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A tractable model of limited enforcement and the

life-cycle of firms

Abstract

We develop a continuous-time model of optimal lending contracts under limited

enforcement and provide closed-form solutions. We characterize the dynamics of

firms’ growth rate, Tobin’s Q, and capital structure over their life cycle.

1 Introduction

This paper studies how limited enforcement of lending contracts affects the life cycle

and long-run behaviors of firms. We build a continuous-time dynamic model in which

an entrepreneur borrows from an outside investor to finance capital and to invest in

productive projects. We assume that the lending contract can only be partially enforced.

In particular, the entrepreneur can default on loan contracts and abscond with at least

part of the capital input funds without legal recourse. We characterize in closed form

the optimal dynamic contract subject to limited enforcement. We show that under the

optimal contract, firms’ life cycle consists of two stages. The first stage of firms’ life

cycle is characterized by high growth rates, a high Tobin’s Q, low dividend payments,

and low leverage. Entrepreneurs are financially constrained, and their firms operate at

suboptimal levels in the first stage. They do not draw any dividend payment from the firm

and save as much as possible to relax the borrowing constraint. In this stage, firm growth

is driven by both productivity growth and convergence to the efficient level of operation.

In the second stage, the firm reaches maturity and its efficient level of operation. In this

stage, entrepreneurs have accumulated enough net worth and reached their maximum

borrowing capacity. Firm growth in this stage is only driven by productivity growth and

not by improvements in the scale of operation. As a result, firms in the mature stage have

low growth rates, a low Tobin’s Q, and high leverage. These predictions of our model are

consistent with the empirical findings in the literature. The model also provides several

testable implications on how the time to reach maturity and the long-run behaviors of

firms depend on the primitive technology and contracting parameters.

The paper most closely related to ours is by Albuquerque and Hopenhayn [2004],

who also study a firm dynamics model with limited enforcement. Our paper is different
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from theirs because it provides an analytical solution to the firm dynamics, which allows

additional implications, including how the capital structure evolves over the firm’s life

cycle and how it depends on the production technology or the severity of the financial

market friction in the long run.

2 The model

Time is continuous, infinite, and denoted t ∈ [0,∞). An entrepreneur operates a firm

that uses a Cobb-Douglas technology to produce output from capital. Given a sequence

of capital inputs {Kt}, the operating profit of his firm at time t, denoted by π (Zt, Kt), is

π (Zt, Kt) = Z1−α
t Kα

t − (r + δ)Kt.

Here, Zt is the firm’s productivity, α ∈ (0, 1) is the returns to scale parameter, r > 0 is

the interest rate, δ > 0 is the capital depreciation rate; and r + δ is the user’s cost of a

unit of capital. We assume that Zt follows a geometric Brownian motion with constant

expected growth rate µ and volatility σ:

dZt = Zt [µdt+ σdBt] . (1)

We assume that the entrepreneur does not have any initial wealth and has to borrow

from an outside investor. A lending contract specifies the capital input, dividend payment

to the entrepreneur, and loan repayment to the outside investor as functions of the history

of the realizations of shocks. We use Ct to denote the cumulative dividend payment to the

entrepreneur. Limited liability implies that Ct must be non-decreasing. Given {Kt}∞t=0

and {Ct}∞t=0, the resource constraint implies that the loan repayment to the investor at

time t must be π (Zt, Kt) dt − dCt; therefore, we can without loss of generality write a

loan contract as {Kt, Ct}∞t=0.

Both the entrepreneur and investor are risk-neutral. Under the contract, the en-

trepreneur’s expected utility is

E0

[∫ ∞

0

e−βtdCt

]
,

with β > 0 being the discount rate and E0 being the time zero expectation operator. The

expected payoff of the investor is

E0

[∫ ∞

0

e−rt
[(
Z1−α

t Kα
t − (r + δ)Kt

)
dt− dCt

]]
. (2)

As is standard in the optimal contracting literature, we assume r < β so that the investor

is more patient.

To capture the idea that the lending contract cannot be fully enforced, we assume
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that the entrepreneur can always default by absconding with a fraction of the capital,

θKt, without any legal recourse. Here, θ ∈ [0, 1] is a parameter of the enforceability of

contracts, and θ = 0 corresponds to the case of perfect enforcement. In addition, upon

default, the project evaporates; therefore, default is always socially inefficient.

Assumption 1. β > r > µ > 0 and θ < r−µ
β−µ

.

The first inequality guarantees a finite payoff to the investor; the second is for technical

reasons and is satisfied if θ is small or β and r are close. The entrepreneur’s payoff upon

default is proportional to θ, which indicates how severe the limited enforcement problem

is.

3 The optimal contract

3.1 State variables and normalization

By following the literature, we define the entrepreneur’s continuation utility:

Ut = Et

[∫ ∞

t

e−β(s−t)dCs

]
for all t ≥ 0,

and the martingale representation theorem implies1

dUt = βUtdt− dCt + gtUtσdBt (3)

with {gt} being a predictable process which indicates the sensitivity of Ut to the produc-

tivity shocks. The borrowing constraint preventing default is

Ut ≥ θKt for all t ≥ 0, (4)

which implies an upper bound restricting the capital input to be inefficiently low. So, the

investor designs the optimal contract that maximizes her expected payoff, (2). Under the

contract, Ut evolves according to (3), and Z0 = 1 and U0 = U with U being the initial

expected utility promised to the entrepreneur. Furthermore, the borrowing constraint (4)

is satisfied. Let V (Z,U) be the value function of the investor. The linear preferences and

concave production function imply the following result.2

Lemma 1. V (Z,U) is concave in U .

The maximization problem is homogeneous in Z so that

V (Z,U) = Zv

(
U

Z

)
1See DeMarzo and Sannikov [2006] and Sannikov [2008].
2The proofs of some of the results are straightforward and omitted, but are available via email upon

request.
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with v(u) being the normalized value function. Here, u = U
Z
is the normalized continuation

utility of the entrepreneur, the ratio of his future payments to the scale of the firm, which

is interpreted as his stake in the firm. Likewise, we define the normalized policies k = K
Z
,

dc = dC
Z
, and u = U

Z0
= U . Thus, (3) implies

dut = ut

[(
(β − µ) + (gt − 1)σ2

)
dt+ (gt − 1)σdBt

]
− dct, (5)

and the borrowing constraint (4) implies

kt ≤
ut

θ
for all t ≥ 0. (6)

According to the investor’s contract design problem, v(u) satisfies the following HJB

differential equation:

0 = max
k∈[0,uθ ],g,dc≥0

kα − (r + δ) k − (r − µ) v (u) + (β − µ)uv′ (u)

+
1

2
u2v′′(u)(g − 1)2σ2 − (1 + v′(u)) dc. (7)

In the first-best case without limited enforcement, kt = k∗ with

k∗ = argmax
k

kα − (r + δ) k =

(
α

r + δ

) 1
1−α

,

and the rate of operating profit is π∗Zt, with π∗ = (1− α)
(

α
r+δ

) α
1−α . The initial utility of

the entrepreneur is fully paid off at t = 0, so that the first-best normalized value function,

vFB(u), satisfies

vFB(u) =
π∗

r − µ
− u for u ≥ 0.

Clearly, this contract violates the borrowing constraint, (6), as the entrepreneur’s stake

decreases to zero immediately.

3.2 The optimal contract with limited enforcement

We heuristically discuss the characterization of v(u) and the optimal contract with limited

enforcement, which are formally stated in Proposition 1. According to Lemma 1, v′′(u) ≤
0. Therefore, equation (7) implies gt = 1 and therefore neither ut nor the normalized

policies respond to the productivity shocks.

Since the investor can always pay off the payments promised to the entrepreneur

immediately by a lump-sum transfer, v(u) ≥ v(u − dc) − dc for all dc > 0, and thus

v′(u) ≥ −1.3 So, concavity of v implies that there exists a level û > 0 such that v′(u) > −1

3See DeMarzo and Sannikov [2006] and He [2009] for similar arguments.
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if and only if u ∈ [0, û). Hence,

dct = 0 and dut = (β − µ) dt if ut ∈ [0, û) . (8)

Namely, ut grows at a constant rate, β − µ, until it reaches û where the contract starts

paying the entrepreneur at a constant rate dct = (β − µ) ûdt so that ut is constant at

û. Intuitively, deferring payments makes ut grow and relaxes the borrowing constraint

(6) when ut < u∗ ≡ θk∗, allowing more efficient levels of capital to be financed without

default. However, doing so is costly, as the entrepreneur is less patient. Therefore, the

contract starts paying dividends at level û where the marginal cost and benefit of deferring

payments are balanced.4 Over [0, û] the HJB equation (7) can be rewritten as

0 =
(u
θ

)α

− (r + δ)
u

θ
− (r − µ) v (u) + (β − µ)uv′ (u) (9)

with v(0) = 0 and v′ (û) = −1.

To determine the boundary û, for any u ≥ 0, let’s consider a suboptimal contract

under which dct = (β − µ)udt with ut = u for all t ≥ 0. Furthermore, the capital input is

optimal given the compensation policy and the constraint (6) such that k = min
{

u
θ
, k∗}.

The investor’s normalized value function under this type of contract, v (u), satisfies

v(u) =

 1
r−µ

[(
u
θ

)α − (r + δ) u
θ
− (β − µ)u

]
if u ∈ [0, u∗]

π∗

r−µ
− β−µ

r−µ
u if u ∈ [u∗,∞) .

(10)

Notice that the optimal contract switches to this type when ut reaches û. Hence v (û) =

v (û) and the smooth pasting condition5 implies v′ (û) = v′ (û) = −1. Consequently,

û = θ

[
α

r + δ + θ (β − r)

] 1
1−α

. (11)

Figure 1 illustrates the construction of v(u). Now we have the following explicit charac-

terization of v and the optimal contract.6

Proposition 1. The contract promising the normalized utility u ∈ (0, û] to the en-

trepreneur takes the following form: ut evolves according to (8) until it is absorbed at

û; dct = 0 if ut < û and dct = (β − µ)ûdt if ut = û; and kt = k (ut) =
ut

θ
. If u > û, an

immediate transfer, dc0 = u − û, is paid. For u ∈ [0, û], the investor’s normalized value

function v (u) satisfies

v(u) =
r + δ

β − r

(u
θ

)
+

1

r − µ− α(β − µ)

(u
θ

)α

+ Cvu
r−µ
β−µ , (12)

4Obviously, û < u∗ because the marginal cost is strictly positive.
5See Dixit [1999] for the smooth pasting condition of the optimal stopping problem.
6Proposition 1 is the verification theorem of the value function. The proof is standard and omitted.
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Figure 1: Characterization of the normalized value function, v(u).

with constant Cv being determined by

v′ (û) = −1 or v (û) = v (û) (13)

for u ∈ [û,∞), v′(u) = −1, and v(u) = v (û)− (u− û).

We make an additional assumption about the entrepreneur’s initial utility level, u,

which implies that the contract starts efficiently and is renegotiation proof.7

Assumption 2. u ∈ [argmaxũ v (ũ) , û].

4 Model implications

In this section, we discuss the implications of the model for firm dynamics and capital

structure.

4.1 The total firm value, Tobin’s Q, and leverage

Define the time-t total firm value, W (Zt, Ut), to be the present value of the future oper-

ating profit at t:

W (Zt, Ut) =

∫ ∞

t

e−r(s−t)
(
Z1−α

s Kα
s − (r + δ)Ks

)
ds.

Let w(u) = W (Z,U)/Z be the normalized total firm value. We then have the following

characterization of w(u).

7Notice that if u < argmaxũ v (ũ), it is mutually beneficial to raise the entrepreneur’s initial utility.
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Proposition 2. Let k̂ = û
θ
and define π̂ such that π̂ = k̂α− (r + δ) k̂. Then, for u ∈ [0, û]

w(u) =
r + δ

β − r

(u
θ

)
+

1

r − µ− α(β − µ)

(u
θ

)α

+ Cwu
r−µ
β−µ , (14)

where the constant Cw is determined by

w (û) =
π̂

r − µ
(15)

w′(u) > 0 for u ∈ [0, û).

The expression of w(u) can be derived similarly to the way we derive v(u), and w(u)

increases with u because a higher level of u relaxes the borrowing constraint, making

production more efficient. Define the Tobin’s Q as the value of one unit of capital:

q(u) =
W (Z,U)

K (Z,U)
=

w(u)

k(u)
.

Let Y (Zt, Ut) be the equity of the firm, the present value of the future transfer payments

to the entrepreneur. The normalized equity is y(u) = Y (Z,U)/Z and, clearly, y(u) =

w(u)− v(u).8 We define the leverage rate in this model as

l(u) ≡ K(Z,U)− Y (Z,U)

W (Z,U)
=

k(u)− y(u)

w(u)
.

Notice that K is the total capital financing and Y is the value of the equity. Therefore,

l(u) is the ratio of debt to the total asset value.

4.2 The age- and size-dependent firm behaviors

Let T̂ be the age when ut reaches û. According to (5), T̂ = ln (û/u) /(β − µ). Therefore,

we have the following age-dependent firm behaviors.

Proposition 3. Under the optimal contract:

(a) The growth rate of Kt is β for t ∈
[
0, T̂

)
and µ for t ∈

[
T̂ ,∞

)
;

(b) The Tobin’s Q, q (ut), decreases with t;

(c) The leverage rate, l (ut), increases with t.

Proof. See Appendix A.

Before T̂ , the entrepreneur does not receive any dividend, and his promised payments

are deferred. So his stake in the firm goes up, enhancing the firm’s creditworthiness and

8Notice that y(u) ̸= u because β > r.
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allowing more efficient capital input. In this stage, the firm growth is fast and driven by

relaxation of the borrowing constraint and productivity growth. Once T̂ is reached, the

capital financing reaches it maximum capacity and the contract starts paying dividends.

The firm growth slows down and is only driven by productivity growth. We say that the

firm is mature at T̂ . Proposition 3 show that mature firms have a lower Tobin’s Q and are

more leveraged. Since the age and size are positively correlated in our model, everything

has the same dependence on size.

4.3 Time to reach maturity and long-run behaviors

The following proposition shows how the contracting parameters affect the time to reach

maturity, T̂ .

Proposition 4. Given the entrepreneur’s initial utility level u, we have:

(a) T̂ strictly increases with θ and µ;

(b) T̂ strictly decreases with r and δ;

(c) if α > r + δ + θ (β − r), T̂ strictly increases with α.

Intuitively, a higher level of θ makes the enforcement of the contract more limited.

A larger value for µ demands a greater rate of capital growth, which slows down the

relaxation of the borrowing constraint.9 A lower user’s cost, r + δ, or a larger α implies

a greater borrowing capacity, which requires a greater entrepreneur’s stake for maturity.

All of the above delay the maturity of a firm. The following result describes the long-run

Tobin’s Q and the leverage rate of mature firms.

Proposition 5. In the long run, out of the borrowing constraint, the Tobin’s Q is10

q (û) =
(1− α) (r + δ) + θ (β − r)

α (r − µ)
, (16)

and the leverage rate is

l (û) =
α ((r − µ)− θ (β − µ))

(1− α) (r + δ) + θ (β − r)
. (17)

Both q (û) and l (û) are positive. Furthermore,

(a) q (û) decreases with α, and increases with δ, θ, β, and µ;

(b) l (û) increases with α, and decreases with δ, θ, β, and µ.

9See equation (8).
10Notice that v (û) = v (û). So (10) and (11) imply an expression of v (û) in parameters, which, along

with (15), imply (16) and (17). Proving the rest of the proposition is straightforward.
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This proposition suggests that firms have a higher Tobin’s Q and are less leveraged in

the long run after maturity if they are in industries with (1) more decreasing returns to

scale technology, (2) a higher user’s cost of capital, (3) more limited contract enforcement,

or (4) higher productivity growth.
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A Proof of Proposition 3

Part (a) is straightforward and we only show Parts (b) and (c) with t ∈
[
0, T̂

)
. Let’s

start with (b). According to the optimal policies,

w (ut) = Et

[∫ T̂−t

0

e−(r−µ)s
[(ut+s

θ

)α

− (r + δ)
ut+s

θ

]
ds+

∫ ∞

T̂−t

e−(r−µ)sπ̂ds

]

and

q (ut) =
θ

ut

Et

[∫ T̂−t

0

e−(r−µ)s
[(ut+s

θ

)α

− (r + δ)
ut+s

θ

]
ds+

∫ ∞

T̂−t

e−(r−µ)sπ̂ds

]

= Et

[
θ

∫ T̂−t

0

[
1

θα
eα(β−µ)suα−1

t − r + δ

θ
e(β−µ)s

]
ds+

θ

ut

∫ ∞

T̂−t

e−(r−µ)sπ̂ds

]
.

The second equality above is due to ut+s = ute
(β−µ)s. So,

dq (ut)

dt
= Et


− θ

ut
e(r−µ)(T̂−t) [(uT̂

θ

)α − (r + δ)
(uT̂

θ

)]
+ θ

ut
e(r−µ)(T̂−t)π̂

+θ
∫ T̂−t

0
d
dt

[
1
θα
eα(β−µ)suα−1

t − r+δ
θ
e(β−µ)s

]
ds

− θ
u2
t

dut

dt

∫∞
T̂−t

e−(r−µ)sπ̂ds
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Inside the parentheses, the two terms in the first row above correspond to the derivatives

of the integral boundaries, which are canceled out. The third row is negative, and the

integrand on the second row is

α− 1

θα
eα(β−µ)suα−2

t

dut

dt
< 0,

and we have Part (b). To show Part (c), notice that l (ut) =
1

q(ut)
− y(ut)

w(ut)
. Obviously, Part

(b) implies that the first term decreases with t. The second term can be written as

− y(u)

w(u)
=

−C∆u
r−µ
β−µ

r+δ
β−r

(
u
θ

)
+ 1

r−µ−α(β−µ)

(
u
θ

)α
+ Cwu

r−µ
β−µ

=
−C∆

r+δ
θ(β−r)

u1− r−µ
β−µ + 1

θα(r−µ−α(β−µ))
uα− r−µ

β−µ + Cw

with C∆ = Cw − Cv, which is strictly positive. The derivative with respect to u of

the denominator above is r+δ
θ(β−µ)

u− r−µ
β−µ + 1

θα
(β − µ)uα− r−µ

β−µ
−1, which is strictly positive

according to Assumption 1. Therefore, − y(ut)
w(ut)

increases with u and t, and we have the

desired result.
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