risk literature. We calibrate µ and σa to match the mean and the volatility,

respectively, of output growth in the US economy in our sample period, 1929–2007. We set

eσx−σa = 0.12 and ρ = 0.965, in the spirit of Croce (2014).

We calibrate the parameters for idiosyncratic productivity shocks to match moments of the

joint distribution of firm age and exposure to aggregate productivity shocks. Using COMPUSTAT

data, Ai et al. (2012) document a strong positive correlation between firm age and the exposure of

firm-level productivity to measured aggregate productivity shocks. In our model, the parameter

φ is the rate of transition to maturity, and the parameter λ∗ governs the difference between the

exposure of adolescent and mature firms to aggregate shocks.

We simultaneously calibrate φ and λ∗ to target the moments of the conditional distribution

of firm exposure to aggregate productivity shocks as a function of firm age. Note that λ∗ is the

difference between the exposure of mature and adolescent firms, and φ determines the fraction of

mature firms as a function of firm age. Jointly, the two parameters pin down the average exposure

of productivity shocks for firms of all ages. We therefore choose φ and λ∗ jointly to target regression

coefficients of the exposure-age relationship in the data. We describe in appendix B the details of

this calculation, which yields φ = 0.70 and λ∗ = 6. The persistence of the cointegration residual

ζt = 0.96 is obtained by estimating the autocorrelation of the log productivity difference of the

top-20 and bottom-20 percentiles of the firm age distribution.

When calibrating the RBC model, we retain the same calibration except for two modifications.

3Ai et al. (2012) show that the distribution of the productivity of growth options implied by this calibration is
similar to its empirical counterpart measured from the distribution of the book-to-market ratio of IPO firms.
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We set the subjective discount factor to 0.99 to match the average risk-free interest rate.4 We also

lower the volatility of short-run shocks to 4% (λ∗eσa = 4%) to match the volatility of total output

in the data. A lower level of λ∗eσa matches the same level of volatility of output as the learning

model because all firms are fully exposed to shocks to ∆at+1. Additionally, we set the adjustment

cost parameter ξ = 1.27 to obtain an annual market risk premium the same as our benchmark

learning model, 4% per year.

3.2 Quantitative results

We report the quantitative implications of our benchmark model and the RBC model in table

2. We make several observations. First, our benchmark model and the RBC model have similar

implications for macroeconomic quantities, except that the RBC model produces a significantly

lower volatility of investment. Due to the absence of adjustment costs, the ratio of the volatility

of investment relative to that of consumption in our benchmark model is 4.03, much closer to its

empirical counterpart, 5.29.

Second, both models produce a significant equity premium, but they yield very different term

structures. In our benchmark model, the term structure of equity is downward sloping over short

maturities, whereas that in the RBC model is upward sloping. The risk premium on the claim

to the zero-coupon equity with two-year maturity (RP (2)) in our benchmark model is 6.77% per

year, close to the evidence reported by Binsbergen et al. (2012), who show that a strategy long

in a dividend strip with a maturity of 1.9 years and short in a dividend strip with a maturity of

0.9 years pays an average annual excess return of 10.10%. In contrast, RP (2) in the RBC model

is −26.76%, and the high market risk premium is obtained by a very high right tail of the term

structure.5

4The difficulty the RBC models have in simultaneously matching the interest rate and the investment-to-output
ratio is well known (the risk-free rate puzzle). We chose the parameters to match the level of the risk-free rate, but
not the investment-to-output ratio.

5By no arbitrage, the value-weighted return on all zero coupon equities must sum up to the market equity
return. In the RBC model, the aggregate premium is substantial because the right tail of the term structure is
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Table 2: Vintage and Intangible Capital Models

Data Benchmark RBC
Panel A: Aggregate Quantities
E[I/Y ] 00.15 (00.05) 0.17 0.29
σ(∆c) 02.53 (00.56) 2.98 2.76
σ(∆i)/σ(∆c) 05.29 (00.50) 4.03 1.48
σ(∆j)/σ(∆i) 00.50 (00.07) 1.04 –
σ(∆n) 02.07 (00.21) 1.51 0.10
AC1(∆c) 00.49 (00.15) 0.41 0.21
ρ∆c,∆n 00.28 (00.07) 0.55 0.47
ρ∆c,∆i 00.39 (00.15) 0.69 0.91
Panel B: Asset Prices
E[rf ] 00.89 (00.97) 0.44 0.96

E[rL,exK ] 05.70 (02.25) 4.05 4.02
E[rLK − rLS ] 04.32 (01.39) 3.83 –
RP (2) 10.08 (05.04) 6.77 -26.76

All entries for the models are obtained from repetitions of small samples. Data refer to the US and span
the sample 1930–2007, unless otherwise stated. Numbers in parentheses are GMM Newey-West adjusted
standard errors. E[rLK − rLS ] and E[rL,exK ] measure the levered spread between tangible and intangible
capital returns, and the levered excess returns of tangible capital, respectively. We assume a constant
leverage of three, consistent with Garcia-Feijo and Jorgensen (2010). In the data, we use the Fama-
French HML factor and the market excess return factor as the counterparts of E[rLK − rLS ] and E[rL,exK ],
respectively. The annualized empirical counterpart of the risk premium on the zero-coupon equity with
maturity of two years, RP (2), is from Binsbergen et al. (2012). Volatility and correlations are denoted
as σ(·) and ρ·,·, respectively. Our annual calibrations are reported in table 1.

Third, our benchmark model also produces a significant spread between the return on physical

capital and the return on intangible capital. This implication of our model is consistent with the

value premium evidence, that is, the fact that physical capital–intensive firms have a higher return

than intangible capital–intensive firms.

To understand the above implications, we compare the impulse response functions of quantities

and prices of our benchmark model with learning to those in the Croce (2014) model. In figure 1

we depict the response of quantities (left panel) and asset prices (right panel) to short-run shocks.

The responses to long-run productivity shocks are shown in figure 2.

high and positive.
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Fig. 1: Impulse Response Functions for Short-Run Shocks

This figure shows percentage annual log-deviations from the steady state upon the realization of a positive

short-run shock. Returns are not levered. Both the RBC and benchmark models feature short- and long-

run productivity risk. The RBC model has convex adjustment costs. The benchmark capital model

features limited information and learning and is calibrated as detailed in table 1.

Contemporaneous productivity shocks. Focusing on contemporaneous shocks to productiv-

ity, or short-run shocks, in figure 1, we note that the benchmark capital model produces responses

qualitatively similar to those in the RBC model, but with a few differences. First, in the absence

of adjustment costs, physical investment responds strongly to short-run productivity shocks. As

a result, our learning capital model generates a high volatility of investment, as in the data. The

significant adjustment cost helps the RBC model produce a high level of equity premium, but at

the cost of a counterfactually low level of volatility of investment.

Second, in our benchmark model, the response of the return on intangible capital (Rex
S ) to short-

run productivity shocks is significantly smaller than that of the physical capital (Rex
K ). This result
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contributes to the generation of a value premium in our model and can be explained as follows.

Short-run productivity shocks directly affect the payoff of physical capital owned by existing firms.

In addition, most of the existing firms are mature firms, and their marginal product of capital is

more sensitive to these shocks than is that of adolescent firms. In contrast, productivity shocks

affect the payoff of intangibles only indirectly: a growth option benefits from productivity shocks

because option exercise leads to creation of an adolescent firm. Because adolescent firms are

less able to take advantage of technological progress, Rex
S is less sensitive to contemporaneous

productivity shocks than Rex
K .

Third, in both models investment responds positively to contemporaneous productivity shocks,

whereas short-term dividends respond negatively. This creates a force in both models that pushes

up the slope of the term structure of equity returns. The negative response of dividends to

productivity shocks is the implication of the general-equilibrium resource constraint:

Dt = Yt −WtNt − It − Jt = αYt − It − Jt,

where Wt is the equilibrium wage, and the second equality results from our constant factor shares.

Because investment responds strongly and positively to contemporaneous productivity shocks,

dividends must respond negatively.

To understand the negative slope of the term structure of equity returns in our learning model,

we need to turn to the impulse responses with respect to news shocks.

News about future productivity shocks. As in Bansal and Yaron (2004), Croce (2014),

and Gourio (2012), news about future consumption growth requires a significant compensation

under recursive preferences.6 In figure 2, we plot the impulse response functions produced by our

learning model (solid line) and by the RBC model (dashed line) with respect to shocks to news

about future productivity, εx,t+1.

6In rare events model, news about the probability of disasters are also growth news shocks.
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Fig. 2: Impulse Response Functions for Long-Run Shocks

This figure shows percentage annual log-deviations from the steady state upon the realization of a positive

long-run shock. Returns are not levered. Both the RBC and benchmark models feature short- and long-

run productivity risk. The RBC model has convex adjustment costs. The benchmark capital model

features limited information and learning and is calibrated as detailed in table 1.

The impulse responses of investment are the key to understanding the difference in the asset

pricing implications of the two models. First, note that in the RBC model investment responds

positively to news shocks. With an IES of ψ = 2, upon the arrival of positive news about fu-

ture productivity shocks, the substitution effect dominates, and investment rises. As for the case

of positive short-run shocks, increases in investment are associated with decreases in dividends.

This pattern of the impulse response makes short-term dividends less risky than long-term divi-

dends, and hence it reinforces the upward-sloping term structure of equity produced by short-run

productivity shocks.

In contrast, in our learning model, on impact, investment responds negatively to positive news
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shocks. Over time, as news about future productivity materializes, investment gradually goes

up. Intuitively, a positive news shock does not increase current period productivity, and its effect

realizes slowly over time. On one hand, the substitution effect is moderate because new investment

builds adolescent firms, which cannot take full advantage of the rise in productivity. On the other

hand, the income effect is strong because all existing mature firms immediately benefit from the

positive productivity shock. As a result, investment immediately drops and a higher dividend

payout is used to support more consumption. Over time, as the effect of the news materializes,

investment eventually picks up, and dividends fall correspondingly.

This pattern of impulse response has strong implications for asset prices. First, even though

investment drops upon the arrival of positive news, the return to physical capital responds strongly

and positively to news, allowing our learning model to produce a high equity premium without

resorting to adjustment costs. Note that equity is the claim to existing firms, most of which are

mature and respond strongly to productivity shocks. As a result, the return on physical capital

(Rex
K ) rises immediately. In contrast, in the RBC model, the strong reaction of Rex

K to news shocks

is achieved by assuming a high adjustment cost, which produces a counterfactually low level of

the volatility of investment.

Second, because short-term dividends respond positively to news, they are more risky and

require a greater compensation. The impulse response of dividends in our learning model reflects

that of the term structure of equity returns. As a result, our learning model generates a downward

sloping term structure over short maturities, in contrast to the RBC model.

Third, the negative response of physical investment with respect to positive news about future

productivity shocks also implies that the return to intangible capital declines, therefore providing a

hedge against these shocks. Because intangible capital and physical investment are complements—

less tangible investment implies that a smaller fraction of growth options can be exercised—

the decline of physical investment is associated with a lower market value of growth options

and therefore a lower return Rex
S . At the equilibrium, news shocks enhance the value premium
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generated in our benchmark model.

Sensitivity Analysis. In Appendix D, we show that our results are robust to a range of plausible

values for the speed of information diffusion (ρs) and the speed of learning (φ). Furthermore, we

show that our results continue to hold even without intangible capital (ν = 1).

4 Dynamics of the Term Structure Slope

The analysis in the previous section implies that news shocks and contemporaneous productivity

shocks have opposite effects on the slope of the term structure of equity. Because investment

responds positively to contemporaneous productivity shocks, the aggregate payout has to react

negatively due to the resource constraint. As a result, short-term dividends must be less risky

than long-term dividends. In contrast, under our learning friction the income effect dominates

upon positive news shocks, investment declines, and short-term dividends increase. As a result,

news shocks make short-term dividends riskier and generate a downward-sloping term structure.

Naturally, if the relative importance of news shocks and contemporaneous productivity shocks

is time varying, then our model has the potential to account for the time-varying slope of the

term structure. Guided by this theoretical insight, in the rest of this section we present and

estimate a model of time-varying productivity volatility. We then recalibrate our learning model

to incorporate our novel empirical evidence. By doing so, we connect the time-varying slope of

the term structure to fundamental macroeconomic volatility factors.
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4.1 A model with time-varying volatility

Model specification. We replace the homoscedastic model in equation (20) with the following

specification of the productivity process:

log
At+1

At
≡ ∆at+1 = µ+ xt + eσ̄a+σa,tεa,t+1, (30)

xt+1 = ρxxt + eσ̄x+ζt+σa,tεx,t+1,

σa,t+1 = ρσσa,t + σσεσ,t+1, (31)

where [εa,t+1, εx,t+1, εσ,t+1] is a vector of standard normal shocks i.i.d. over time. The process σa,t

is the time-varying stochastic log-volatility for contemporaneous productivity shocks. The key

element in our estimation is the term eζt , which captures the variations in the relative volatility

between long-run and short-run productivity shocks. For parsimony, in the model we assume that

the relative volatility is a negative log-linear function of the state variable xt:

ζt = −βζ|xxt. (32)

In what follows, we present an empirical procedure to estimate the time-varying conditional volatil-

ities of short- and long-run productivity growth shocks, and we investigate their properties to

motivate our specification in (32). The empirical estimation also provides us guidance on the key

parameters that are new to the stochastic volatility model, namely, ρσ, σσ, and βζ|x.

Estimation procedure. We use a quarterly sample ranging from 1947:Q1 to 2013:Q4. Our

main goal is to obtain measures of the conditional volatilities of the long-run and short-run pro-

ductivity shocks and further construct a measure of the ratio of the two volatilities, ζt. Because

none of the above quantities is directly observable, we adopt the following procedure to construct

estimates of them. First, as in Croce (2014), we project the one-period-ahead productivity growth,
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∆at+1, on a set of predictive factors, Ft,

∆at+1 = µ+ βxFt + ua,t+1, (33)

and use the fitted value to construct our estimates of the latent predictive component of produc-

tivity, xt = β̂xFt. The short-run shocks are identified using the residual of the regression above,

ua,t+1, and innovations in news shocks are constructed as the residual of the following estimated

AR(1) process:

xt+1 = ρxxt+1 + ux,t+1. (34)

Second, we take the residuals, ua,t+1 and ux,t+1, and construct measures of their conditional

variances. For robustness, we adopt two alternative approaches. We call the first approach the

predictive approach. That is, we regress the realized variances of ua,t+1 and ux,t+1 on the same

vector of predictive variables, Ft:

log

(
1

h

h∑
j=1

u2
a,t+j

)
= βσa,0 + βσaFt + error, (35)

log

(
1

h

h∑
j=1

u2
x,t+j

)
= βσx,0 + βσxFt + error. (36)

We set h = 4, so that realized variance is measured as the sum of the squared innovations in the

next four quarters. This procedure allows us to construct the demeaned conditional log standard

deviation as the square root of the predictable component of the realized variances: σ̂a,t = 1
2

(
β̂
σ

aFt

)
and σ̂x,t = 1

2

(
β̂
σ

xFt

)
. Our second approach is the GARCH approach, in which we replace equations

(35)–(36) with two GARCH(1,1) models.

Third, we construct the key object of interest, the relative volatility of long-run versus short-run

shocks, as ζ̂t = σ̂x,t − σ̂a,t and investigate its empirical properties.

In our benchmark estimation, we use the four factors proposed by Bansal and Shaliastovich
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Table 3: Time-Varying Volatility in Productivity

ρσ σσ ρx ρζ βζt|xt
StD(ζ̂t)
StD(ζt)

β∆yt+1|t|ζt β∆yt+2|t|ζt
Est. 0.91∗∗∗ 0.09∗∗∗ 0.77∗∗∗ 0.92∗∗∗ -30.69∗∗∗ 0.71 -0.02∗ -0.02∗∗

St.Err. 0.05 0.02 0.08 0.09 12.06 – 0.01 0.01

Data refer to the U.S. and span the sample 1947:Q1–2016:Q4. All t-stats are based on GMM Newey-
West adjusted standard errors. We jointly estimate the set of equations (30)–(36) as well as the following
equations:

ζt = const+ ρζζt−1 + εζ,t

ζt = const+ βζt|xtxt + residt

∆yt+j|t = const+ βyt+j|t|ζtζt + residt j = 1, 2,

where ∆yt+j|t denotes real output growth over j periods. In this table, ζ̂t = β̂ζt|xtxt. Our five factors
are the price-dividend ratio, the three-months Treasury bill yield, the three-year and five-year Treasury
bond yields, and the integrated volatility of stock market returns.

(2013) plus the integrated volatility of stock market returns.7 To ensure robustness, we also

consider an alternative specification with the thirteen factors proposed by Jurado et al. (2015),

which are principal components extracted from a very wide cross section of both macroeconomic

and financial indicators and have significant predictive power for aggregate volatility. These factors

are available only over the shorter sample 1960:Q3-2011:Q4.

In table 3 we summarize the results based on our benchmark specification. We report our

robustness results in the appendix, table C.1. Across all procedures, we estimate all coefficients

jointly by continuous GMM and use as many orthogonality conditions as parameters. Hence, our

inference accounts for all possible layers of estimation uncertainty, and our point estimates are

equivalent to those of a multistep OLS procedure. Standard errors are computed using the GMM

efficient weighting matrix and are Newey-West adjusted. All data are quarterly to better capture

variability in the conditional volatility of productivity.8

7The four factors are the price-dividend ratio, the three-month Treasury bill yield, the three-year and five-
year Treasury bond yields. Integrated volatility is the sum of squared daily returns calculated at a quarterly
frequency. This measure is based on stock market indices (NYSE/AMEX/NASDAQ) from CRSP and is expressed
in annualized percentage units.

8Productivity is measured by the total factor productivity index for the US business sector published by the San
Francisco FED. The price-dividend ratio is from R. Shiller’s webpage. Bond yields are from the Global Financial
Database. Our sample starts in 1947:Q1 and ends in 2013:Q4. The Jurado et al. (2015) factors are available from
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Estimation results. We summarize our main estimation results as follows. First, the estimated

relative volatility, ζt, exhibits significant variation over time. In table C.1, we report a Wald test

for the hypothesis that both volatilities have the same loadings on our predictive factors: βσx = βσa .

Under this null hypothesis, relative volatility would be constant. We strongly reject this null across

all of our specifications.

In figure 3, we plot our constructed time series of ζt (top panel) and σa,t (bottom panel) and

use shaded areas to indicate NBER-defined recessions. Our second result refers to the counter-

cyclicality of ζ, that is, our relative volatility process tends to spike up right before recessions, and

it negatively predicts future economic growth. In table 3, we report the results of a regression of

future output growth, ∆yt+j ≡ lnYt+j − lnYt, on ζt. The regression coefficient is unambiguously

negative and statistically significant, consistent with the patterns depicted in figure 3.

Third, the estimated xt and ζt processes are persistent and highly correlated with each other

(see figure C.1 for our estimated x). In our benchmark estimation, the sample autocorrelations of

xt and ζt are 0.80 and 0.90, respectively. The Wald test of the hypothesis that these autocorrelation

coefficients are zero has a p-value smaller than 1% (see table C.1). The high correlation between

relative volatility ζ and expected growth x is reflected by the fact that when we project ζt on

xt, we can explain 75% of the standard deviation of relative volatility (table 3). Given that both

xt and ζt have significant predictive powers for future economic growth and that they are highly

correlated, our specification of ζt in equation (32) is an efficient way to summarize the dynamics

of relative volatility without introducing additional state variables into the model.

We use these estimation results to guide our calibration. Specifically, we set βφ|x = −30.7

according to its point estimate. We also calibrate ρσ = 0.91 and σσ = 0.09 to match the point

estimates of the autocorrelation cofficient and volatility for the σa,t process. We now turn to the

quantitative implications of our model.

1960:Q1 to 2011:Q4 on S. Ludvigson’s webpage.

31



Fig. 3: Volatility Factors in Productivity (ζt and σa,t)

This figure shows the estimated relative volatility process, ζt (top panel), and the conditional volatility of

the productivity short-run shock, σa,t (bottom panel), obtained through the methods described in section

4.1. The main empirical features of these processes are reported in table 3. Grey bars denote NBER

recession periods.

4.2 Quantitative results

The slope of the term structure of equity returns. To illustrate the relationship between

the conditional volatility of productivities and the slope of the term structure, we report the

implications of our model for the slope of the term structure for different combinations of the

conditional volatilities in table 4. RP (7) − RP (2) is the levered model-implied spread between

the expected return on a zero-coupon equity with a seven-year maturity and that with a two-year

maturity. We also report the market equity premium as Et
[
rLev

]
, assuming a financial leverage

of 3.

We choose two levels of the volatility of the contemporaenous productivity shock, 5.65% for
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Table 4: Productivity Volatility Factors in Our Model with Learning

Panel A: Conditional Risk Premia
Short-run vol. Low High
Long-run relative vol. Low High Low High

RPt(7)−RPt(2) 1.82 −1.55 5.23 −6.00
Et[r

L,ex] 1.16 1.35 4.59 5.38
Et[r

L
K,t+1 − rLS,t+1] 1.10 1.31 4.34 5.23

MDS/MDK 1.9 1.9 1.9 1.9

Panel B: Conditional Second Moments and CAPM
Maturity Vol. SR α β ∂β/∂x

Spot Equity Excess Returns
2 8.46 0.37 4.21 -0.81 -257.8
7 5.73 0.23 0.31 0.73 -46.7

Forward Equity Excess Returns
2 8.37 0.38 4.22 -0.79 -255.5
7 5.71 0.26 0.42 0.78 -31.7

Bonds Excess Returns
2 0.16 -0.26 -0.02 -0.02 -2.3
7 0.70 -0.25 -0.18 -0.05 -15.0

All entries are obtained from our benchmark model augmented by time-varying volatility factors, as
described in section 4. Our baseline annual calibration is reported in table 1, the additional parameters
are specified in section 4. Excess returns are levered by a factor of three, consistent with Garcia-Feijoo
and Jorgensen (2010). In panel B, all entries refer to the case of low short-run volatility risk and high
relative volatility. SR denotes the Sharpe-ratio, and α and β are obtained from a conditional CAPM
regression. The forward equity excess return is obtained by going long in zero-coupon equity and short
in a bond of the same maturity.

the high-volatility regime, which corrresponds to the average volatility for the pre–World War

II period, and 2.83% for the low-volatility regime, which corresponds to the post–World War II

period. We set the low relative volatility to be 4.5% and the high relative volatility to be 5% to

illustrate the effect of relative volatility.

The first column of table 4, panel A (“Low/Low”), refers to a case of moderation in both

short-run volatility and long-run risk. In this setting, our model delivers an upward-sloping term

structure over the seven-year horizon, as long-run news is not sizeable enough to make the term

structure downward sloping over short maturities. Both the conditional value premium and the
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conditional aggregate equity premium are below average due to the assumed moderation scenario.

In the second column of table 4, panel A (“Low/High”), we consider a scenario in which the

relative volatility of long-run risk is 25% higher than in the low state. In this case, the long-run

shocks are sizable enough to make short-term dividends risker than dividends with a maturity of

seven years, that is, the term structure slopes downward. Both the conditional value premium

and the conditional equity premium, in contrast, increase with respect to the figures reported in

the first column.

The next two columns in panel A focus on the case of higher short-run volatility. An increase

in short-run volatility simultaneously (i) magnifies both the equity and the value premium, and

(ii) expands the absolute value of the term structure spread. Hence the sign of the term structure

spread depends solely on relative volatility, whereas the magnitude of the spread depends on the

amount of short-run volatility. We formally test this model-implied relationship between relative

volatility and the slope of the term structure in section 5 of this paper.

Implications for the cross section. Empirically, high book-to-market-ratio stocks (value

stocks) earn a higher average return than low book-to-market stocks (growth stocks). Because the

cash flow of value stocks has a shorter duration than that of growth stocks (Da (2009), Dechow

et al. (2004)), in endowment economies where value and growth are both claims to shares of ag-

gregate dividend, the existence of the value premium requires a downward-sloping term structure

of equity returns (Lettau and Wachter (2007), Santos and Veronesi (2010), Lettau and Wachter

(2011), Croce et al. (2015)). For these models, the Binsbergen et al. (2013) evidence on the time-

varying sign of the slope of the term structure of equity return is challenging. Specifically, the

upward-sloping term structure observed during boom periods would imply a growth premium, as

opposed to the value premium that we observe in the data.

Our production-based economy is not subject to this problem, as the value premium depends

on endogenous, heterogenous exposure of tangible and intangible capital to fundamental shocks. In

34



contrast to prior literature, duration is not the key determinant of risk premia. More specifically,

as we have shown in section 3, our model generates a value premium because growth options have

endogenously lower exposure to news shocks than value stocks. This feature remains unchanged

with time-varying volatility.

In panel A of table 4, we report our model-implied spread between value and growth stocks,

E
[
rLK − rLS

]
, for different combinations of conditional volatilities. We also report the Macaulay

duration of the cash flows of value and growth portfolios implied by our model, where the Macaulay

duration is calculated using the steady-state discount rate. The existence of the value premium

and the negative relation between expected returns and duration in the cross section of stocks are

a robust outcome across all scenarios, regardless of the sign of the slope of the term structure.

Conditional second moments and CAPM. Binsbergen et al. (2012), Binsbergen et al.

(2013), and Binsbergen and Koijen (2017) document several facts regarding the term structure of

equity returns. First, both the risk premium and Sharpe ratio for short-maturity claims to zero-

coupon equity are higher than for the aggregate stock market (Binsbergen and Koijen (2017)).

Second, the returns on short-term dividend claims are risky as measured by volatility, but safe

as measured by market betas (Binsbergen and Koijen (2017)). Third, the CAPM β of claims

to aggregate dividends is countercyclical and this time variation of β decreases with maturity

(Binsbergen et al. (2013)).

These results are documented around the period of the Great Recession, which according to

our estimation is a period with low volatility of short-run productivity shocks (post–World War

II) and higher long-run volatility. For consistency, we simulate our model conditioning on this

combination of values for our volatility state processes, and we report the model-implied moments

in panel B of table 4.

Binsbergen and Koijen (2017) report data on both the returns on claims to equity dividend

strips (spot equity returns) and those on their futures contract (forward equity returns). Forward
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returns are just the spot equity returns less the returns of a bond of equal maturity, and they help

in separating the effect of the term structure of interest rates from the effect of the term structure

of the equity premium. We report key moments for all of these returns in panel B of table 4 and

make the following observations.

First, short-term dividends in our model have a higher risk premium as well as a higher Sharpe

ratio, consistent with the pattern reported in Binsbergen and Koijen (2017). These features of

our model are due to the fact that short-term dividends have a larger exposure to news shocks,

which require a higher market price of risk than contemporaneous productivity shocks.

Second, short-term dividends have a higher return volatility, but a lower CAPM β. In our

model, short-term dividends have a higher volatility because the effect of productivity shocks on

cash flows decays over time, as shown in the impulse response functions in figure 4. In addition,

the failure of CAPM can be explained by the presence of multiple shocks in our model. Note that

under recursive preferences, all three shocks [εa,t+1, εx,t+1, εσ,t+1] carry a risk premium, but they

are independent of each other and have different market prices of risk. Short-term dividends are

more sensitive to news shocks, which carry a high market price of risk but do not generate very

volatile responses in the returns. As a result, short-term dividends have a high Sharpe ratio, but

a low CAPM β and high α compared to longer-maturity cash flows.

Third, consistent with the evidence provided by Binsbergen et al. (2013), the CAPM βs in

our model are countercyclical. In the rightmost column of panel B, Table 4, we report the model-

implied sensitivity of CAPM β with respect to the expected growth rate of the economy. All

partial derivatives are clearly negative for equities. They also decrease with respect to maturity,

as in Binsbergen et al. (2013), because the effect of news shocks decays over time, as shown in the

impulse response functions in figure 2.

Consistent with the evidence provided in Binsbergen and Koijen (2017), these results also

apply to forward equity excess returns, because they are driven by the term structure of the risk

premium and not by that of the risk-free interest rate.
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5 Testable Implications of the Learning Mechanism

The key features that distinguish our setting from the standard RBC model are the learning

mechanism and time-varying relative volatility of long-run versus short-run shocks. In this section,

we formally test several implications of these features of our model.

News shocks and payouts. The key implication of the learning mechanism in our model is the

response of investment and dividends to news shocks. In the standard RBC model, investment

responds positively, and therefore dividends respond negatively, to news shocks. The opposite

happens in our model for the term structure of equity returns. In this section, we directly test

this implication of our model using evidence on macroeconomic quantities. We show that the

aggregate payout has a negative exposure to short-run shocks but a positive exposure to growth

news shocks, as in our setting with learning.

We proceed in two steps. First, we measure aggregate dividends using the accounting identity

implied by our model, Dt = Yt− It− Jt−WtNt. Because our model abstracts away from leverage

and capital structure decisions, Dt in our model cannot be directly compared to stock market

dividends. We therefore use the model to guide our empirical measurement. Both output, Yt,

and investment, It + Jt, are from table 1.1.5 of the NIPA system. We exclude both government

expenditure and net exports, to be consistent with the model, and use the CPI index for all urban

consumers to obtain real values. As in Choi and Rois-Rull (2009), we estimate labor income to

be 65% of total output. For robustness, we also consider the aggregate dividends reported in the

Flow of Funds Accounts dataset for nonfinancial firms over the sample period 1952:Q1–2016:Q4,

in the spirit of Belo et al. (2014).9

Due to data limitations, we focus on quarterly observations that are available only starting

from 1947:Q1. To maximize sample length, our data include observations through 2016:Q4. Our

9We use Table F.103 (quarterly): Balance Sheet of Nonfinancial Corporate Business. Cash dividend is con-
structed as the net dividends, line 2.
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main results are robust to the exclusion of the Great Recession period.

In our second step, we estimate the following equation:

Zt − Et−1 [Zt] = βsrre
σa,t−1εa,t + βlrre

σa,t−1+ζt−1εx,t + βvolεσ,t + βrel volεζ,t + residt, (37)

Et−1 [Zt] = β0 + ρZt−1 + βxxt−1 + βσσa,t−1 + βζζt−1,

where Zt is either the investment-to-output ratio, It
Yt

, or the dividends-to-output ratio, Dt
Yt

. We

divide our main variables by output for three reasons: (i) since Dt can be negative, we cannot just

focus on growth rates; (ii) this is a common way to detrend our variables; and (iii) according to

the model, it does not affect our ability to identify the sensitivity of our variables to news shocks,

as total output is nearly invariant upon the arrival of pure news shocks.

In the model, a linear approximation of the equilibrium dividend and investment processes

suggests the dependence of these variables on both contemporaneous productivity innovations

(εa,t, εx,t, εσ,t, εζ,t) and predetermined state variables. For the sake of parsimony, we use the lagged

values of either It−1

Yt−1
or Dt−1

Yt−1
to capture the role of the endogenous state variables (i.e., capital

stocks) to avoid additional measurement errors. Under the null of the model, this is an innocuous

assumption. We also control for the predetermined value of the long-run component, xt−1, relative

long-run volatility, ζt−1, and short-run conditional volatility, σa,t−1.

Our main findings are reported in panel A of table 5. Since neither our dividends series nor our

regressors are standardized, magnitudes are not directly comparable. As a result, we only discuss

the sign of our estimates. The data suggest that the response of the aggregate payout to short-

run news is negative, as predicted by standard production-economy models. Most importantly,

the immediate response of aggregate investment to long-run news is negative, implying that the

aggregate payout increases with positive new shocks, consistent with our model.

We point out two additional empirical results that broadly support the validity of our empirical

methods. First, according to our estimation, cash dividends feature a positive response to news
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Table 5: News Shocks, Payout, and Asset Prices

Panael A: Payout Exposures
βsrr βlrr βvol βrel vol Adj. R2

Aggregate Investment 0.078∗∗∗ −0.150∗∗∗ −0.097∗∗∗ −0.090∗∗∗ 0.937
(0.014) (0.064) (0.033) (0.039)

Aggregate Payout −0.051∗∗∗ 0.160∗∗∗ 0.098∗∗∗ 0.099∗∗∗ 0.938
(0.015) (0.064) (0.034) (0.040)

FoF Dividends −0.020∗∗ 0.022∗ 0.004 -0.007 0.884
(0.012) (0.035) (0.025) (0.027)

Panel B: Time-Varying Volatility Factors and Asset Prices
Rex
mkt HML TSS

Rel.Vol. 0.423∗ 0.080 −0.630∗∗∗

(0.273) (0.219) (0.092)
SR-Vol. 0.419 ∗∗∗ 0.095 0.528∗∗∗

(0.173) (0.144) (0.045)
Adj. R2 0.027 −0.009 0.699
Adj. R2 (no SR-vol.) 0.010 −0.006 0.463
Sample: 1947:Q3–2016:Q4 1947:Q3–2016:Q4 2002:Q4–2010:Q4

In panel A, data are from the US and span the sample 1947:Q1–2016:Q4. The statistics reported refer
to the regression specified in equation (37). In panel B, we report the estimates from the following
regressions:

Zt+1 = const.+ βzxxt + βzφφt + βzσaσa,t + resid, Z ∈ {Rexmkt;HML},
TSSt = const.+ βTSSx xt + βTSSφ φt + βTSSσa σa,t · sign(TSSt) + resid,

where Rexmkt andHML are the Fama-French quarterly market excess return and HML factors, respectively.
TSS denotes the term structure spread between 7-year and 2-year zero-coupon equities (Binsbergen et al.
2013). The factors xt, σa,t, and ζt are estimated according to the procedure described in section 4. Our
estimates are from the five-factor specification with volatility estimated through projection methods. The
sign(TSSt) term accounts for the opposite impact of volatility on the spread depending on whether the
term structure is either upward or downward sloping. For each regression, we report (i) our estimates
for the exposure to both short-run conditional volatility (σa,t) and relative volatility (ζt); (ii) the p-value
associated with the null that the signs of our exposure coefficients are opposite to those estimated (we
denote p-values smaller than 1%, 5%, and 10% by ∗∗∗, ∗∗, and ∗, respectively); and (iii) the adjusted R2

from each regression with and without the inclusion of short-run volatility (σt). Numbers in parentheses
are GMM Newey-West adjusted standard errors.

shocks, as the aggregate payout. Second, the data suggest that adverse volatility shocks to either

short- or long-run shocks are associated with lower investment. Consistent with prior studies (see,

for example, Bloom et al. (2007) and Bloom (2009)), our volatility shocks are contractionary for
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investment.10

Volatility factors and asset prices in the data. The second key feature of our model is the

time-varying relative volatility of news shocks and contemporaneous productivity shocks. Using

our proxies for the volatility of contemporaneous productivity shocks and relative volatility devel-

oped in section 4.1, we test the implications for our model on the relationship between the market

equity premium, the value-growth spread, the slope of the term structure, and the measured

volatility processes in the data.

In the data, the market excess return and the HML factor are from the K. French’s webpage.

We interpret the latter as a proxy of the return differential between assets in place and growth

options (see, among several others, Ai et al. (2012)). The proxy for the slope of the term structure

(TSSt) is obtained through a quarterly interpolation of the data reported by Binsbergen et al.

(2013), figure 1, maturity 7−2. We use the volatility processes estimated from our five-factor

empirical model in order to work with a longer sample. We then run standard regressions that we

detail in panel B of table 5.

First of all, we note that both short-run volatility and relative volatility have a statistically

significant positive impact on the aggregate risk premium, consistent with our model. Removing

short-run volatility produces just a marginal deterioration of the adjusted R2, suggesting that

relative long-run volatility carries a significantly higher market price of risk, as in our model.

Second, our model implies that the value spread increases with both the volatility of short-

run shocks and the relative volatility, because the former enhances the overall risk compensation

and the latter strengthens the effect of learning. In table 5, both of our volatility processes have

on average a positive coefficient. Unfortunately, in this specification the inference is not sharp

10We note that our model cannot replicate these findings, as at the equilibrium total investment equals total
savings and increases because of precautionary motives. This limitation is common to other production economies
with zero government expenditure and no external trade. Explicitly accounting for countercyclical government
expenditure and for current account adjustments can solve this problem. We leave these extensions for future
studies.
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enough. This result is consistent with the findings of Bansal et al. (2005), Bansal et al. (2007),

and Hansen et al. (2006, 2008): in a short sample, it is nearly impossible to obtain statistically

different risk exposures in the cross-section of returns. In the spirit of prior empirical literature,

we take seriously our point estimates and interpret them as a sign of the positive dependence of

the expected value premium on both short- and long-run volatility. Based on untabulated results,

we note that if we use a GARCH approach to estimate volatilities, both of these coefficients stay

positive and become statistically significant.

Third, as we highlight in earlier sections, in our model, the slope of the term structure is

decreasing in the relative volatility, while an increase in the volatility of the contemporaneous

productivity shock enhances the manitude of risk compensation and therefore that of the slope of

the term structure (TSSt). This suggests the following regression:

TSSt = const.+βTSSx xt +βTSSζ ζt +βTSS+
σa σa,tI(TSSt > 0) +βTSS−σa σa,tI(TSSt ≤ 0) + resid, (38)

where I is an indicator function. Since, we cannot reject the restriction βTSS+
σa = −βTSS−σa , we have

imposed it both for parsimony and to sharpen our inference.11

Because the relative volatility ζt lowers the slope of the term structure, we expect βTSSζ to be

negative. In addition, we expect βTSS+
σa to be positive. These implications of the model are con-

firmed in table 5. It is also important to note that relative volatility is a key explanatory variable

for the term spread, as denoted by the significant increase in the adjusted R2 of our regression.

When both relative long-run volatility and short-run volatility are included as explanatory vari-

ables, our R2 is very sizable, with a value of 70%.

To better illustrate these points, in the bottom panel of figure 4 we depict both the realized

and the fitted term structure slope with and without accounting for short-run risk volatility. Our

11Note that sign(x) = I(x > 0)− I(x ≤ 0), and hence we can estimate:

TSSt = const.+ βTSSx xt + βTSSφ φt + βTSS+σa
σa,tsign(TSSt) + resid.
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Fig. 4: Volatility Factors and Term Structure Slope

This figure shows both the realized (Binsbergen et al. (2013)) and the estimated term structure spread

(TSS) between 7-year and 2-year zero-coupon equities. The fitted TSS values are obtained by estimating

different versions of equation (38) over the sample 2002:Q4–2010:Q4. Values outside of this sample

period are based on extrapolations. The relative volatility process, ζt, and the conditional volatility of

the productivity short-run shock, σa,t (denoted as SR Vol.), are obtained through the methods described

in section 4. Grey bars denote NBER recession periods.

relative volatility factor explains most of the variability of the term structure slope. In the top

panel of figure 4, we consider a sensitivity exercise and compare our results across the projection-

based and GARCH(1,1)-based volatility measures. Both methods yield very similar in-sample

results. Out of sample, in contrast, the two methods predict different signs for the term structure

slope, especially prior to the mid-nineties. Specifically, the GARCH(1,1)-based volatility measures

suggest that unconditionally the term structure may be downward sloping, and it becomes flatter

with long-run risk moderation.

Given our short sample, however, these extrapolations are just suggestive and leave substantial
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Fig. 5: Annual Predictions on Term Structure Slope (TSS)

This figure shows both the realized (Binsbergen et al. (2013)) and the estimated annual term structure

spread (TSS) between 7-year and 2-year zero-coupon equities. The fitted TSS values are obtained by

estimating different versions of equation (38) over the sample 2002:Q4–2010:Q4. Values outside of this

sample period are based on extrapolations. The relative volatility process, ζt, and the conditional volatil-

ity of the productivity short-run shock, σa,t (denoted as SR Vol.), are obtained through the methods

described in section 4. The thick-dashed line refers to the output of our equilibrium model when we fit

our estimated annual shocks.

uncertainty regarding the sign of the average slope of the equity term structure. On the positive

side, our analysis contributes to the literature by linking the conditional slope of the term structure

to macroeconomic fundamentals, specifically, conditional moments of productivity growth and

investment dynamics.

Model-implied TSS. In figure 5, we show the realized annual TSS that we obtain by com-

pounding the quarterly TSS over each calendar year. Similarly to figure 4, we also show the

predictions from our empirical procedures compounded to an annual frequency. Furthermore, we

show the TSS implied by our equilibrium model starting from 1948.12

12In order to connect our annual model with our quarterly data, we input annual equivalents of our exogenous
variables in our equilibrium model. Specifically, (i) we annualize productivity growth by compounding quarterly
rates during the year, and (ii) we sample the quarterly long-run growth component at the end of each year. We
then recover both the annual short-run and the annual long-run shocks to match perfectly the dynamics of ∆at
and xt at the annual frequency. The model perfectly match the annual time-series of both expected growth (xt)
and realized growth (∆at+1) with ρx = 0.77 and σ = 2.8%. We set all endogenous variables to their steady state
value in 1948, and then we feed in the subsequent exogenous shocks that we obtain from the data.
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We find two important results. First of all, our model replicates very well the pattern of

TSS observed in the data by Binsbergen et al. (2013). Second, the time-series of TSS from our

model features fluctuations consistent with those estimated through our regression approach. In

particular, the moderation of short-run shocks causes the model-implied TSS to steadily decay

until 1980 as in the data. Our model also implies that the boom episodes that have followed the

last three recessions should also have a positive TSS because of significant reduction of long-run

volatility.

6 Conclusions

We propose a production-based general equilibrium model to provide a unified explanation of the

relationship between the timing of cash flows and their expected returns both for aggregate stock

market dividends and for the cross section of book-to-market-sorted portfolios. The key mechanism

in our paper is based on the interplay of learning about exposure to aggregate shocks, and the

time-varying volatility of news regarding future productivity shocks. We show that our model is

able to explain stylized facts about the time-varying slope of the term structure of dividend strips,

as well as the negative relationship between cash-flow duration and expected returns in the cross

section of equity returns. We also provide a novel empirical analysis linking news shocks, time

variation in long-run news uncertainty, aggregate payouts, and equity term structure slope.

Our analysis abstracts away from optimal choice of financial leverage. A fully specified general

equilibrium model with endogenous capital structure choices is beyond the scope of this paper,

but this represents an important topic for future research. Future studies should also analyze the

term structure of equity in a multicountry version of our intangible capital model in order to shed

light on the international comovements documented in Binsbergen et al. (2013).
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Appendix A: Aggregation with learning

Proof of Lemma 1. Consider the resource allocation problem in (6). Suppose firms do not

know Aj with certainty, but instead observe a noisy signal of it, denoted s. The expected output

conditioning on s is Es

[(
Ak (s)α n (s)1−α) η−1

η

]
, where Es denotes the belief about Aj given signal

s. Note that firm j’s choice must be a function of its information. We use notations k (s) and n (s)

to indicate that capital and labor input must be measurable functions of the signal s. Because

there is a continuum of firms, we can assume that a version of the law of large numbers holds and

compute the total output of the economy as

{∫
Es

[(
Ak (s)α n (s)1−α) η−1

η

]
ds

} η
η−1

.

Therefore, maximization of total output can be written as

Y = max

{∫
Es

[(
Ak (s)α n (s)1−α) η−1

η

]
ds

} η
η−1

.∫
k (s) ds = K,∫
n (s) ds = N. (A1)

The optimal policy of the above problem is given by the following lemma:

Lemma 3 The aggregate production function in (A1) can be written as

Y = AKαN1−α, where A =

[∫ (
Es

[
A

η−1
η

])η
ds

] 1
η−1

.

Proof. Given s, firms maximize expected profit:

maxEs

[(
Akαs n

1−α
s

) η−1
η

]
−Rks −Wns.
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Optimality implies that the expected marginal product of capital must be equalized across firms:

Es

[
A

η−1
η

]
k
η−1
η
−1

s

Es′
[
A

η−1
η

]
k
η−1
η
−1

s′

= 1

That is,

ks
ks′

=
ns
ns′

=

Es

[
A

η−1
η

]
Es′
[
A

η−1
η

]
η

.

Therefore, the optimal choices are capital and labor must satisfy

ks =

(
Es

[
A

η−1
η

])η
∫ (

Es

[
A

η−1
η

])η
ds
K, ns =

(
Es

[
A

η−1
η

])η
∫ (

Es

[
A

η−1
η

])η
ds
N,

Es

[(
Akαs n

1−α
s

) η−1
η

]
= Es

[
A

η−1
η

]


(
Es

[
A

η−1
η

])η
∫ (

Es

[
A

η−1
η

])η
ds
K

α
(
Es

[
A

η−1
η

])η
∫ (

Es

[
A

η−1
η

])η
ds
N

1−α
η−1
η

=
(
Es

[
A

η−1
η

])η KαN1−α∫ (
Es

[
A

η−1
η

])η
ds


η−1
η

.

As a result, total output can be written as:

[∫ (
Ajk

α
j n

1−α
j

) η−1
η dj

] η
η−1

=

[∫
Es

{(
Akαs n

1−α
s

) η−1
η

}
ds

] η
η−1

=

[∫ (
Es

[
A

η−1
η

])η
ds

] η
η−1 KαN1−α∫ (

Es

[
A

η−1
η

])η
ds

=

[∫ (
Es

[
A

η−1
η

])η
ds

] 1
η−1

KαN1−α,

as needed.
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To prove Lemma 1 of the paper, note that given Aj = eβj∆a, and βj ∼ N
(
µ, 1

∆a
σ2
)
, under our

assumption of the information structure, (3), the posterior distribution of βj is normal with

V ars [β] =
1

1
1

∆a
σ2 + 1

1
∆a

τ2

=
1

∆a

1
1
σ2 + 1

τ2

;

Es [β] = V ars [β]

[
1

1
∆a
σ2
µ+

1
1

∆a
τ 2
s

]
=

1
1
σ2 + 1

τ2

[
1

σ2
µ+

1

τ 2
s

]
=

1

τ 2 + σ2

[
τ 2µ+ σ2s

]
.

Also, the signal s follows a normal distribution with mean µ and variance 1
∆a

[σ2 + τ 2]. Therefore,

Es

[
A

η−1
η

]
= Es

[
e
η−1
η

∆aβ
]

= e
η−1
η

{
∆a τ2

τ2+σ2 µ+ 1
2( η−1

η )∆a τ2σ2

τ2+σ2

}
+ η−1

η
∆a σ2

τ2+σ2 s,

and (
Es

[
A

η−1
η

])η
= e

(η−1)
{

∆a τ2

τ2+σ2 µ+ 1
2( η−1

η )∆a τ2σ2

τ2+σ2

}
+(η−1)∆a σ2

τ2+σ2 s.

We have

∫ (
Es

[
A

η−1
η

])η
ds = e

(η−1)
{

∆a τ2

τ2+σ2 µ+ 1
2( η−1

η )∆a τ2σ2

τ2+σ2

}
e

(η−1)∆a σ2

τ2+σ2 µ+ 1
2

(η−1)2∆a
(

σ2

τ2+σ2

)2

[σ2+τ2]

= e
(η−1)∆a

{
µ+ 1

2( η−1
η )

[
τ2σ2

τ2+σ2 +η σ4

τ2+σ2

]}

As a result, the aggregate productivity is

A =

[∫ (
Es

[
A

η−1
η

])η
ds

] 1
η−1

= e
∆a

µ+ 1
2( η−1

η )

(
1+η τ

−2

σ−2

)
τ−2+σ−2


.
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Under our normalization condition, µ+ 1
2
η−1
η
σ2 = 1, which implies µ = 1− 1

2
η−1
η
σ2, aggregate

productivity can be written as:

ln A = ∆a

µ+
1

2

(
η − 1

η

) (1 + η τ
−2

σ−2

)
τ−2 + σ−2

 ,
where

µ+
1

2

(
η − 1

η

) (1 + η τ
−2

σ−2

)
τ−2 + σ−2

= 1− 1

2

η − 1

η
σ2 +

1

2

(
η − 1

η

) (1 + η τ
−2

σ−2

)
τ−2 + σ−2

(A2)

= 1 +
1

2

(η − 1)2

η

σ4

τ 2 + σ2
. (A3)

This completes the proof of Lemma 1.

Proof of Lemma 2. In the dynamic setup, lnAj,t =
∑t

i=1 βj,i∆ai. To save notation, we

suppress subscripts t and j and write lnA =
∑t

i=1 βi∆ai. Suppose the posterior variance for βi is

1
∆ai

1
σ−2+τ−2

i

. To prove Lemma 2, we apply the formula in Lemma 3 and first compute Es

[
A

η−1
η

]
.

Note that

Es

[
η − 1

η
lnA

]
=
η − 1

η

[
t∑
i=1

∆aiEs (βi)

]
,

and

V ars

[
η − 1

η
lnA

]
=

(
η − 1

η

)2 t∑
i=1

∆a2
iV ars (βi) ,

=

(
η − 1

η

)2 t∑
i=1

∆ai
1

σ−2 + τ−2
i

.

Therefore, (
Es

[
A

η−1
η

])η
= e

(η−1)[
∑t
i=1 ∆aiEs(βi)]+ 1

2( η−1
η )(η−1)

∑t
i=1 ∆ai

1

σ−2+τ−2
i .
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We now need to compute
{
E
(
Es

[
A

η−1
η

])η} 1
η−1

. Using the law of iterated expectations, we have

E

{
(η − 1)

[
t∑
i=1

∆aiEs (βi)

]
+

1

2

(
η − 1

η

)
(η − 1)

t∑
i=1

∆ai
1

σ−2 + τ−2
i

}

= (η − 1)

[
t∑
i=1

∆aiµ

]
+

1

2

(
η − 1

η

)
(η − 1)

t∑
i=1

∆ai
1

σ−2 + τ−2
i

Also, variance decomposition implies V ar [βi] = V ar [βi| s]+V ar [E (βi| s)]. Therefore, V ar [E (βi| s)] =

1
∆ai

[
σ2 − 1

σ−2+τ−2
i

]
= 1

∆ai

τ−2
i

σ−2
i

σ−2+τ−2
i

. We have

V ar

{
(η − 1)

[
t∑
i=1

∆aiEs (βi)

]
+

1

2

(
η − 1

η

)
(η − 1)

t∑
i=1

∆ai
1

σ−2 + τ−2
i

}

= (η − 1)2
t∑
i=1

∆ai ·
τ−2
i /σ−2

i

σ−2 + τ−2
i

.

As a result,

E
[(
Es

[
A

η−1
η

])η]
= eTerm,

where

Term = (η − 1)

[
t∑
i=1

∆aiµ

]
+

1

2

(
η − 1

η

)
(η − 1)

t∑
i=1

∆ai
1

σ−2 + τ−2
i

+
1

2
(η − 1)2

t∑
i=1

∆ai ·
τ−2
i /σ−2

i

σ−2 + τ−2
i

= (η − 1)

[
t∑
i=1

∆aiµ

]
+

1

2

(
η − 1

η

)
(η − 1)

t∑
i=1

∆ai
1 + ητ−2

i /σ−2
i

σ−2 + τ−2
i
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Using Lemma 3, we have:

A =
{
E
(
Es

[
A

η−1
η

])η} 1
η−1

= exp

{
t∑
i=0

(
µ+

1

2

(
η − 1

η

)
1 + ητ−2

i /σ−2
i

σ−2 + τ−2
i

)
ai

}
. (A4)

Equations (12) and (13) can be obtained by using the definitions of λ∗ and λ (τ 2) and equation

(A3) to simplify equation (A4) above.

Recursive representation of the perpetual learning model. To derive a recursive repre-

sentation of the productivity of adolescent firms, we first prove the following lemma.

Lemma 4 Let the individual firms’ productivity be given by (10). Suppose that at time t, for

s = 1, 2, · · · , t, the posterior distribution of βs is

N

(
1

τ 2
s + σ2

[
τ 2
sµ+ σ2s

]
,

1

∆as

1
1
σ2 + 1

τ2
s

)
.

Suppose also, at time t+ 1, adolescent firms obtain a signal for all ∆as with s = 0, 1, 2, · · · , t with

es ∼ N
(

0, 1
∆as

$2
s

)
. Then the aggregate productivity of all adolescent firms satisfy:

ln Āt+1 − ln Āt =
t∑

s=0

ξt−s∆as + ∆at+1, (A5)

where

ξt−s =
1

2

(
η − 1

η

)
(η − 1)$−2

s

(σ−2 + τ−2
s +$−2

s ) (σ−2 + τ−2
s )

. (A6)

Proof. By our aggregation result in Lemma 2, the aggregate productivity of all adolescent firms

is given by equation (A4). At time t+ 1, because adolescent firms have no information about βt+1;

their posterior distribution of βt+1 is just N
(
µ, 1

at+1
σ2
)

. Apply Lemma 2 again, the aggregate
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productivity for all adolescent firms is

Āt+1 = exp

{
t∑
i=0

(
µ+

1

2

(
η − 1

η

)
1 + η

(
τ−2
i +$−2

i

)
/σ−2

i

σ−2 + τ−2
i +$−2

i

)
ai +

(
µ+

1

2

η − 1

η
σ2

)
at+1

}
.

(A7)

Equation (A5) can be obtained by comparing (A7) and (A4) and setting

ξt−s =

(
µ+

1

2

(
η − 1

η

)
1 + η (τ−2

s +$−2
s ) /σ−2

s

σ−2 + τ−2
s +$−2

s

)
−
(
µ+

1

2

(
η − 1

η

)
1 + ητ−2

s /σ−2
s

σ−2 + τ−2
s

)
=

1

2

(
η − 1

η

)
(η − 1)$−2

s

(σ−2 + τ−2
s +$−2

s ) (σ−2 + τ−2
s )

,

as needed.

In what follows, to save notation, we suppress the firm subscript j, use regular font for in-

dividual firm productivity, and use bold face for aggregate productivity. To derive the recursive

representation in (17) and (16), we construct the time series of the quality of signals in our model

as follows.

1. In period 0, lnA0 = β0∆a0. β0 ∼ N
(
µ, 1

∆a0
σ2
)

. Therefore, ln Ā0 =
(
µ+ 1

2
η−1
η
σ2
)

∆a0 =

∆a0.

2. In period 1, lnA1 = β1∆a1 + β0∆a0, the firm drew a new signal β0 + ε1
0, where ε1

0 ∼

N
(

0, 1
∆a0

τ 2
0

)
. As a result, the posterior distributions are: β1 ∼ N

(
µ, 1

∆a1
σ2
)

and β0 ∼

N
(
E [β0| e1 (0)] , 1

∆a0

1
σ−2+τ−2

0

)
. By (A5),

ln Ā1 − ln Ā0 = ξ0∆a0 + ∆a1.

Given ρs ∈ (0, 1), we can choose τ 0 so that

1

2

(
η − 1

η

)
(η − 1) τ−2

0(
σ−2 + τ−2

0

)
σ−2

= (1− ρs) (λ∗ − 1) . (A8)
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By setting t = s = 0 and $0 = ∞ in the definition of ξt−s in equation (A6), we have

ξ0 = (1− ρs) (λ∗ − 1) and

ln Ā1 − ln Ā0 = ξ0a0 + a1 = (1− ρs) (λ∗ − 1) ∆a0 + ∆a1.

3. In general, in period t+ 1, the firm observes the following sequence of signals:

β0 + εt+1
0 εt+1

0 ∼ N
(

0, 1
∆a0

τ 2
t

)
β1 + εt+1

1 εt+1
1 ∼ N

(
0, 1

∆a1
τ 2
t−1

)
· · ·

βt−1 + εt+1
t−1 εt+1

t−1 ∼ N
(

0, 1
∆at−1

τ 2
1

)
βt + εt+1

t εt+1
t ∼ N

(
0, 1

∆at
τ 2

0

)
,

Aggregation implies that ln Āt+1 − ln Āt =
∑t

i=0 ξt−iai + at+1 (which is just equation (A5)),

where ξ0 is given by (A8), and in general,

ξj+1 =
1

2

(
η − 1

η

)
(η − 1) τ−2

j+1(
σ−2 +

∑j
i=0 τ

−2
i + τ−2

j+1

)(
σ−2 +

∑j
i=1 τ

−2
i

) .
If we construct the sequence of τ j recursively as follows: τ 0 is defined by (A8) and τ j+1 satisfies

1

2

(
η − 1

η

)
(η − 1) τ−2

j+1(
σ−2 +

∑j
i=1 τ

−2
i + τ−2

j+1

)(
σ−2 +

∑j
i=1 τ

−2
i

) = ρj+1
s (1− ρs) (λ∗ − 1) , (A9)

then the law of motion of ln Āt can be written as:

ln Āt+1 − ln Āt =
t∑

j=0

ξt−j∆aj + ∆at+1 =
t∑

j=0

ρt−js (1− ρs) (λ∗ − 1) ∆aj + ∆at+1. (A10)
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Finally, define χt+1 = ln
(

Ât+1

Āt+1

)
. Equations (14) and (A10) together imply that χt must satisfy

the recursion (16) and Āt satisfies (17).
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[Hengjie revision ends here.]

59



Appendix B: Calibration of the Learning Parameters

In our model, the exposure of mature firms to the common productivity shock ∆at+1 (λ) and the

probability of transition from adolescence to maturity (φ) together determine firms’ exposure to

aggregate productivity shocks as a function of firms’ capital age. Firms’ capital age is what we

measure in the data. In this section, we describe the exposure-age relationship in the model and

the empirical procedure that we use to measure this moment in the data.

In our model, the firms’ survival rate is 1−δ per year. Therefore, the total measure of firms with

age t is (1− δ)t−1. Because firms become mature at the rate φ per period, the fraction of adolescent

firms among firms of age t is (1− φ)t−1, and the fraction of mature firms is 1− (1− φ)t−1. Since

the exposure of mature firms is λ and the exposure of young firms is 1, the exposure of aggregate

productivity with respect to ∆at+1 is a weighted average of the exposure of young and mature

firms:

δ ×
∞∑
t=1

(1− δ)t−1 [(1− φ)t−1 +
(
1− (1− φ)t−1)λ] .

Therefore, the exposure of firms of age t with respect to measured aggregate productivity shock is

(1− φ)t−1 +
(
1− (1− φ)t−1)λ

δ ×
∑∞

t=1 (1− δ)t−1 [(1− φ)t−1 +
(
1− (1− φ)t−1)λ] .

In order to empirically measure the exposure-age relationship in the data, we follow Ai et al.

(2012) and use the annual data of publicly traded companies of US stock exchanges listed in both

the COMPUSTAT and CRSP databases for the period 1950–2008. Our main goal is to pin down

two parameters, λ and φ, by matching moments of the exposure-age relationship in the data. We

adopt the following empirical procedure to achieve this goal. In the first stage, we estimate the

firm-level productivity, Ai,j,t, from the Cobb-Douglas production function. Here, we use i and j

to index firm and industry, and we use t to denote time. The detailed estimation procedure is

described in appendix 3.1.2 of Ai et al. (2012).
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Table B.1: Exposure to Aggregate Productivity Shocks by Age Groups

ξ1

Regression Kage < 4 Kage ≥ 4
(1) 0.63∗∗ 1.08∗∗∗

(0.28) (0.11)
(2) 0.58∗∗ 1.09∗∗∗

(0.26) (0.10)

Model 0.67 1.15

This table reports the aggregate productivity exposures of two firm groups based on a capital-age cutoff
of four years. All estimates are based on the following regression (equation (B3)):

∆ lnAi,j,t = ξ0i + ξ1∆ lnAt + ε̃i,j,t. (B2)

The exposures are normalized so that the firm exposure of the whole sample regression is equal to 1.
Regressions (1) and (2) differ in that they us two alternative estimation methods in the first stage to
estimate ∆lnAi,j,t. Regression (1) is based on the fixed effect procedure, whereas regression (2) is based
on the dynamic error component method of Blundell and Bond (2000). These estimation methods are
described in appendix B of Ai et al. (2012). Numbers in parentheses are standard errors, and they are
heteroskedasticity consistent and clustered at the firm level. We use *, **, and *** to indicate p-values
smaller than 0.10, 0.05, and 0.01, respectively. In the last row (“Model”), we report the model-implied
ξ1 based on our calibrated parameters, λ and φ.

Second, as in Ai et al. (2012), we construct a firm-specific capital age measure, Kagei,t, as a

weighted average age of its capital vintages, i.e., investments (Ii,t):

KAgei,t =

∑T
l=1(1− δi)l · Ii,t−l · l∑T
l=1(1− δi)l · Ii,t−l

. (B1)

We choose T = 15 but we obtain comparable results for different values of T , such as T = 5 and

T = 8.

Lastly, we estimate the exposure of firms’ productivity with respect to the aggregate produc-

tivity by different capital age groups using the following regression:

∆ lnAi,j,t = ξ0i + ξ1∆ lnAt + ε̃i,j,t, (B3)

where ξ0i controls for the firm-specific fixed effect, and ∆ lnAt is the growth rate of aggregate
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productivity as measured by the US Bureau of Labor Statistics (BLS). In particular, in order to

determine our two parameters, we divide all firms into two groups based on a capital-age cutoff of

four years, and use their group-specific aggregate productivity exposures to guide our calibration.

We report our estimation results in table B.1. To summarize the empirical results, we find that

the firm group with the higher capital age has a significantly higher exposure to the aggregate

productivity growth, consistent with the learning mechanism we emphasize in this manuscript. We

calibrate the two parameters, λ = 6 and φ = 0.7, to target the point estimates of ξ1 obtained for our

two different age groups. In the last row of table B.1 we report the model-implied exposures under

our benchmark calibration, and we note that they are consistent with their empirical counterparts.
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Appendix C: Additional Empirical Results

Table C.1: Time-Varying Volatility in Productivity (II)

Hypothesis Testing
Volatility: Factor-Based GARCH-Based
Mean: 5 Factors 13 Factors 5 Factors 13 Factors
H0 : βx = 0 18.73 267.05 18.31 269.06

(0.00) (0.00) (0.00) (0.00)
H0 : βσx = βσa 126.30 153.27 – –

(0.00) (0.00) (0.00) (0.00)
H0 : ρx = 0 120.65 18.95 124.81 19.72

(0.00) (0.00) (0.00) (0.00)
H0 : ρζ = 0 142.85 12.66 34.80 12.56

(0.00) (0.00) (0.00) (0.00)

We jointly estimate the set of equations (30)–(36) and report Wald tests as well as p-values (in parentheses)
for the null hypotheses listed in the first column. We use US data spanning the sample 1947:Q1–2016:Q4,
and all p-values are based on GMM Newey-West adjusted standard errors. Our log-volatility processes,
σa,t and σx,t, are identified by either using the factor representation in equations (35)–(36) or by adopting
two GARCH(1,1) models. Our five factors are the price-dividend ratio, three-month Treasury bill yield,
three-year and five-year Treasury bond yields, and th integrated volatility of stock market returns. Our
13 factors are the principal components extracted by Jurado et al. (2015) from a wide cross section of
macroeconomic and financial indicators.

Fig. C.1: Fitted Long-Run Productivity Risk

This figure shows the expected productivity growth estimated as detailed in section 4. The esti-
mation is based on the benchmark specification with the four factors of Bansal and Shaliastovich
(2013) and integrated stock market volatility. Quarterly US data start in 1947:Q1 and end in
2016:Q4. Grey bars denote NBER recession periods.
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Appendix D: Sensitivity Analysis

In this section, we address only moments that change significantly from our benchmark or that

are important for our analysis. All results are summarized in table D.1.

The role of information diffusion (ρs). The parameter ρs is tightly related to the ability of

an adolescent firm to learn about its past productivity exposures. Most importantly, it determines

the half-life of the productivity gap between mature and adolescent firms. We vary this parameter

in order to change the half-life by ±20% and offer the following remarks.

First, the sensitivity of our main results with respect to this parameter is very limited. In-

creasing ρs makes our learning friction more powerful, and as a result it increases slightly both the

equity premium and the value premium. Second, focusing on macroeconomic aggregates, a higher

ρs predicts a higher volatility of investment and a lower correlation with consumption, consistent

with the data.

The role of learning speed (φ). Increasing the probability of becoming a mature firm, i.e.,

a firm with full information, is equivalent to speeding up the completion of the learning process.

When we increase φ, we reduce the fraction of capital allocated to adolescent firms, but the average

age of aggregate capital remains unchanged because the age of both mature and adolescent firms

declines.

According to our simulations, decreasing the share of young capital through a higher φ makes

the term structure even higher over short maturities because it mitigates the substitution effect

even further compared to our benchmark. Equivalently, positive news shocks are associated with an

even stronger income effect because all firms are expected to quickly take advantage of technological

progress.

This improvement, however, comes with a lower risk premium for physical capital held by

mature firms, because in the absence of adjustment costs a higher φ makes the relative price of
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Table D.1: Sensitivity Analysis

Panel A: the role of information diffusion (ρs)
Data Benchmark 80%HL 120%HL

σ(∆c) 02.53 (00.56) 2.98 3.04 2.94
σ(∆i)/σ(∆c) 05.29 (00.50) 4.03 3.63 4.25
ρ∆c,∆i 00.39 (00.15) 0.69 0.74 0.65
E[rf ] 00.89 (00.97) 0.44 0.38 0.40

E[rL,exK ] 05.70 (02.25) 4.05 3.91 4.13
E[rLK − rLS ] 04.32 (01.39) 3.83 3.42 4.13
Panel B: the role of learning speed (φ)

Data Benchmark φ = 0.6 φ = 0.8
σ(∆c) 02.53 (00.56) 2.98 2.95 3.02
σ(∆i)/σ(∆c) 05.29 (00.50) 4.03 3.92 4.18
E[rf ] 00.89 (00.97) 0.44 0.56 0.32

E[rL,exK ] 05.70 (02.25) 4.05 4.57 3.48
E[rLK − rLS ] 04.32 (01.39) 3.83 4.13 2.98
RP(2) 10.08 (05.04) 6.77 3.39 9.46
Age K̄ 1.33 1.54 1.17

Age K̂ 11.50 11.74 11.31
K̄/Ktot 15% 18% 14%
Age Ktot 9.90 9.91 9.89

Panel C: the role of intangible capital (ν)
Data Benchmark No Intang.

E[I/Y ] 00.15 (00.05) 0.17 0.31
σ(∆c) 02.53 (00.56) 2.98 2.96
σ(∆i)/σ(∆c) 05.29 (00.50) 4.03 4.23
σ(∆n) 02.07 (00.21) 1.51 1.63
AC1(∆C) 0.49 (00.15) 0.40 0.41
ρ∆c,∆n 00.28 (00.07) 0.55 0.49
ρ∆c,∆i 00.39 (00.15) 0.69 0.64
E[rf ] 00.89 (00.97) 0.44 0.40

E[rL,exK ] 05.70 (02.25) 4.05 3.96
RP(2) 10.08 (05.04) 6.77 8.30

All entries for the models and for the data are obtained as in table 2. In panel A, we vary the parameter ρs
so that the half-life (HL) of the cointegration residual χt is modified by ±20% relative to the benchmark.
In panel B, we change the parameter φ, and in panel C we remove intangible capital from the model by
setting ν = 1.

adolescent and mature firms less volatile and close to 1. As a natural byproduct of this phe-

nomenon, we also observe a decline in our value premium.
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The role of intangible capital (ν). In panel C of table D.1, we show that intangible capital

in our setting is important only in order to have a well-defined concept of the value premium.

Absent an interest in the relation between equity excess returns and duration in the cross section

of book-to-market-sorted firms, intangible capital does not play a crucial role. The only change

worthy of notice is the increased RP (2). If we remove growth options from the model, RP (2)

increases to 8.30, a result still within the available empirical confidence intervals.
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