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Abstract

We develop an equilibrium model with moral hazard, which arises because some

productivity shocks are privately observed by firm managers only. We characterize

the optimal contract and its implications for firm size, growth, and managerial pay-

performance sensitivity and exploit them to quantify the severity of the moral hazard

problem. Our estimation suggests that unobservable shocks are relatively modest and

account for about 10% of the total variation of firm output. Nonetheless, moral-hazard

induced incentive pay is quantitatively significant and accounts for 50% of managerial

compensation. Eliminating moral hazard would result in about 1% increase in aggregate

output.
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1 Introduction

A large body of literature in finance and economics emphasizes the importance of moral

hazard in determining managerial compensation, firm investment, and firm growth. The

vast majority of this literature focuses only on its qualitative implications. In this paper,

we develop a general equilibrium model of dynamic moral hazard to analyze the quantitative

impact of moral hazard on both individual firm behavior and the aggregate economy.

We incorporate moral hazard in a neoclassical production economy with heterogeneous

firms. In our model, firm output is determined by both managers’ investment decisions and

productivity shocks. Because output is only a noisy signal of investment, managers have

an incentive to substitute investment for private benefit. We allow firm productivity to be

driven by both observable and unobservable shocks, and we use information from both time

series and the cross section to identify their magnitudes in order to quantify the impact of

moral hazard.

The key feature that distinguishes our model from the previous literature is the presence

of both observable and unobservable productivity shocks. For theoretical convenience, most

of the existing moral hazard models assume that all shocks are unobservable to the principal.

However, observable shocks may account for a large fraction of the firm-level variation in

productivity. Because the key tradeoff in moral hazard models is between risk sharing and

incentive provision, the magnitude of observable shocks relative to unobservable shocks is the

main determinant of the quantitative impact of moral hazard.

We derive two analytical results which allow us to use empirical evidence on the cross-

sectional distribution and time-series dynamics of firms to identify the relative importance

of observable and unobservable shocks. First, we define log-log pay performance sensitivity

(PPS hereafter) to be the percentage change in CEO wealth for one percent increase in firm

value and show that under the optimal contract, it is a decreasing function of managers’

equity share in the firm. Intuitively, when risk-averse managers own a large fraction of firm’s
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equity, diversification is poor and the welfare cost of incentive provision is high. As a result,

the optimal contract specifies a low PPS.1

Second, we show that managers’ share in the firm decreases after positive observable

shocks but increases after positive unobservable shocks. Risk sharing requires that positive

observable productivity shocks, which increase the total size of the firm, should lead to a

reduction in the manager’s share in the firm. The need for incentive provision implies that

positive unobservable productivity shocks are followed by an increase in manager’s share in

the firm.

The above theoretical insights allow us to identify the magnitude of observable and

unobservable shocks in the data using the size-investment relationship and the size-PPS

relationship. In particular, if the size of unobservable shocks is relatively small, the need for

risk sharing dominates, and managers’ equity share in the firm must be decreasing in firm size.

That is, as firm size declines, managers own a larger fraction of firm cash flow. Hence, their

incentives for high investment and growth are largely aligned with shareholders’ interests and

marginal utility of stealing is low. Thus, when observable shocks are prevalent, investment is

inversely related to firm size whereas pay-performance sensitivity is positively related to size.

In contrast, when the magnitude of unobservable shocks is large, incentive provision requires

managerial compensation to grow faster than firm size, which in equilibrium leads to a flat

or even positive relationship between firm size and manager’s equity share. Consequently,

when moral hazard is severe, small firms invest at a lower rate and have a higher log-log PPS

compared with large firms. Thus, we can exploit the cross-sectional variation in investment

and PPS to infer the relative amount of private information.

Building on our theoretical results, we estimate the magnitude of observable and

unobservable shocks using the Simulated Method of Moments (SMM) by exploiting moment

1A commonly used pay-performance sensitivity measure is the “level-level” PPS, which is the dollar
increase in CEO wealth per dollar increase in firm value, which equals the product of the “log-log” PPS
and manager’s equity share. Consistent with the literature, our model implies that the level-level PPS is
increasing in manager’s equity share. We use the log-log PPS measure because the distribution of firm size
in our model has a fat tail and the log-log PPS has the advantage of being scale invariant.
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conditions of the joint distribution of firm size, investment and managerial compensation.

We find that in order to account for the strong inverse relationship between firm growth

and size and the positive relationship between pay-performance sensitivity and size observed

in the data, the magnitude of unobservable shocks must be relatively small compared with

observable shocks. Our estimates suggest that only about 10% of the total variation in firm

output is attributed to unobservable shocks. The difference in variances of observable and

unobservable shocks is statistically significant.

To provide further support for our model, we explore the implications of aggregate

risk (i.e., beta) for the distribution of firm size, investment and CEO compensation. We

show that due to optimal risk sharing, exposure to aggregate shocks raises investment rates

and strengthens the negative relationship between manager’s equity share and firm size.

Consequently, our model predicts higher investment and a stronger PPS-size relationship

among high-beta firms compared with low-beta firms. Intuitively, because aggregate news

are observable, risk sharing of aggregate shocks strengthens the size-PPS relationship. In

addition, because on average the aggregate economy is growing, high exposure to aggregate

risks implies high expected growth and requires high investment. To ensure large enough

investment to fuel future growth, high-beta firms have to provide managers with strong

enough incentives. We show that these predictions are strongly supported by the data.

Based on the structural estimation of our model, we evaluate the quantitative impact of

moral hazard in general equilibrium. In our dynamic model, moral hazard reduces efficiency

for several reasons. First, incentive provision requires managerial compensation to respond to

unobservable shocks and, therefore, reduces risk sharing. Second, moral hazard leads to back-

loaded compensation policies and, hence, affects the intertemporal allocation of managerial

compensation. Third, moral hazard distorts firms’ investment policies and lowers the steady-

state capital in the economy. Our estimates suggest that incentive provision is quite costly

— incentive pay accounts for about 50% of the total CEO compensation. Our decomposition

analysis reveals that about one third of incentive pay is due to limited risk sharing and the
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other two thirds are the compensation for distortions in the intertemporal allocation of CEO

compensation. We also evaluate the aggregate impact of investment distortions and find that

eliminating moral hazard would increase the total output of the economy by about 1%.

Finally, we use our model as a laboratory to study the impact of policy proposals that

are often suggested as potential measures to curtail CEO pay inequality. As a first step, we

confirm that while our estimation does not explicitly target the observed inequality in CEO

compensation, our model matches well the Lorenz curve and the Gini coefficient in the data.

We then examine the implications of two policies: the first one imposes a limit on the log-log

PPS of compensation contracts, and the second one introduces a limit on the CEO-pay-to-

worker compensation ratio. Our analysis reveals the importance of taking into account the

endogenous response of compensation contracts to policy initiatives. We show that in both

cases, policies aimed at curbing CEO pay inequality end up raising it in steady state due to

the need of incentive provision. That is, failing to account for the endogenous response of

private contracts may mask the unintended and unforeseen consequences of policy proposals,

which may amplify rather than curtail the equilibrium CEO pay inequality.

Several novel features of our model are important for the purpose of quantifying the impact

of moral hazard. First, we allow for observable shocks, which are the key determinant of the

quantitative impact of moral hazard. Second, we adopt the constant relative risk aversion

(CRRA) preferences. For tractability, most of the continuous-time contracting models assume

risk neutrality or constant absolute risk aversion. The CRRA preference allows us to quantify

the tradeoff between incentive provision and risk sharing. The optimal contract is fully

determined up to an ordinary differential equation and can be efficiently solved for the

purpose of estimation. Third, the dynamic general equilibrium setup allows us to exploit

the implication of the optimal dynamic contract for the cross-sectional distribution of firm

characteristics to identify the structural model parameters. In addition, general equilibrium

is essential for understanding the welfare implications of moral hazard. A reduction in moral

hazard is associated with higher levels of investment and capital accumulation. In a partial
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equilibrium, taking prices as given, firm profit is linear in capital (Hayashi (1982)). However,

total output is decreasing return to scale with respect to capital at the aggregate level. Thus,

in order to evaluate the impact of moral hazard across all firms, it is important to account for

the decreasing return to scale in the aggregate production function, which requires a general

equilibrium setup.

Related literature Our theoretical framework builds on the literature on optimal

dynamic contracting, especially continuous-time models. The continuous-time methodology

allows for semi-closed form solutions and makes it possible for us to estimate the model.

The optimal contracting problem in our set-up is related to Sannikov (2008), DeMarzo

and Sannikov (2006), DeMarzo, Fishman, He, and Wang (2012), and Zhu (2013). To

study the quantitative implications of moral hazard, different from the above literature,

we consider a general equilibrium setup with neoclassical production technologies and risk

averse preferences.

Within the continuous-time contracting literature, our paper is mostly related to models

that link moral hazard to pay-to-performance sensitivity, for example, He (2009), Hoffmann

and Pfeil (2010), Edmans, Gabaix, Sadzik, and Sannikov (2012), Li (2017), and Di Tella and

Sannikov (2016), Hackbarth, Rivera, and Wong (2021), and papers that study the impact of

moral hazard on firm dynamics, for example, Hartman-Glaser, Lustig, and Xiaolan (2019)

and Chi and Jin (2017).2 Related to our paper, Hartman-Glaser, Mayer, and Milbradt (2018)

also emphasize the importance of risk sharing for pay-performance sensitivity in the context

of moral hazard.

Several recent papers explore the quantitative impact of dynamic agency using structural

estimation or calibration. Lustig, Syverson, and Van Nieuwerburgh (2011) study an optimal

contracting model with firm entry and exit dynamics to provide an explanation for the

2Recent papers that study moral hazard in continuous-time setup include Hartman-Glaser, Piskorski, and
Tchistyi (2012), Feng and Westerfield (2018), Feng (2018), Leung (2017), Williams (2011), Piskorski and
Westerfield (2016), Biais, Mariotti, Plantin, and Rochet (2007), Gryglewicz, Mayer, and Morellec (2020).
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increased importance of organizational capital and managerial inequality. Nikolov and

Schmid (2016) study the quantitative implications of information frictions for firms’ capital

structure and investment policy. Nikolov and Whited (2014) focus on the relationship

between agency conflicts and cash accumulation. Nikolov, Schmid, and Steri (2019)

examine the determinants of corporate liquidity management. Xiaolan (2014) studies the

quantitative impact of limited commitment on firm-worker risk sharing. Sun and Xiaolan

(2019) structurally estimate a dynamic agency model of firm financing. Different from these

papers, our paper focuses on the identification of the relative magnitude of observable and

unobservable shocks and the quantitative impact of moral hazard on CEO compensation and

aggregate output.

Our paper is also related to the broader literature on structural estimation in corporate

finance. For example, Taylor (2010, 2013) estimates learning models of CEO pay and CEO

turnover. Li, Whited, and Wu (2016) estimate a model with limited commitment to quantify

the importance of collateral and taxes in firms’ capital structure decisions. Li and Whited

(2016) estimate an adverse selection model to study the pattern of capital reallocation over

business cycles. Several recent papers of Margiotta and Miller (2000), and ? (?, 2015)

analyze the identification and welfare implications of moral hazard in models with history-

independent contracts (Fudenberg, Holmstrom, and Milgrom (1990)). Different from the

above papers, the endogenous dynamics of firm size and promised utility are the key to

our analysis. The presence of observable shocks and the history dependence of the optimal

contract allow our model to match the salient features of the joint distribution of firm size,

growth and managerial compensation, and provide identification for the structural parameters

of our model.

The rest of the paper is organized as follows. We describe the setup of our model in Section

2. We provide the solution to the optimal contracting problem and lay out our identification

strategy in Section 3. Section 4 describes our structural estimation and presents quantitative

results. Section 5 concludes.
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2 Setup of the Model

In this section, we introduce our equilibrium model of investment and managerial

compensation with moral hazard.

2.1 Preferences and Technology

Time is infinite and continuous. There is a continuum of firms in the economy indexed by

j. A firm j combines capital stock Kj,t and labor Nj,t to produce output at time t according

to the production function Yj,t = Z1−α
t Kα

j,tN
1−α
j,t , where Zt is aggregate productivity and

α ∈ (0, 1) is the capital share in the production technology. We assume that Zt follows a

geometric Brownian motion:

dZt = Zt (µZdt+ σZdBZ,t) , (1)

The aggregate shock BZ,t is observable, as it is fully revealed by aggregate quantities in

equilibrium.

Suppressing time subscripts, the operating profit of project j is defined as

π (Kj) = max
Nj

{
Z1−αKα

j N
1−α
j −WNj

}
, (2)

where W is the equilibrium wage in the spot labor market. We assume that the market for

labor is perfectly competitive. In addition, the total labor supply of the economy is constant

and normalized to 1. We show in Appendix A that a balanced growth path exists where the

profit function is constant returns to scale (CRS) in capital: π (Kj) = AKj, the equilibrium

marginal product of capital A is constant over time, and both Zt and Wt grow at the same

rate.

Operating each project requires a manager, who is the only agent that has special skills
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in accumulating project-specific capital. The law of motion of capital is given by:

dKj,t = Kj,t

[
(ij,t − δ) dt+ σTdBj,t + µZdt+ σZdBZ,t

]
, (3)

where ij,t =
Ij,t
Kj,t

is the investment-to-capital ratio, δ is the depreciation rate, dBj,t is a vector

of firm-specific productivity, and σ is a vector of the corresponding volatility parameters.

In our setup, capital Kj,t is publicly observable but investment decisions, Ij,t, are known

only to the manager. Firm owners cannot infer the actual amount of investment from the

observable capital stock because a part of the Brownian motion shock is assumed to be

unobservable. In particular, we assume that the vector of firm-specific shocks is a given by:

σTdBj = σUdBU,j + σOdBO,j, (4)

where the Brownian motion BU,j is unobservable to all but the manager who operates the

project. The Brownian motion BO,j is public information. To keep our setup simple, here

we assume that volatility is independent of firm size.3

At any time t, firm owners face the following budget constraint:

Dj,t + Cj,t + h

(
Ij,t
Kj,t

)
Kj,t = AKj,t, (5)

where Dj,t is the amount of dividends, Cj,t is managerial consumption, and h
(
Ij,t
Kj,t

)
Kj,t

is the total cost of investment. We use a standard quadratic adjustment cost function,

h (i) = i + φi2, where φ > 0 is a technology parameter. We assume that consumption

and investment decisions are privately observable by managers. Moral hazard arises because

managers can always substitute investment for their own private consumption. The degree

of moral hazard is determined by the relative magnitude of unobservable versus observable

3Empirically, volatility is known to decrease with firm size. Luttmer (2011) and ? propose models in
which volatility depends on size due to diversification or production network mechanisms.
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shocks,
σ2
U

σ2
O

.

Because the production technology exhibits constant returns to scale, the capital

accumulation technology is linear, and the noise in the capital accumulation technology

is proportional to firm size, the specification of moral hazard in our model is linearly

homogeneous. Our formulation is consistent with the “multiplicative” specification of the

moral hazard problems advocated by Edmans, Gabaix, and Landier (2009), and Edmans

and Gabaix (2016), and it allows us to capture the presence of moral hazard in firms with

vast differences in size.4

We assume that managers are risk averse and maximize expected utility with constant

relative risk aversion. The time-t continuation utility of the manager is given by:

Ut =

{
Et

[∫ ∞
0

e−ρsC1−γ
t+s ds

]} 1
1−γ

, (6)

where ρ is the discount rate of the manager, and γ is the coefficient of relative risk aversion.

For convenience, we have normalized utility so that it is homogeneous of degree one with

respect to consumption.

Firm owners also have a CRRA preference over intertemporal consumption plans {CF,t}∞t=0

with a risk aversion γF and a discount rate ρF . For simplicity, we assume that managers and

firm owners have the same risk aversion: γF = γ. The representative firm owner is endowed

with one unit of labor and ownership of all firms’ capital stock. Its objective is to maximize

firm value given by

E0

[∫ ∞
0

ΛtDtdt

]
, (7)

where Λt is the stochastic discount factor, which in equilibrium must be consistent with the

marginal rate of substitution of firm owners.5

4The Edmans, Gabaix, and Landier (2009) model is a static model with risk neutrality. Dynamics and
risk aversion are the key elements of our model that allow for identification of the model parameters that we
carry out in Section 4.

5As we explain below, managers and firms exit the economy at Poisson distributed times. In the utility
and present value calculations such as in Equations (6) and (7), consumption and cash flow are zero after
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In our baseline specification, all firms are assumed to have the same exposure to aggregate

productivity shocks. As we show in Appendix B.1, this assumption together with the

condition γF = γ imply that the presence of aggregate shocks does not contribute to the

cross-sectional heterogeneity in firm investment and CEO compensation policies. We will

relax this assumption in Section 4.5 to study the implications of aggregate risk for firm

decisions.

2.2 Firm Entry and Exit

A measure κ of new firms and managers arrive in the economy per unit of time. Upon

entry, these firms and managers immediately match with each other and start production

under a mutually agreed compensation contract for the manager. We normalize the initial

size of firm capital to 1 and we assume that the initial utility of the manager is determined

by a parameter U0, which reflects the relative bargaining power of managers and firms. At

the same time, existing firms along with their managers continuously exit the economy at a

Poisson rate κ. Firms and managers stop receiving any cash flow or consumption after their

exit. The assumption on the entry and exit dynamics implies that in a stationary equilibrium,

where entry equals exit, the total measure of firms in the economy is 1.

2.3 Profit Maximization

In our setup, high investment accelerates the accumulation of capital and increases output.

However, because investment in capital is not observable and managers have incentives to

substitute investment for consumption, shareholders’ investment plan can be implemented

only if managers find it optimal to follow. To induce investment and ensure that shareholders’

and managers’ interests are aligned, firm owners reward high output and punish low output.

In a dynamic setting, these incentives are provided by conditioning future managerial

the exit.
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compensation on past performance.

Below, we formally describe the optimal contracting problem. A contract

is a sequence of dividends, managerial compensation, and investment policies,({
Dj,t

(
Kt
j , B

t
O,j

)}
,
{
Cj,t

(
Kt
j , B

t
O,j

)}
,
{
ij,t
(
Kt
j , B

t
O,j

)})∞
t=0

, that depends on the history of

the realization of observables, which we denote by Kt
j = {Kj,t}ts=0, Bt

O,j = {BO,j,s}ts=0. To

save notations, we suppress firm subscript and write a contract as {Dt, Ct, it}∞t=0. We assume

that upon entry, managers sign a contract with firm owners that promises to deliver the

initial life-time utility of U0 = u0K0. That is, under the consumption policy specified by the

contract, {
Et

[∫ ∞
0

e−(ρ+κ)s (ρ+ κ)C1−γ
t+s ds

]} 1
1−γ

≥ u0K0. (8)

Recall that we normalize the initial level of capital to K0 = 1. As a result, the parameter

u0 selects an allocation on the constrained efficient Pareto frontier for managers and firm

owners.

Given a contract {Dt, Ct, it}∞t=0, if the manager follows the dividend payout policy,

{Dt}∞t=0, but chooses an alternative investment policy, {ı̃t}∞t=0, his continuation utility at

time t can be written as:

Ut ({ı̃s}∞s=0) =

{
Et

[∫ ∞
0

e−(ρ+κ)s (ρ+ κ) (Ct+s + h (it+s)Kt+s − h (̃ıt+s)Kt+s)
1−γ ds

]} 1
1−γ

.

(9)

That is, at time t + s, if the manager chooses a lower investment rate (̃ıt+s) than what is

specified under the contract (it+s), he can privately save h (it+s)Kt+s − h (̃ıt+s)Kt+s units

of capital and use it for consumption without being detected by the shareholders. Hence,

a contract {Dt, Ct, it}∞t=0 is incentive compatible if the investment policy specified by the

contract is optimal from the manager’s perspective, that is, if:

Ut ({is}∞s=0) ≥ Ut ({ı̃s}∞s=0) , for all t, (10)
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and for all investment policies {ı̃s}∞s=0.

We assume double-sided limited commitment of financial contracts, as in Ai, Kiku, Li,

and Tong (2021).6 We assume that upon default, managers can take away a fraction of the

firm’s assets but are forever excluded from the credit market.7 That is, managers are not

allowed to enter into any intertemporal risk-sharing contracts after default. As we show in

Appendix B, the utility of the manager upon default is a linear function of capital: uMINKt.

Hence, limited commitment on the manager side requires

Ut ({is}∞s=0) ≥ uMINKt, for all t ≥ 0. (11)

Any compensation plan that violates condition (11) may lead to the manager defaulting on

the contract. In the quantitative analysis in Section 4, we treat uMIN as a parameter of the

model and estimate it from the data.

We also assume that shareholders cannot commit to negative net present value (NPV)

projects. This constraint requires that the net present value of the firm’s cash flow stays

positive at all times:

Et

[∫ ∞
t

Λs

Λt

Dsds

]
≥ 0, for all t ≥ 0. (12)

Shareholders choose a contract {Dt, Ct, it}∞t=0 that maximizes the present value of firm’s cash

flow subject to the budget constraint in Equation (5), the incentive compatibility constraint

in Equation (10), and the limited commitment constraints in Equations (11) and (12).

6Some type of limited commitment is required to make the moral hazard problem non-trivial. In the
absence of frictions, the principal can typically implement the efficient allocation arbitrarily closely if she
is allowed to apply extremely severe punishment to the agent (see Mirrlees (1974)). In reality, managers
typically have a variety of outside options and can always choose to leave a firm. We formally model outside
options by limited commitment.

7Similar specifications are used in Albuquerque and Hopenhayn (2004), Kiyotaki and Moore (1997), and
Kehoe and Levine (1993).
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2.4 Equilibrium Definition

An equilibrium consists of time series of stochastic discount factors and wages, {Λt,Wt}∞t=0,

and a collection of optimal contracts, one for each firm, {Dj,t, Cj,t, ij,t, Nj,t}∞t=0, such that,

1. Given equilibrium prices, firms choose the optimal contract to maximize firm value

subject to the constraints (10), (11), and (12).

2. The equilibrium prices are chosen such that the goods market and the labor market

clear. That is, for all t,

CF,t +

∫
[Cj,t + h(ij,t)Kj,t] dj =

∫
Yj,tdj,

∫
Nj,tdj = 1, (13)

and the stochastic discount factor is consistent with shareholder consumption, Λt =

e−ρF t
(
CF,t
CF,0

)−γ
.

2.5 Recursive Formulation

Following the standard approach in the dynamic contracting literature, we construct the

solution to the optimal contracting problem recursively by using promised utility as a state

variable. In our case, policy functions depend on two state variables (K,U), where K is the

size of the firm and U is the continuation utility promised to the manager. We can think of

the state variables, (K,U), as a summary of the firm’s type. As in Atkeson and Lucas (1992),

we construct the equilibrium allocation recursively. First, for firms of each type (K,U), we

specify the flow rate of dividend payout, managerial compensation and investment-to-capital

ratio using the policy functions D (K,U), C (K,U) , i (K,U) . Next, we specify the law of

motion of the state variables (suppressing time and firm subscripts):

dK

K
= [i (K,U)− δ] dt+ σOdBO + σUdBU + µZdt+ σZdBZ , (14)
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and

dU

U
=

[
−ρ+ κ

1− γ

((
C (K,U)

U

)1−γ

− 1

)
+

1

2
γ
(
g2
Oσ

2
O + g2

Uσ
2
U + g2

Zσ
2
Z

)]
dt

+ gOσOdBO + gUσUdBU + gZσZdBZ . (15)

Equation (15) follows the formulation in Sannikov (2008) except that we use a stochastic

differential utility representation of the preference so that utility is measured in consumption

units (see Equation (6)). Here, gO is the elasticity of continuation utility with respect to

observable idiosyncratic shocks, gU is the elasticity with respect to unobservable idiosyncratic

shocks, and gZ is the elasticity with respect to aggregate shocks. Intuitively, the policy

functions gO, gU and gZ describe the rules of assigning continuation utilities based on the

realizations of the Brownian shocks. At time t, for a given level of promised utility Ut,

the principal allocates the manager’s continuation utility over time and states by choosing

an instantaneous consumption flow, C (Kt, Ut), and elasticities of continuation utility with

respect to Brownian motion shocks, gU,t, gO,t, and gA,t.

Because the production technology is constant returns to scale and utility functions are

homogeneous, the optimal contracting problem is homogeneous in the state variable K. In

Appendix B, we further show that the homogeneity of the problem implies that the value

function, V (K,U), depends only on firm-specific state variables, K and U , and not on

aggregate productivity Z. In addition, V (K,U) satisfies

V (K,U) = v

(
U

K

)
K , (16)

for some function v. We define u = U
K

as the normalized continuation utility and use

homogeneity to write normalized consumption, investment, and dividend as functions of

u:

c(u) =
C(K,U)

K
; i(u) =

I(K,U)

K
; d(u) =

D(K,U)

K
. (17)
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Intuitively, this result holds because aggregate risk in firms’ cash flow and shareholders’

consumption is identical. Because managers and shareholders have the same risk aversion,

optimal risk sharing requires that consumption of both shareholders and managers has the

same exposure to aggregate risk. As shown in Appendix B.1, the elasticities gO and gU are

also functions of u, and gZ = 1.

Since K is firm size and U is the value of the manager’s future compensation package, we

can intuitively interpret u as the manager’s share in the firm. In what follows, we use the

terminology of the normalized utility and the manager’s equity share interchangeably.8

3 Optimal Contracting

3.1 Characterization of the Optimal Contract

In Lemma 1 in Appendix B, we provide the characterization of incentive compatibility. We

show that an investment policy is incentive compatible if and only if the normalized policy

function gU satisfies

gU (u) = (ρ+ κ) c (u)−γ uγ−1 · h′ (i (u)) (18)

for all u.

Recall from Equation (15) that gU is the elasticity of managers’ promised utility with

respect to unexpected changes in firm cash flow due to unobservable shocks. That is,

gU = ∂ lnU
∂ lnK

∣∣
BU

is the log-log measure of pay-performance sensitivity upon unobservable

shocks.9 To understand the incentive compatibility condition (18), note that optimality

8It is important to note that while manager’s equity share and u are related, they are not identical. In fact,
the optimal contract in general cannot be replicated by equity compensation alone. A more rigorous way to
construct manager’s equity share is to solve for an implementation of the managerial compensation contract
using financial assets such as firm equity and a risk-free asset, and define equity share as the equity owned
by managers as a fraction of total firm value. The so-defined manager’s equity share is a monotone function
of u but not exactly u. We use the term “equity share” with the understanding that u is quantitatively a
good approximation of this more rigorous notion of the manager’s equity share.

9Hereafter, we will use “elasticity” and “log-log PPS” interchangeably.
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from mangers’ point of view requires them to equate the marginal cost of saving one unit of

investment to its marginal benefit:

∂U

∂K

∣∣∣∣
BU

= h′ (i) (ρ+ κ)

(
C

U

)−γ
. (19)

Here ∂U
∂K

∣∣
BU

is the amount of utility increase per unit of unexpected increase in K due to

unobservable shocks, that is, the level-level measure of pay-performance sensitivity. Thus,

from the manager’s perspective, ∂U
∂K

is the marginal benefit of investment. On the right-hand

side of Equation (19), h′ (i) is the marginal cost of investment in consumption good units,

(ρ + κ)
(
C
U

)−γ
is the marginal utility, and the product of the two is the marginal cost of

investment measured in utility units.10 Because the log-log PPS and the level-level PPS are

related by:

∂ lnU

∂ lnK

∣∣∣∣
BU

=
∂U

∂K

∣∣∣∣
BU

× K

U
, (20)

it follows from Equation (19) that gU = (ρ+ κ)h′ (i)
(
C
U

)−γ K
U

, which gives Equation (18).

Condition (18) reduces the requirement of incentive compatibility to restrictions on the

policy functions for consumption and investment, and the sensitivity of the continuation

utility to unobservable shocks. This allows us to characterize the value function as the

solution to an HJB equation, which we describe in the following proposition. To save notation,

we define r = ρF +γµZ − 1
2
γ(1 +γ)σ2

Z to be the effective discount rate for firm cash flow (see

Equation (36) in Appendix A).

Proposition 1. The normalized value function, v(u), satisfies the following HJB differential

10C−γ is the marginal utility under standard addatively separable specification of the utility function.

Under our homogenous of degree one formulation, marginal utility is (ρ+ κ)
(
C
U

)−γ
.

16



equation

0 = max
c,i,gO,

gU=(ρ+κ)c−γuγ−1h′(i)


A− c− h(i) + v(u) (i− r − κ− δ + µZ − γσ2

Z)

+uv′ (u)
[
ρ+κ
1−γ

(
1−

(
c
u

)1−γ
)
− (i− δ + µZ) + 1

2
γ (g2

Uσ
2
U + g2

Oσ
2
O + σ2

Z)
]

+1
2
u2v′′(u)

[
(gU − 1)2 σ2

U + (gO − 1)2 σ2
O

]


(21)

on the domain [uMIN , uMAX ], with the following boundary conditions:

lim
u→uMIN

v′′(u) = lim
u→uMAX

v′′(u) =∞, and v (uMAX) = 0.

Proof. See Appendix B.4.

In Figure 1, we plot the normalized value function, v(u). Under the optimal contract,

the normalized continuation utility of the agent, u = U
K

, stays in the bounded interval,

[uMIN , uMAX ]. The limited commitment constraint in Equation (11) requires ut ≥ uMIN

because any feasible contract must provide the manager with a continuation utility at least as

high as his outside option, uMINK. As u increases, the value function, v (u), declines because

a higher fraction of future cash flows is promised to the manager. Limited commitment on

the shareholder side that requires the NPV of the project to be non-negative at all times

imposes an upper bound on u: uMAX such that v (uMAX) = 0 and ut ≤ uMAX for all t. As

Figure 1 shows, the value function is concave on its domain.

Note that on most of its domain, the value function is monotonically decreasing in

promised utility u — allocating a higher utility to the manager implies a lower value for

the firm. However, for u close to uMIN , the value function is increasing. This feature does

not appear in models with limited commitment (Ai and Li (2015)) but is common in models

with moral hazard, for example, DeMarzo and Sannikov (2006). In this region, the optimal

contract is not renegotiation proof and it is possible to simultaneously increase utility of

both the shareholder and the manager. This arrangement, although ex post inefficient, is ex
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ante optimal because it allows to implement a wider range of punishment that helps induce

stronger incentives.

The key tradeoff in moral-hazard models is between risk sharing and incentive provision.

In our setup, their relative importance depends on the amount of unobservable versus

observable shocks,
σ2
U

σ2
O

. Below, we show how the dynamics of continuation utility and

firms’ investment policies depend on
σ2
U

σ2
O

. These theoretical results allow us to identify the

relative importance of observable and unobservable shocks by exploiting the cross-sectional

distribution of CEO compensation and growth that we carry out in Section 4.

3.2 Investment Policy

Under the optimal contract, the investment policy, i (ut) = It
Kt

, is an increasing function of

managers’ normalized utility. This feature is consistent with a decline in the cost of incentive

provision as u increases. Figure 2 shows the optimal investment rate, i (u) (top panel), the

term (ρ+ κ) c (u)−γ uγ−1 (middle panel), and the optimal log-log pay-performance sensitivity,

gU (u) (bottom panel), as functions of the normalized utility u.

As explained above, the term (ρ+ κ) c (u)−γ uγ−1 is the percentage increase in managers’

utility upon stealing an additional fraction of firm cash flow, or simply log-log marginal

utility. As such, it can be interpreted as the marginal cost of incentive provision. The higher

the marginal utility, the more tempting it is for managers to steal firm cash flow. As the

middle panel of Figure 2 shows, the log-log marginal utility is decreasing in manager’s equity

share in the firm — when managers own a larger fraction of firm cash flow, the marginal

utility of stealing is lower.

The optimal choice of log-log PPS, gU , must trade off the benefit of incentive provision

against the cost of imperfect risk sharing, which in utility terms is measured by 1
2
γ(gUσU)2, as

shown in Equation (15). When u is low, the marginal cost of incentive provision is high. Thus,

high incentives are needed to induce investment (the bottom panel of Figure 2). However,
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despite a high gU , the investment rate is relatively low (the top panel). As u increases,

the log-log marginal utility falls due to concavity of the utility function. As a result, it is

possible to induce a higher investment rate with lower incentives. Therefore, as u increases,

the log-log PPS declines but the investment rate increases.

Limited commitment also contributes to the positive relationship between the investment

rate and the manager’s share. When u approaches uMAX , the limited commitment constraint

on the shareholder side is likely to bind. A binding limited commitment constraint is

associated with poor risk sharing. Therefore, as u increases, it is optimal for firms to increase

investment and improve risk sharing.

3.3 Dynamics of Continuation Utility

In this section, we discuss the optimal response of continuation utility with respect to

aggregate, observable, and unobservable shocks. Using Equations (14) and (15), we can

write the law of motion of u as

du

u
= µu(u)dt+ [gO(u)− 1]σOdBO + [gU(u)− 1]σUdBU , (22)

where the function µu (u) is given in Equation (56) in Appendix C.

Note that the presence of aggregate shock does not affect the diffusion of normalized utility

u. As shown in Equation (3), the cash flow of all firms have the same exposure to the aggregate

shock dBZ,t. Because shareholders and managers have the same risk aversion and because

aggregate shocks are observable, the optimal contract features gZ = 1. Intuitively, firm

cash flow, which is proportional to Kj,t, and manager consumption have the same exposure

to dBZ,t. After normalizing by Kj,t, managers’ utility uj,t =
Uj,t
Kj,t

does not respond to the

aggregate Brownian motion shock.

Next, we provide a sufficient condition under which the drift of normalized utility, µu(u),
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also does not depend on the magnitude of aggregate shock, σZ .

Corollary 1. Consider two economies that differ only in the drift and volatility of aggregate

productivity growth, which we denote by µi,Z and σi,Z, respectively, for i = 1, 2. Suppose that

one of the following conditions holds:

1. µi,Z and σi,Z satisfy

µ1,Z −
1

2
γσ2

1,Z = µ2,Z −
1

2
γσ2

2,Z ,

2. γ = 1, that is, both shareholders and managers have log preferences,

then the dynamics of the normalized utility and firm value functions in economy 1 and

economy 2 are identical.

Proof. The HJB equations are identical as long as one of the above conditions are

satisfied.

Conditions 1 and 2 in Corollary 1 are essentially sufficient conditions for the two economies

to have the same wealth-to-consumption ratio regardless of the value of σZ . Under these

conditions, the ratio of the marginal rate of substitution of shareholders and managers

does not depend on the magnitude of aggregate shock σZ , and therefore, the drift of the

normalized utility u does not either. Because normalized CEO compensation and investment

are only functions of u, the corollary provides a benchmark under which the presence of

aggregate shock is irrelevant for the identification of the key structural model parameters.

It is important to note that Corollary 1 depends crucially on the assumption that all firms

have the same exposure to aggregate shock BZ,t. In Section 4.5, we relax this assumption

and study the implications of heterogeneous exposure to aggregate shocks.

While in our baseline model, the optimal contract requires that shareholder and managers’

consumption have the same exposure to the aggregate shock BZ , the responses to firm-specific

shocks BO and BU have to be quite different. To understand the response of continuation
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utility with respect to observable and unobservable idiosyncratic shocks, in the top panel of

Figure 3, we plot the elasticities of promised utility U with respect to observable shocks (gO,

solid line) and unobservable shocks (gU , dashed line) implied by the optimal contract.

Intuitively, because gO = d lnU
d lnK

∣∣
BO

is the log-log pay-performance sensitivity with respect

to observable shocks, the choice of gO is determined by risk sharing considerations. We define

Γ(u) = u·v′′(u)
v′(u)

as the induced risk aversion of the shareholder’s value function, i.e., it is the

Arrow-Pratt measure of relative risk aversion of the shareholder’s value function with respect

to continuation utility.11 We show in Appendix B.2, Equation (49), that the optimal choice

of gO depends on the relative risk aversion of the manager and the induced risk aversion of

the shareholder: gO = Γ(u)
Γ(u)+γ

.

Without agency frictions, Γ(u) = 0, because the shareholder is well diversified and

therefore is risk neutral with respect to idiosyncratic shocks. However, in our model, whenever

the value function is strictly decreasing, Γ(u) > 0.12 As in DeMarzo and Sannikov (2006),

agency frictions induce risk aversion in the shareholder’s value function. In fact, on the

boundary as u → uMAX , Γ(u) → ∞. Here, a small movement of u due to an observable

shock leads to the violation of the limited commitment constraint (u ≤ uMAX), and the

shareholder’s value function is locally infinitely risk averse. As a result, as Γ(u) → ∞,

gO = Γ(u)
Γ(u)+γ

→ 1 — observable shocks are entirely passed through to managers. The same

holds at the left boundary u = uMIN .

Infinite risk aversion at the boundaries affects the shape of the value function in the

interior because in a dynamic model, a non-trivial elasticity of u with respect to BO in the

interior increases the probability of a binding limited commitment constraint in the future

and is welfare reducing. In general, whenever Γ(u) > 0, gO ∈ (0, 1) — the optimal contract

provides some insurance against idiosyncratic shocks, but the insurance is imperfect and

11In most of its domain, the shareholder’s value function is decreasing, therefore our risk aversion measure
does not need a negative sign.

12Because the value function is globally concave, in the region of v′ (u) < 0, risk aversion should be defined

as −u·v
′′(u)

v′(u) and is still strictly positive.
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shocks are partially passed through to managerial compensation. In regions far away from

both boundaries, Γ(u) is close to zero, and so is gO.13

The top panel of Figure 3 also shows the log-log PPS with respect to unobservable shocks,

gU . In our model, risk sharing itself requires a positive pay-performance sensitivity. Without

the incentive compatibility constraint in Equation (18), for risk sharing purposes, it is optimal

to set gU at the unconstrained optimal level, i.e., Γ(u)
Γ(u)+γ

. However, in general, such PPS is

not enough to induce the desired level of investment. In fact, risk sharing requires gO to be

positive but typically less than 1. However, the optimal gU is higher than 1 in almost the

entire domain, as Figure 3 shows. In addition, as explained above, gU is in general decreasing

in u due to the declining marginal cost of incentive provision.

The strength of incentives can also be measured using the level-level PPS, that is, dU
dK

.

Clearly, the level-level PPS and the log-log PPS are related by

dU

dK
=
d lnU

d lnK

U

K
. (23)

The bottom panel of Figure 3 shows that the level-level measures of PPS with respect to

observable and unobservable shocks, gO (u) ·u and gO (u) ·u, respectively, are both increasing

in u. Intuitively, holding the log-log PPS constant, firms where managerial compensation is

a large fraction of firm cash flow, or equivalently, firms with a high manager’s equity share

(u), have a high level-level PPS.

In our model, manager’s equity share is decreasing in firm size. Therefore, the cross-

sectional variation in i (u), gO (u) and gU (u) is consistent with the empirical evidence that

small firms grow faster, have a higher level-level PPS and a lower log-log PPS than large

firms. Because the log-log PPS in our model determines the size-investment and size-

13In the non-renegotiation proof region of u, v′ (u) > 0: committing to punishing the manager for bad
performance is ex ante desirable but ex post inefficient because it simultaneously lowers the shareholder’s
value. In this region, gO > 1. Intuitively, it is beneficial for the optimal contract to promise high cash flow to
the manager in the future, as it benefits both the manager and the shareholder. However, promise keeping
requires lowering the current payment in order to raise future payment, which is implemented by creating
excessive risk exposure under the optimal contract, i.e., gO > 1.
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PPS relationship, and because the differences between d lnU
d lnK

∣∣
BO

and d lnU
d lnK

∣∣
BU

are key for

identification, in the rest of the paper, we focus on the log-log measure of incentives (which

we simply refer to as PPS).

3.4 Implications for Identification

As discussed above, under the optimal contract, investment and growth rates increase

with the normalized utility u, while pay-performance sensitivity decreases with u. These

implications could potentially help identify the structural model parameters. However, the

continuation utility is not directly observable. In this section, we show that we can identify

the relative amount of private information and estimate the model using the readily available

data on firm size by exploiting the relationship between size and continuation utility, which is

endogenously determined by the optimal contract. In particular, we show that moral hazard

determines the equilibrium relationship between firm size and the unobservable continuation

utility. If the magnitude of unobservable shocks is relatively small, firm size and continuation

utility are negatively correlated, whereas large values of
σ2
U

σ2
O

imply a zero or even positive

relationship between firm size and u. Because our model implies a monotone relationship

between investment rate and u, and a near-monotone relationship between PPS and u, we

can exploit the joint empirical distribution of growth rates, PPS and firm size to identify the

model parameters.

In our model (see Equation (22)), gO − 1 is the elasticity of u with respect to observable

shocks, and gU − 1 is the elasticity of u with respect unobservable shocks. As shown in

Section 3.3, in most of the domain, gO(u) ≤ 1, gU(u) is significantly higher than gO(u), and

typically gU (u) ≥ 1. Consider first the case in which most of the shocks are observable,

i.e.,
σ2
U

σ2
O

is close to 0. In this scenario, the relationship between firm size and the normalized

continuation utility is negative because it is mostly driven by observable shocks and gO ≤ 1.

Intuitively, while a positive shock increases both firm size K and continuation utility U , risk
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sharing requires U to increase at a lower rate than K. Hence, the manager’s share u falls,

and K and u are negatively correlated.

If the contribution of unobservable shocks increases, that is, if
σ2
U

σ2
O

becomes large, the

negative correlation between firm size and manager’s share weakens because gU > gO. In

fact, because gU ≥ 1 in most of its domain, the correlation between K and u might be even

positive. As moral hazard becomes severe, the cost of incentive provision increases; therefore,

as firms grow and become larger, they have to provide a higher fraction of their cash flow

to managers. We illustrate the relationship between firm size and the normalized utility in

Figure 4. We consider several cases for the break-down between observable and unobservable

shocks:
σ2
U

σ2
O

= 0.1 (solid line),
σ2
U

σ2
O

= 1 (dashed line), and
σ2
U

σ2
O

= 10 (dotted line). As the figure

shows, when most shocks are observable, u is monotonically decreasing in firm size. As the

relative magnitude of unobservable shocks increases, the negative relationship between u and

K becomes considerably weaker and eventually changes its sign.

Figure 5 shows how the equilibrium relationship between firm size and the normalized

utility translates into the relationship between size and investment. For each of the three

cases, we plot the investment rate i (u) as a function of firm size. For low levels of
σ2
U

σ2
O

, our

model features a strong inverse relationship between investment rate and firm size, which

is due to a strong negative correlation between the normalized utility and size. As the

magnitude of unobservable shocks increases, the negative relationship between investment

and size disappears and ultimately reverses to positive.14

Figure 6 shows the cross-sectional distribution of the average elasticity of continuation

utility to productivity shocks. We compute the average elasticity, ξ, as a weighted average

of elasticities with respect to observable and unobservable shocks, ξ =

√
σ2
U

σ2 g2
U +

σ2
O

σ2 g2
O,

14Note that a link between firm size and investment is not unique to our model. For example, the inverse
relationship between the two can also be generated by models that feature a decreasing returns to scale
technology (DRS). To explore the robustness of our evidence to returns to scale, we have estimated a model
specification that allows for DRS. We find that decreasing returns to scale is rejected in favor of constant
returns to scale and our key empirical finding of a relatively small magnitude of unobservable shocks continues
to hold in the decreasing returns to scale specification.
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where σ2 = σ2
U + σ2

O is the total variance. Although ξ is not observable, it determines

pay-performance sensitivity (i.e., the elasticity of CEO pay to firm performance), which we

can measure using the available data.15 Figure 6 illustrates two important implications that

help identify the relative magnitude of observable and unobservable shocks. First, as the

amount of unobservable shocks increases, the overall elasticity of managerial pay to firm

performance rises due to the higher cost of incentive provision. Second, a relatively modest

amount of unobservable shocks (eg.,
σ2
U

σ2
O

= 0.1) implies an increasing (almost monotone)

relationship between ξ and firm size. As the contribution of unobservable shocks gets larger,

the relationship between the elasticity of managerial pay and firm size gradually becomes

negative. To summarize, Figure 6 shows that both the overall level and the cross-sectional

variation in PPS provide important information about the relative magnitude of observable

versus unobservable shocks.

Building on these theoretical insights, in the next section, we estimate the model by

exploiting moment conditions of the joint distribution of firm size, investment and managerial

compensation.

4 Quantitative Evidence

4.1 Data

In our quantitative analysis, we exploit the panel data of US non-financial, non-utility

firms that come from the Center for Research in Securities Prices (CRSP), Compustat,

and Standard & Poor’s ExecuComp database. For each firm in our sample, we collect its

15The mapping between the average elasticity of utility with respect to shocks, ξ, and the elasticity of
managerial compensation with respect to firm performance (that is, the log-log based measure of PPS) is

monotone, but nonlinear. For example, for
σ2
U

σ2
O

= 0, the log-log PPS is zero in the interior of (uMIN , uMAX)

due to risk sharing. However, ξ > 0 because continuation utility accounts for a possibility of a binding
constraint in the future, which is associated with a positive response of managerial pay with respect to

shocks. Estimating the magnitude of
σ2
U

σ2
O

from the level of PPS is thus a quantitative issue, which we address

formally in the next section.

25



size, investment, managerial compensation and wealth. We measure firm size by the sum

of physical capital (property, plant and equipment) and intangible capital. Similarly, firm

investment is measured by investment in physical and intangible capital.16 We rely on the

total executive compensation figures in ExecuComp database to measure the flow of CEO

compensation that comprises salary, bonuses, the value of restricted stock granted, the value

of options exercised, and long-term incentive payouts. In addition, we construct a measure

of CEO wealth as a sum of salary, bonuses, the market value of restricted shares held by

executives, the market value of shares and stock options owned, the net revenue from stock

trading, dividends, long-term incentive payments, and the present value of future payoffs.

The measurement of CEO wealth follows the approach of Aggarwal and Samwick (1999),

Himmelberg and Hubbard (2000), and Clementi and Cooley (2009), and it is described

comprehensively in Appendix E. All nominal quantities are converted to real using the

consumer price index provided by the Bureau of Labor Statistics. The data are sampled on

the annual frequency and cover the period from 1992 till 2019. Because in estimation we

exploit the cross-sectional differences in the dynamics of CEO wealth, we limit our sample

to firms with available executive compensation data.

4.2 Structural Estimation

We estimate the model parameters using the simulated method of moments (McFadden

(1989), and Pakes and Pollard (1989)). Our model has fourteen parameters in total but

our primary focus is on volatility parameters that govern the magnitude of observable

and unobservable shocks, σO and σU , respectively. Following the discussion in Section 3,

our identification strategy is to exploit the dynamics of firm growth and executive pay-

16Physical investment is measured by the change in physical capital adjusting for depreciation. Intangible
investment is inferred from the stock of intangible capital assuming the amortization rate of 10%, which
is in line with Peters and Taylor (2017) and the current IRS guidelines that require most intangible assets
to be amortized within a 15-year period. Our empirical evidence is robust to using capital expenditure as
a measure of physical investment and to using alternative amortization rates of intangible capital within a
reasonable range of 5%–25%.
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performance sensitivity. Because firms’ growth and CEO compensation are determined

jointly by moral hazard and other model parameters, we also estimate risk aversion (γ),

the discount rate (ρ), the productivity parameter (A), the capital depreciation rate (δ), the

adjustment cost parameter (φ), and the parameters that determine the outside option of

managers and the initial normalized utility (uMIN and u0, respectively).17 Thus, together

with the volatility parameters, we estimate a subset of nine structural parameters that have

a first-order effect on the joint distribution of firm growth and managerial compensation.

The remaining five parameters either do not play a critical role in determining the cross-

sectional distribution of firms’ characteristics or cannot be identified separately. We calibrate

them consistently with the standards of the macroeconomics literature to match a different

set of moments. We choose σZ = 3%, and µZ = 1.5% to match volatility and average

growth of aggregate capital. Following Kydland and Prescott (1982), King and Rebelo

(1999) and Rouwenhorst (1995), we set the capital share at 0.33, and calibrate the death

rate to be 0.05 to match the average firms’ exit rate in the data. We calibrate the discount

rate of shareholders at ρF = 0.03, which, together with the assumed aggregate consumption

dynamics and estimated risk aversion, imply an effective discount rate of firm cash flow of

r+γσ2
Z = 4.3% per year, matching the average return of the risk-free treasury bills and risky

assets in the data. The values of the calibrated parameters are reported in Panel B of Table

1.

To estimate the structural parameters, let

Θ = {σO, σU , γ, ρ, A, δ, φ, ūMIN , ū0} (24)

denote the vector of parameters to estimate, and letMD andMM(Θ) denote the vectors of

data-based and model-implied moments, respectively.18 We estimate the model parameters

17It is more convenient to estimate the equilibrium marginal product of capital directly. We can always
use the equilibrium relationship between the marginal product of capital and the primitive productivity
parameter to back out the latter (see Appendix A).

18For computational convenience, in estimation we use the following parameterization: ūMIN ≡
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by minimizing the following objective function:

Θ̂ = argmin
Θ

[
MD −MM(Θ)

]′
Ω
[
MD −MM(Θ)

]
, (25)

where Ω is the weighting matrix. The model-based moments are computed via simulations.

Specifically, we draw a panel of shocks, and for a given parameter configuration we solve the

model numerically, discretize it and simulate a cross-section of firms. The simulated panel

consists of 10,000 firms per year and the length of time series is set at 150 years. We discard

the first 100 years of data and use the remaining 50 years of simulated data to calculate

the vector of moments MM(Θ). Because our panel is fairly large, the simulated moments

represent the population moments sufficiently well. We confirm that increasing either the

length of the simulated sample or the size of the cross section has virtually no effect on the

model-implied moments and the parameter estimates. We estimate the model parameters

using the optimal weight matrix. Hence, the estimation is carried out in two stages: in

the first stage, we obtain the initial estimates by weighting each moment condition by the

inverse of the variance of the sampling distribution of the corresponding statistic, and in the

second stage we use the inverse of the variance-covariance matrix of the moment conditions

evaluated at the first-stage estimates. We use the Newey and West (1987) estimator of the

spectral density matrix at frequency zero with a truncation lag of two.

Guided by the model’s implications discussed in Section 3, we exploit moments that

are informative about the degree of moral hazard and that help identify the structural

parameters. These moments include the slope of the power law of the distribution of firm size,

the average standard deviation of firm growth rates, and the median growth and investment

rates, and the log-log pay-performance sensitivity for a cross section of size-sorted portfolios.

To calculate moments of the joint distribution of firm size, growth and managerial

compensation, we construct five size-sorted portfolios using breakpoints that are equally-

uMIN/uMAX , and ū0 ≡ u0/uMAX .
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spaced in log size. Portfolios are re-balanced at the annual frequency, and for consistency, in

the data and in the model, firm size is measured by capital stock. The full list of moments

that we exploit in estimation is presented in Table 2. In all, we use 17 moments to estimate

9 model parameters.

Figure 7 provides a graphical illustration of the relationship between firm size and average

growth, investment and pay-performance sensitivity. The solid line in each panel shows the

point estimates, and the two dotted lines represent the two-standard error band. As is well

known, small firms, on average, invest more and grow at a much higher rate relative to large

firms. For example, in our sample, the difference in average growth rates between firms in the

smallest and largest portfolios is 9.5% with a robust t-statistic of about 2.8. As the bottom

panel of Figure 7 reveals, pay-performance sensitivity also depends on firm size — the log-log

measure of PPS, estimated by regressing changes in log wealth on log returns controlling

for firm and time fixed effects, is monotonically increasing in size. As we discuss below, the

cross-sectional dispersion in PPS is also statistically significant.

Although the model parameters are identified jointly by the equilibrium conditions, below

we provide an intuitive discussion of which moments help the most in the identification of

different model parameters. Our model has six technology parameters. The key focus of our

estimation is on the relative importance of unobservable shocks, i.e.,
σ2
U

σ2
O

. As follows from the

discussion in Section 3.4, the ratio is identified by the cross-sectional relationships between

firm size and investment, and firm size and PPS. The level of volatilities is then pinned down

by the average standard deviation of firm growth rates. Further, the average growth rate

across firms is informative about the marginal product of capital, A. The difference between

growth rates and investment rates is determined by the depreciate rate, and therefore, the

two sets of moments help identify δ. The investment-size relationship is informative about

the adjustment cost parameter φ. To understand why, note that the incentive compatibility

condition in Equation (18) relates investment rate to promised utility. In particular, the

curvature of the adjustment cost function determines the sensitivity of investment rates with
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respect to u, and therefore, with respect to firm size (as discussed above, u is a monotone

function of firm size).

The other parameters are identified as follows. First, risk aversion of managers is identified

by the average log-log pay performance sensitivity, because PPS under the optimal contract is

determined by the trade-off between incentive provision and risk sharing. Second, the growth

rate and investment rate of large firms are informative about managers’ outside option uMIN

because, as explained in Section 3.4, large firms tend to converge to the region close to uMIN .

In addition, as shown in Luttmer (2007) and Ai, Kiku, Li, and Tong (2021), the power law

of firm size distribution is determined by the growth rates of large firms. Hence, the slope of

the power law further helps identify uMIN . Third, the manager’s discount rate ρ is identified

by the cross-sectional variation in PPS and growth. Intuitively, the difference between the

effective discount rate and managers’ discount rate determines the intertemporal allocation

of managerial pay and, therefore, the growth in promised utility ut. A higher ρ implies that

managers are less patient and that, over time, promised utility converges faster to uMIN .

This in turn implies that ut of large firms is more likely to exceed the outside option uMIN

and renders the manager-side limited commitment constraint binding. Therefore, given the

interest rate, the life-cycle dynamics of PPS and investment rates are informative about the

manager discount rate ρ. Finally, the initial promised utility u0 = U0

K0
is identified by the

cross-sectional variation in firm growth rates and investment rates. In our model, firms start

small and grow over time. Because investment rates and average growth rates are determined

by normalized utility ut, the initial condition u0 affects the size-investment and size-growth

relationships in the model.

4.3 Parameter Estimates and Implications

Panel A of Table 1 presents the SMM estimates of the model parameters. First, notice that

the set of moment conditions that we exploit in estimation allows us to identify the structural
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parameters sufficiently well as all estimates have relatively small standard errors. Second,

our estimates reveal a significant difference in the magnitude of observable and unobservable

shocks. The estimates of volatility of observable and unobservable shocks are 0.34 (SE=0.006)

and 0.10 (SE=0.004), respectively. That is,
σ2
U

σ2
O

= 0.1. In other words, observable shocks

account for about 90% of the overall variation in productivity while unobservable shocks

contribute a much modest 10%. The difference in volatilities is statistically significant with

a robust t-statistic of 37.

To evaluate the fit of the model, in Table 2 we report sample moments alongside moments

implied by the model estimates. In the last column, we present t-statistics for the difference

between the data and the model-implied moments. T-statistics are constructed using the

Newey and West (1987) estimator of the variance-covariance matrix with three lags. We

discuss the key moments below.

Power Law Firms size in the data is known to follow a power-law distribution (for

example, Axtell (2001), Luttmer (2007), and Gabaix (2009)). In our model, the right tail

of the distribution of firm size obeys a power law in the sense that for some constant η,

P (Nj,t ≥ n) ∝ n−η for large values of n.19 Here, η is the power law coefficient of the firm size

distribution.

As shown in Table 2, the sample estimate of the power-law coefficient in firm capital is

close to one, specifically 1.18. Consistent with the data, our model with constant returns to

scale generates a fat tail distribution of firm size, and the model-implied power law virtually

matches the point estimate in the data.

Firm Investment, Growth, and Size As Table 2 shows, our model is able to account

well for the cross-sectional variation in firms’ investment and growth observed in the data.

Consistent with the data, the model generates a significant amount of dispersion in growth

19In our model, Kj,t and Nj,t are proportional to each other and are equivalent measures of firm size.
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and investment rates across firms. In the model, the average investment rate declines

monotonically from 23.6% for the bottom size-quintile to about 9.2% for the top size-sorted

quintile. Similarly, the average growth rates vary between 12% for the small-size cohort and

0.3% for large firms matching well the corresponding sample statistics of 9.8% and 0.3%

respectively.

Limited commitment allows our model to account for the robustly negative relationship

between firm size and firm growth observed in the data. Equally important is the finding that

the amount of unobservable shocks is modest compared to the size of observable shocks. As

discussed in Section 3.4, as long as the amount of unobservable shocks is relatively small, risk

sharing dominates incentive provision, which makes managerial compensation less sensitive

to shocks than productivity. As a result, the manager’s share in the firm, u, is negatively

correlated with firm size. Because managers in small firms have a claim to a larger share of

firms’ cash flow, they have stronger incentives to invest than those in large firms. Hence, the

negative relationship between size and u translates into a negative relationship between size

and investment rate.20

Pay-Performance Sensitivity The level and the cross-sectional variation of pay-

performance sensitivity also play an important role in identifying the amount of private

information. In the data and in the model, PPS is measured in a panel regression of log

growth in CEO wealth on log firm return, controlling for firm and time fixed effects. As

Table 2 shows, in the data, pay-performance sensitivity varies substantially with size —

small firms feature relatively low PPS while large firms are characterized by relatively high

size sensitivity of managerial compensation. The empirical estimate of PPS varies from about

0.51 (SE=0.030) for the bottom quintile to 0.63 (SE=0.029) for the top size-sorted portfolio.

The difference in PPS between the largest and smallest size cohorts is statistically significant

20Our model attributes 100% of the size-growth relationship to agency frictions. In the data, the negative
size-growth relationship may be partially driven by selection and age. For tractability, our model does not
provide a separate role for size and age in explaining firm growth.
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with a robust t-statistics of 3.74. Our model implies similar magnitudes of PPS and a similar

increasing pattern in pay-performance sensitivity across size-sorted portfolios. The model-

implied spread between the top and the bottom quintile is about 0.12, which replicates the

observed dispersion.21

The ability of the model to account for both the level and the cross-sectional variation

in PPS relies crucially on the presence yet a relatively modest magnitude of unobservable

shocks. At the point estimates, unobservable shocks account for about 10% of the total

firm-level volatility. As explained in Section 3.4, a relatively low magnitude of unobservable

shocks implies a negative relationship between firm size and manager’s normalized utility,

u. Recall that the sensitivity of manager’s utility to productivity shocks is decreasing in u.

Taken together, the two implications lead to a positive relationship between pay-performance

sensitivity and firm size and allow the model to simultaneously match the level and the cross-

sectional pattern in PPS observed in the data.

In our empirical analysis, we use the log-log measure of PPS because it most closely

corresponds to the theoretical elasticity gU in our model, which under the assumption of

the CRRA utility is invariant to the choice of unit of denomination of utility and cash flow.

As discussed above, in the log-log regression, we find a strong positive relationship between

PPS and firm size. Previous literature has documented a declining pattern in level-level PPS

with respect to size, that is, when PPS is measured by the regression coefficient of the dollar

change in CEO wealth onto the dollar change in firm value (for example, Schaefer (1998),

and Edmans, Gabaix, and Landier (2009)). Our findings do not contradict their evidence.

In particular, if we follow the approach of Edmans, Gabaix, and Landier (2009) and regress

the level-level measure of PPS on log of firm size, we similarly obtain a significantly negative

coefficient of −0.01 (t-stat = −13.4).22 The cross-sectional variation in both log-log and

21In the data, the positive PPS-size relationship is robust to alternative measures of firm size. For example,
if we use the number of employees as a measure of firm size, we find a significant increase in PPS from 0.50
for small firms to 0.65 for large firms. Alternatively, if we sort firms on market capitalization, PPS increases
monotonically from about 0.43 to 0.73 for the small and large quintiles, respectively.

22To replicate the Edmans, Gabaix, and Landier (2009) evidence, we use a rolling-window regression
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level-level PPS is also consistent with our model. As Figure 3 shows, because the normalized

utility (u) is a decreasing function of firm size, the model-implied log-log measure of PPS is

increasing and the level-level measure of PPS is declining with firm size.

As Table 2 shows, overall, the model accounts well for the joint distribution of firm

size, growth and managerial compensation. None of the 17 moment conditions exploited in

estimation are statistically significant, and the model is not rejected by the over-identifying

restrictions (the p-value of the chi-square test statistic is 0.30).

4.4 The Role of Moral Hazard

In order to better understand why the data implies a relatively small magnitude of

unobservable shocks, we consider a constrained version of the model specification that

assigns a larger role to moral hazard. In particular, we impose the constraint that the

magnitudes of observable and unobservable shocks are equal, i.e., σ2
U = σ2

O = 0.5σ2. Instead

of evaluating the restriction directly (without re-estimating other model parameters), we

give the constrained specification a fair chance to match the data and estimate the rest of its

parameters by exploiting the same set of moment conditions. Table 3 presents the estimates

of the constrained specification, and Table 4 reports its implications.

First notice that imposing the constraint limits the model’s ability to generate a sizable

cross-sectional variation in growth and investment rates. For example, our benchmark

unrestricted model generates a spread of about 12% in average growth rates of firms in

the bottom and the top size quintiles, matching well the 10% observed in the data. Under

the constraint, the difference in average growth rates between the two firm cohorts shrinks

to about 6%. These implications are quite intuitive. Keeping everything else constant, a

approach by first estimating level-level PPS for each firm in our sample by regressing the dollar change in
CEO wealth on the change in market capitalization using the most recent ten-year window of data, and then
run a regression of firm-level PPS on the log of firm size. The reported number is the time-series average of
the estimated cross-sectional slope coefficients. If instead we run a similar regression using the log-log PPS
measure, we obtain a positive estimate of 0.04 with a robust t-statistic of 10.7.

34



larger magnitude of unobservable shocks and a higher degree of moral hazard reduce the

overall investment and growth in the economy because a significant share of capital has to

be allocated to incentive provision. Therefore, investment and growth rates are substantially

reduced and so is the variation in average growth rates across size-sorted portfolios. While

other model parameters (eg., productivity) try to adjust and compensate the negative impact

of moral hazard on growth, their adjustment is bound by the discipline imposed by other

moment conditions.

Further notice the impact of moral hazard on pay-performance sensitivity. Under the

constraint, the model-implied level of PPS is much larger than in the data and features no

cross-sectional dispersion. As Table 4 shows, for all but the largest portfolio, the constrained

specification significantly overstates size elasticity of CEO compensation. In the absence of

moral hazard, CEO compensation in small (large) firms is sensitive to negative (positive)

shocks but is inelastic otherwise. Introducing a relatively high degree of moral hazard makes

CEO compensation of small (large) firms also respond to positive (negative) innovations and,

therefore, magnifies pay-performance sensitivity. This is why the constrained specification

significantly overstates the level and understates the cross-sectional variation in PPS observed

in the data. Overall, allowing unobservable shocks to be relatively large leads to a significant

deterioration in the model’s fit as the constrained specification fails to match more than

one-third of the moments exploited in estimation.

4.5 Cross-Sectional Implications

In this section, we consider an extension of our model that allows for heterogenous exposure to

aggregate risks. We demonstrate three unique implications of the extended model: compared

to low-exposure firms, firms with high exposure feature i) a stronger size-PPS relationship,

ii) a higher investment rate, and iii) a higher level of PPS. We provide empirical evidence

that supports all three implications.

35



Consider a cross-section of firms that differ in their exposure to aggregate shocks dBZ,t.

Extending the specification in Equation (3), we assume that the law of motion of capital

stock follows

dKj,t = Kj,t [(ij,t − δ) dt+ σUdBU,t + σOdBO,t + βj (µZdt+ σZdBZ,t)] , (26)

where βj is firm-specific exposure (beta) to aggregate risk.

Variation in aggregate risk exposure has three main implications for policy functions.

First, under the optimal contract, an increase in β raises the level of the value function

and expands the Pareto frontier. We illustrate this implication in Figure 8 by plotting the

normalized firm value as a function of normalized utility u for three levels of aggregate risk:

β = 0.75, β = 1, and β = 1.25. As the figure shows, a higher beta is associated with a higher

value function and a wider range of feasible promised utility for mangers. Because, on average,

the aggregate economy grows (i.e., µZ > 0), high-β firms feature a high productivity growth

(βµZ), and hence, a high joint surplus of the shareholder-manager relationship. Therefore,

high-β firms can support a larger range of the promised utility for managers and a higher

firm value for a given level of u compared with low-β firms.

Second, the sensitivity with respect to aggregate shock, gZ , is increasing in β. As we

show in Appendix B.2, Equation (50), gZ = γ+βΓ(u)
γ+Γ(u)

; therefore, ∂gZ
∂β

= Γ(u)
γ+Γ(u)

. As long as

Γ (u) > 0, ∂gZ
∂β
∈ (0, 1). This is the implication of optimal sharing of aggregate risks. As firm

cash flow becomes more sensitive to aggregate shocks, both managers and shareholders bear

part of the risk. ∂gZ
∂β

> 0 because some of aggregate risk exposure is passed onto managerial

compensation, and ∂gZ
∂β

< 1 because shareholders retain some of the risk under the optimal

contract. Note also that ∂gZ
∂β

= Γ(u)
γ+Γ(u)

is increasing in Γ (u). As the induced risk aversion of

shareholder value function increases, a larger fraction of aggregate risk is passed through to

managers.

Figure 9 illustrates the impact of β on the optimal policy functions gZ (top panel), gU
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(middle panel), and investment rate, i (bottom panel). For ease of comparison across models,

we re-scale u so that all three specifications have the same range of normalized utility. As

the top panel shows, gZ is increasing in β. Note also that, in general, the dispersion in gZ

is smaller than the dispersion in β, i.e., ∂gZ
∂β
∈ (0, 1).23 In the interior, when Γ(u) is close to

zero, gZ = γ+βΓ(u)
γ+Γ(u)

tends towards 1, and on the boundaries, as Γ(u)→∞, gZ → β.

Third, as the bottom panel of Figure 9 shows, investment rate is increasing in β

because high-β firms have high expected productivity growth, which requires a high level

of investment. In order to induce a high level of investment, the elasticity of promised utility

with respect to unobservable shocks, gU , is also increasing in β, as shown in the middle panel.

We evaluate the quantitative implications of aggregate risk exposure for the equilibrium

PPS-size and investment-size relationships and compare them with the data in Table 5. In

the data, we sort firms into two groups — one that has high exposure to aggregate risk

and the other one that features relatively low exposure. We measure aggregate risk by the

market beta at the industry level. We rely on industry-level betas because variation in firm-

level returns is mostly driven by idiosyncratic shocks, which hinder accurate measurement

of market risk at the firm level.24 Using 30 industry sorted portfolios, we first run a linear

regression of industry excess return on the excess return of the market to estimate industry-

level market risk. We then sort firms according to the market beta of the industry they

belong to.25 The high-beta cohort represents firms with the market beta above one, and the

low-beta group contains firms that have less than unit exposure to the market.26 We divide

each beta cohort into three size portfolios, and in the “Data” panel of Table 5, we examine

investment-size and PPS-size relationships within each beta-group. To conserve space, we

only present moments of the top and bottom size terciles. The “Model” panel of Table 5

reports the corresponding model-implied moments. We set aggregate risk exposure of low-

23Except for a small region close to uMIN , where ∂gZ
∂β > 1, because in this region, v′ (u) > 0 and Γ (u) < 0.

24This is a common approach in the asset pricing literature, eg., Fama and French (1993).
25Industry sorted portfolios data come from the online data library maintained by Kenneth R. French.
26The average betas of low- and high-β industries are 0.75 and 1.22, respectively. The number of firm in

each cohort is roughly the same.
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and high-β firms in the model at 0.75 and 1.25, respectively, to match the average betas of

low- and high-β industries in the data. All other model parameters are set at their estimated

and calibrated values reported in Table 1.

First, notice that in the data and in the model, high-beta industries have higher

investment rates compared with low-beta firms. This is consistent with the cross-sectional

variation in investment policy functions presented in Figure 9. High aggregate risk exposure

is associated with high expected productivity growth and, therefore, high rate of investment.

Consequently, due to higher long-run growth, high-beta industries feature a fatter right tail

in the distributions of firm size relative to low-beta industries as panel C of Table 5 shows.

Second, our model predicts that the positive PPS-size relationship should be more

pronounced among high-beta firms than among low-beta firms. This is a direct implication of

∂gZ
∂β

= γ+βΓ(u)
γ+Γ(u)

∈ (0, 1). In fact, under the optimal contract, the sensitivity of the normalized

utilty with respect to aggregate shock is d lnu
dBZ

= gZ − β = (1− β) γ
γ+Γ(u)

, which implies that

positive aggregate shocks lower u if and only if β > 1. For industries with β > 1, a positive

aggregate shock raises firm size and pushes firms to the left of the normalized utility space

where log-log PPS is high. That is, optimal risk sharing with respect to aggregate shocks

strengthens the PPS-size relationship. In contrast, for industries with β < 1, a positive

aggregate shock increases u shifting firms to a region where PPS is relatively low.

This model prediction is consistent with the empirical variation of the PPS-size

relationship across beta-sorted portfolios. As Panel B of Table 5 shows, in the model and

in the data, the relationship between PPS and firm size for low-beta firms is virtually flat.

In contrast, for high-beta firms, PPS increases significantly with size — in the data, from

about 0.54 for small firms to 0.77 for large firms, and in the model, from about 0.60 to 0.79,

respectively.

Further notice that in both the data and the model, high-beta firms have a higher level of

PPS compared with low-beta firms, particularly among large firms. This is due to incentive
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provision. Recall that under the optimal contract, high-beta firms have a higher rate of

investment relative to low-beta firms. Incentive compatibility requires their gU , and hence

PPS, to also be higher. Note that the estimation of our baseline model does not exploit the

cross-sectional moments presented in Table 5, yet our model helps explain the implications

of aggregate risk exposure for PPS-size and investment-size relationships both qualitatively

and quantitatively.

4.6 Counter-Factual Exercises

In this section, we use our estimated model to conduct counter-factual experiments. First,

we quantify the impact of moral hazard on CEO compensation and aggregate output by

considering a setting that eliminates all moral hazard in the economy (for example, by

implementing more transparent accounting rules). To carry out our analysis, we keep all

preference and technology parameters at their estimated values but assume that all shocks

are observable. Second, we use our model to conduct a policy experiment of imposing a

limit on pay-performance sensitivity and a policy experiment of a limited CEO pay-to-firm

cash flow ratio. Both policies are often proposed as potential measures to curtail inequality

in managerial compensation. We demonstrate that these policies may have the unintended

consequence of reducing efficiency of investment and increasing CEO pay inequality in steady

state.

Impact of moral hazard on CEO compensation Moral hazard is often considered

a key determinant of the level and the dynamics of CEO compensation. Our counter-factual

exercise allows us to quantify the total fraction of managerial compensation that is attributed

to incentive pay. To emphasize the dependence of policy functions on parameters, we denote

the CEO compensation policy by C (K,U |Θ) and the steady-state distribution of the state

variables by Φ (K,U |Θ), where Θ represents the vector of parameter values of the model.

We define λCEOPAY as the faction of incentive pay in total CEO compensation. Formally, we
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calculate the total amount of CEO compensation in the economy without moral hazard as a

fraction of the total CEO pay in the economy with moral hazard and compute λCEOPAY as:

1− λCEOPAY =

∫
C (K,U |Θ0) Φ (dK, dU |Θ0)∫
C
(
K,U | Θ̂

)
Φ
(
dK, dU | Θ̂

) , (27)

where

Θ̂ = {σ̂O, σ̂U , γ̂ , ρ̂, Ẑ0, δ̂, φ̂, ˆ̄uMIN , ˆ̄u0} (28)

is the estimated parameter vector, and Θ0 is obtained from Θ̂ by setting σU = 0 and keeping

all other parameters, including the total volatility of shocks,
√
σ̂2
U + σ̂2

O, the same.27

Our estimates imply that λCEOPAY = 50.4%. That is, moral hazard accounts for about

half of the overall CEO compensation. In other words, eliminating all moral hazard allows

firms to save about 50% of CEO compensation while keeping managers’ utility unchanged. In

our model, eliminating moral hazard makes managerial compensation contract more efficient

for two reasons. First, in the presence of moral hazard, incentive provision requires CEO

compensation to respond to unobservable idiosyncratic shocks. This arrangement reduces

welfare because managers are risk averse. In our model with moral hazard, shocks to firm

output induce variation in CEO compensation of about 18% per year, whereas perfect risk

sharing implies that CEO pay grows at a constant rate over time. Note that the fact that

moral hazard distorts the allocation of consumption across states of the world and limits risk

sharing is true in both static and dynamic models.

Second, unique to our dynamic model, moral hazard also distorts the intertemporal

allocation of managerial compensation. Under the optimal contract, the expected growth

rate of continuation utility in our benchmark model with β = 1 is given by (see Equation

27In Equation (28), we keep the time-zero productivity Ẑ0 fixed. We use the equilibrium relationship
between the marginal product of capital A and productivity Z0 to back out Ẑ0. See Equation (32) in
Appendix A.
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(56)) in Appendix C):

E

[
du

u

]
=

−ρ+κ
1−γ

((
c(u)
u

)
− 1
)
− (i(u)− δ + µZ) + 1

2
γ (g2

O(u)σ2
O + g2

U(u)σ2
U)

− (gO(u)− 1)σ2
O − (gU(u)− 1)σ2

U

 (29)

Note that the unobservable shock BU not only affects log-log PPS, gU , but also distorts

the intertemporal allocation of consumption by impacting the compensation and investment

policies c(u) and i(u). Consistent with the previous literature (eg., Sannikov (2008), DeMarzo

and Sannikov (2006)), moral hazard leads to a back-loaded CEO compensation package.

Intuitively, delayed compensation allows shareholders to condition future compensation on

realized output to provide proper incentives to invest.

To decompose the overall impact of moral hazard into its effects on risk sharing

and on intertemporal allocation of consumption, respectively, let C̄ (K,U) denote CEO

compensation policy obtained from the optimal contract with moral hazard by keeping the

compensation and investment policies c(u) and i(u) but assuming all shocks are observable

so that gU(u) is chosen optimally without respecting the incentive compatibility constraint

in Equation (18). Also, let Φ̄ (K,U) be the stationary distribution of CEO compensation

under the policy C̄ (K,U). Then, the total impact of moral hazard can be decomposed as

follows:

[1− λCEOPAY ] =

∫
C̄ (K,U) Φ̄ (dK, dU)∫

C
(
K,U | Θ̂

)
Φ
(
dK, dU | Θ̂

) × ∫ C (K,U |Θ0) Φ (dK, dU |Θ0)∫
C̄ (K,U) Φ̄ (dK, dU)

. (30)

The first term of the product on the right-hand side measures the efficiency loss due to

limiting risk sharing, because moral hazard affects PPS under the contract C
(
K,U | Θ̂

)
but

not under C̄ (K,U). The second component in Equation (30) measures the efficiency loss due

to distortions in the intertemporal allocation of CEO compensation, because moral hazard

affects the intertemporal allocation of consumption under the contract C̄ (K,U) but not under

C (K,U |Θ0). We find that 1−
∫
C̄(K,U)Φ̄(dK,dU)∫

C(K,U |Θ̂)Φ(dK,dU |Θ̂)
= 21.5% and 1−

∫
C(K,U |Θ0)Φ(dK,dU |Θ0)∫

C̄(K,U)Φ̄(dK,dU)
=
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36.8%. Thus, our estimates imply that 50.4% of CEO compensation is the result of

incentive provision. More than half of the incentive pay is compensation for distortions

in the intertemporal allocation of compensation package, rather than for the additional risk

managers have to bear. This decomposition highlights the importance of a dynamic setting

in estimating efficiency losses — static models would miss distortions in the intertemporal

allocation, which we find to be a qualitatively significant part of incentive compensation.

Impact of moral hazard on aggregate output Our general equilibrium framework

also allows us to quantify the impact of moral hazard on aggregate output. We compute it

as a percentage increase in output that can be achieved by eliminating all moral hazard in

the economy:

λOUTPUT =

∫
zK (K,U)αN (K,U)1−α dΦ (dK, dU |Θ0)∫
zK (K,U)αN (K,U)1−α Φ

(
dK, dU | Θ̂

) − 1.

Under the estimated parameter values of the model, we find that λOUTPUT = 1.1%. That

is, eliminating all moral hazard results in a permanent increase in aggregate output of the

economy by about 1%.

It is important to note that in Section 4.2, we estimate the equilibrium marginal product

of capital, A, directly because given A, all equilibrium quantities and prices that are relevant

for estimation are determined independently of the productivity parameter, Z0.28 However,

in the counter-factual exercises, all other parameters are directly taken from our estimation,

except that we hold Z0 fixed and not A. This is because Z0 is the fundamental technology

parameter, while A is an endogenous equilibrium object. The parameter Z0 is computed from

the estimated A using the equilibrium condition A = α
(
Z0

K0

)1−α
, where K0 is the time-zero

aggregate capital (see Equation (32) in Appendix A).

Quantitatively, the comparative statics in general equilibrium (i.e., holding Z0 fixed) and

28The only equilibrium price that is not determined is wage rate for labor. However, none of the moments
we use in estimation depend on wage.
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in partial equilibrium (i.e., holding A fixed) can be drastically different. Taking as given the

equilibrium level of the marginal product of capital, A, a reduction in moral hazard improves

efficiency of production at a firm level. This could potentially lead to an infinitely large

increase in firm value because revenue is linear in A.29 As a result, the comparative statics

exercise may not even be defined in a partial equilibrium setup. However, a lower degree of

moral hazard implies that firms invest more and capital accumulates faster. Hence, in general

equilibrium, the marginal product of capital A must fall as the economy accumulates more

capital stock. Our general equilibrium setup thus allows us to quantify the effect of moral

hazard by taking into account the equilibrium relationship between the marginal product of

capital and the total amount of capital in the economy.

Policy experiments In this section, we use our model as a laboratory to evaluate two

policy proposals that are often suggested as means to curb inequality in CEO compensation.

The first policy is to impose a limit on the CEO pay-to-worker compensation ratio. The

second policy is to impose a limit on the log-log PPS of compensation contracts.

To set a benchmark for our analysis, in Figure 10, we plot the Lorenz curve of CEO pay

in the 2018 data and that implied by our baseline model. Although our estimation does

not target the observed inequality in CEO compensation, our model matches the data-based

Lorenz curve and the Gini coefficient well. The latter is about 0.63 and 0.64 in the data and

the model, respectively.

In our first policy experiment, we impose an upper bound on the compensation-to-capital

ratio, C
K

. Because in our model, labor and capital are proportional to each other, this

specification is equivalent to imposing an upper bound on the ratio of CEO pay-to-worker

compensation. Many policy proposals use the CEO pay-to-worker compensation ratio as

29The easiest way to see this is from the closed-form solution for the first-best firm value: v(u) =
A−î−φî2

r̂−î − bu, where î is the optimal level of investment (see Appendix B.3). Keeping A fixed, a small

increase in î in the denominator can easily send the firm value to infinity.
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a measure of inequality.30 Our model provides a quantitative framework for studying the

impact of those policy proposals.

Technically, we solve the constrained optimal contracting problem that imposes an upper

bound on the normalized promised utility: u ≤ ũMAX . We set ũMAX to be 60% of the uMAX

under the optimal contract in our estimated model. We normalize CEO pay and total output

in our benchmark model to 100 and report the quantitative results of our experiment in Table

6. First, note that in the economy with the restriction on the CEO-worker pay ratio, the

total level of CEO compensation is about 20% lower than in our benchmark model. This is

not surprising as the policy targets directly the maximum relative level of CEO pay.

Second, and surprising at first sight, the Gini coefficient in the constrained specification is

significantly higher than in the benchmark model. That is, imposing an upper bound on the

CEO-worker pay ratio raises inequality in CEO compensation. The increase in inequality can

also be seen in Figure 11 that shows the Lorenz curve of CEO pay distribution implied by our

benchmark model and in policy experiments. To understand the impact of the cap on the

CEO-worker pay ratio, in Figure 12, we plot three policy functions: the log-log PPS gU(u)

in the top panel, the normalized managerial compensation c (u) in the middle panel, and the

investment rate i(u) in the bottom panel for our benchmark model and for the constrained

specification. As the figure shows, the overall level of c(u) in the constrained model is

lower relative to the baseline. However, the log-log PPS is higher, which results in higher

inequality in steady state. To understand the increase in PPS, note that according to the

incentive compatibility constraint in Equation (18), the marginal cost of incentive provision is

proportional to the manager’s marginal utility — higher marginal utility raises the manager’s

incentive to use firm cash flow for private consumption. To induce an appropriate level of

investment, the optimal contract responds to the cap on the CEO-worker pay ratio by raising

PPS for all firms.

30For example, in March 2021, senators Bernie Sanders, Elizabeth Warren, Chris Van Hollen, and Edward
Markey introduced the Tax Excessive CEO Pay Act in the US Senate that would increase the corporate tax
for corporations whose CEO pay to median worker compensation exceeds 50 to one.
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Finally, because the allocation in the benchmark model is constrained efficient, the total

level of output in the model with a cap on the CEO-worker pay ratio is lower — a cap distorts

investment and lowers output.

In our second experiment, we impose an upper bound on log-log PPS, gU . Technically,

we solve the constrained optimal contracting problem with gU ≤ g̃U . We choose g̃U =

40%×maxu gU(u), that is, it is 40% of the highest level of gU(u) under the optimal contract.

As shown in Table 6, this policy lowers the total output by 0.7%, raises the total level of

CEO compensation by 22.7%, and increases CEO pay inequality in steady state.

To understand the above results, in Figure 13, we compare the policy functions of the

model with an upper bound on PPS with those in our benchmark model. By design, the log-

log PPS under the considered policy is lower relative to the baseline (top panel of Figure 13).

To lower the marginal cost of incentive provision and induce a sufficient level of investment,

the optimal contract raises managerial consumption — as shown in the middle panel, the

level of c (u) in the model with the restriction on PPS is higher, resulting in a higher level of

overall CEO compensation, and higher inequality.

The above policy experiments highlight the importance of taking into account the

endogenous response of the optimal compensation contract to policy proposals. In both

cases, policies intended to curb CEO pay inequality by imposing restrictions on managerial

compensation end up raising inequality in steady state due to the need of incentive provision

in the presence of moral hazard.

5 Conclusion

We quantify the impact of moral hazard using a structural estimation of a dynamic general

equilibrium model with agency frictions. The degree of moral hazard is defined by the

relative magnitude of unobservable versus observable productivity shocks. We show that
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moral hazard has important implications for the cross-sectional relationships between firm

size and investment, and firm size and pay-performance sensitivity. We exploit the predictions

of our model and identify the amount of observable and unobservable shocks by exploiting

moment conditions of the joint empirical distribution of firm size, growth and PPS. We

find that the magnitude of unobservable shocks is relatively modest and accounts for about

10% of the total variation. Our estimates imply that moral-hazard induced incentives are

quantitatively significant and explain 50% of managerial compensation. Our welfare analysis

suggests that eliminating moral hazard would result in about 1% increase in aggregate output.

Similar to Kehoe and Levine (1993), and Albuquerque and Hopenhayn (2004), even

though agents have an option to default, separation between firms and managers does not

happen in equilibrium because it is associated with losses in capital and no efficiency gain.

Therefore, the limited commitment specification in our model imposes feasibility constraints

on the optimal contract but does not result in managers being fired in equilibrium and do

not allow us to model job switching or career concerns. The absence of firing implies that

variations in continuation utility must be associated with changes in future compensation. In

reality, firing provides an additional way for firms to provide incentives without conditioning

managerial compensation on performance within the employment relationship, which will

affect the actual pay-performance sensitivity. A richer setup would allow the model to address

these issues. For example, a non-trivial heterogeneity in matching quality as modeled in

assortative matching models would allow job to job transition for managers and would be an

interesting direction to extend the paper.
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Appendix

A Equilibrium prices

In this section, we use market clearing conditions to provide expressions for two equilibrium

prices: the equilibrium marginal product of capital, and the equilibrium stochastic discount

factor. This will simplify the optimal contracting problem, which takes these prices as given.

The marginal product of capital Here, we solve for the equilibrium marginal product of

capital. This calculation applies to both the first-best economy and economies with agency

frictions.

The optimality condition for the choice of labor implies

(1− α)Z1−α
t

(
Kj,t

Nj,t

)α
= Wt. (31)

That is, the capital-to-labor ratio is constant across all firms. Let Kt denote the aggregate

capital stock of the economy, the total capital stock of the economy can be computed as∫ Kj,t
Nj,t

Nj,tdj = Kt. Given that
Kj,t
Nj,t

is common across all firms and that the total labor supply∫
Nj,tdj is normalized to 1, the above market clearing condition for capital implies that

Kj,t
Nj,t

= Kt for all j. As a result, the equilibrium marginal product of capital can be computed

as d
dKj,t

Yj,t = αZ1−α
t

(
Kj,t
Nj,t

)α−1

= αZ1−α
t Kα−1

t .

In Section C of this appendix, we show that Kt = Zt
Z0

K0. As a result, the equilibrium

marginal product of capital can be written as:

A = α

(
Z0

K0

)1−α

. (32)

In addition, Equation (31) implies that Wt = (1− α)Z1−α
t Kα

t . After maximizing out labor,
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the profit function defined in Equation (2) can be written as πtAKj,t, where A is defined in

Equation (32).

Because capital share is constant across all firms, firm-level output can be computed as:

Yj,t = 1
α
AKj,t. Integrating across all firms, aggregate output is given by:

Yt =
1

α
AKt = Z1−α

0 Kα
0

(
Zt
Z0

)
, (33)

where the second equality uses Equation (32). It follows that along the balance growth path,

aggregate output Yt grows at the same rate as Zt.

The stochastic discount factor We conjecture here and verify below in Section B, that

in the case of β = 1, the equilibrium consumption for firm owners, CF,t, satisfies the following

equation:

dCF,t
CF,t

= µZdt+ σZdBZ,t. (34)

That is, firm owners’ consumption grows at the same rate as productivity Zt. Under the

above conjecture and under the CRRA preference, an application of the Itô’s lemma implies

that the stochastic discount factor Λt = e−ρF t
(
CF,t
CF,0

)−γ
follows

dΛt

Λt

= −rdt− γσZdBZ,t, (35)

where the risk-free rate r is given by:

r = ρF + γµZ −
1

2
γ(1 + γ)σ2

Z . (36)

48



B Optimal Contracting

In this section, we solve the optimal contracting problem in several steps. We first establish

the equivalence between the global incentive compatibility constraint (10) and the local

incentive compatibility constraint (18). We then derive the HJB equation that characterizes

the value function v (u) for arbitrary values of β, the cash-flow exposure to aggregate shocks.

Finally, we provide a closed-form solution for the first-best case and derive the HJB equation

for β = 1 as special cases of the general HJB equation.

B.1 Incentive Compatibility

We summarize our main result in the following lemma.

Lemma 1. [Incentive compatibility] A contract constructed form the allocation rule,

C(K,U), I(K,U), D(K,U), N(K,U), gU(K,U), and gO(K,U) satisfies the obedience

constraint (10) if and only if for all t ∈ [0,∞)

gU (Kt, Ut)

Uγ−1
t Kt

= (ρ+ κ)C (Kt, Ut)
−γ HI (I (Kt, Ut) , Kt) (37)

or in normalized terms

gU (ut) = (ρ+ κ) c−γt uγ−1
t h′ (it) . (38)

Proof. We show that the obedience constraint (10) is satisfied if and only if for all t ∈ [0,∞)

(C (Kt, Ut) , I (Kt, Ut)) ∈ arg max
C,I s.t

C+H(I,Kt)=AKt−D(Kt,Ut)

ρ+ κ

1− γ
C1−γ +

1

Uγ−1
t Kt

gU (Kt, Ut) I (39)

which along with concavity of H (I,K) imply Equations (37) and (38).

To simply notation, we focus on the case when σO = 0, that is, all shocks are unobservable.

We also omit the arguments K and U in the policy functions in the statement of the lemma
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and define

Ūt =
1

1− γ
U1−γ
t = Et

[∫ ∞
t

e−ρ(s−t) (ρ+ κ)C1−γ
s ds

]
, (40)

which is the expected-utility representation of the agent’s continuation utility. The

Martingale representation theorem implies

dŪt = (ρ+ κ)

[
Wt −

C1−γ
t

1− γ

]
dt+GU (Kt, Ut)σUdBU,t (41)

with

GU (Kt, Ut) =
gU (Kt, Ut)

Uγ−1
t

(42)

and gU (Kt, Ut) being the sensitivity term in Equation (15). Suppose that
{
C̃t, Ĩt

}∞
t=0

is an

alternative consumption and investment plan other than {Ct, It}∞t=0, such that

C̃t +H
(
Ĩt, Kt

)
= Ct +H (It, Kt) = AKt −Dt

We define

GC̃,Ĩt =

∫ t

0

e−(ρ+κ)s (ρ+ κ)
1

1− γ
C̃1−γ
s ds+ e−(ρ+κ)tŪt.

That is, GC̃,Ĩt is the time-t conditional expected utility of the agent’s life-time utility if he

follows plan
{
C̃t, Ĩt

}∞
t=0

over [0, t] and switches to {Ct, It}∞t=0 at t. Obviously, GC̃,Ĩ0 = Ū0 and

e(ρ+κ)tdGC̃,Ĩt = (ρ+ κ)
1

1− γ
C̃1−γ
t dt− (ρ+ κ) Ūtdt+ dŪt. (43)

Let
{
BC,I
U,t

}∞
t=0

and
{
BC̃,Ĩ
U,t

}∞
t=0

be the Itô’s processes which are standard Brownian motions

under the probability measures induced by {Ct, It}∞t=0 and
{
C̃t, Ĩt

}∞
t=0

, respectively, according

to Girsanov theorem. Then Equation (14) implies

σUdB
C,I
U,t = σUdB

C̃,Ĩ
U,t +

1

Kt

(
Ĩt − It

)
dt. (44)
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Using Equations (43) and (41),

e(ρ+κ)tdGC̃,Ĩt =
ρ+ κ

1− γ

(
C̃1−γ
t − C1−γ

t

)
dt+GU (Kt, Ut)σUdB

C,I
U,t

=

[
ρ+ κ

1− γ

(
C̃1−γ
t − C1−γ

t

)
+GU (Kt, Ut)

1

Kt

(
Ĩt − It

)]
dt

+GU (Kt, Ut) dB
C̃,Ĩ
U,t . (45)

The last equality above is due to Equation (44). Suppose that Equation (39) is not satisfied

and, according to Equation (42),

ρ+ κ

1− γ
C1−γ
t +

1

Kt

GU (Kt, Ut) It <
ρ+ κ

1− γ
C̃1−γ
t +

1

Kt

GU (Kt, Ut) Ĩt

over a time interval with a positive measure. Then there exists a t̄ such that
{
GC̃,Ĩt

}
is a

sub-martingale over [0, t̄] and

Ū0 = GC̃,Ĩ0 < E0

[
GC̃,Ĩt̄

]
so that {Ct, It}∞t=0 is dominated by following

{
C̃t, Ĩt

}∞
t=0

from the beginning and switching to

{Ct, It}∞t=0 at t̄. Conversely, if Equation (39) is satisfied for all t, there is no such profitable

deviation for all t ∈ [0,∞). Proof of Equation (37) is straightforward.

B.2 The HJB Equation with Arbitrary β

Taking the form of the stochastic discount factor in Equation (35) as given, we consider a

firm with an arbitrary β > 0 and derive the HJB differential equation characterizing the

optimal contract. The laws of motion of K, Equation (14), is written as

dK

K
= [i (K,U)− δ] dt+ σOdBO + σUdBU + βµZdt+ βσZdBZ . (46)
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The value function V (K,U) is defined as

V (Kt, Ut) = max
{ct},{it},{gU,t},{gO,t},{gZ,t}

Et

[∫ ∞
0

e−κ(t+s) Λt+s

Λt

(A− h (it+s)− ct+s)Kt+sds

]

For any ∆ > 0, V (K,U) satisfies

V (Kt, Ut) = maxEt

[∫ ∆

0

e−κ(t+s) Λt+s

Λt

(A− h (it+s)− ct+s)Kt+sds+
Λt+∆

Λt

V (Kt+∆, Ut+∆)

]

Taking the limit as ∆→ 0, V (Kt, Ut) must satisfy

e−κtΛt [A− h (it − ct)]Kt + L
[
e−κtΛtV (Kt, Ut)

]
= 0,

where the operator L is defined as LXt = lim∆→0
1
∆
Et [Xt+∆ −Xt], for any Xt.

Therefore, Equation (46) and the law of motion of U , Equation (15), imply that when

neither limited commitment constraint is binding, V (K,U) satisfies the following HJB

differential equation:

(r + κ)V (K,U) = max
c,i,gU ,gO,gZ



AK − h (i)K − cK + VK (K,U)K [i− δ + βµZ − γβσ2
Z ]

+1
2
VKK (K,U)K2 (σ2

U + σ2
O + β2σ2

Z)

+VU (K,U)U

 ρ+κ
1−γ

(
1−

(
C
U

)1−γ
)

+1
2
γ (g2

Uσ
2
U + g2

Oσ
2
O + g2

Zσ
2
Z)− γgZσ2

Z


+1

2
VUU (K,U)U2 (g2

Uσ
2
U + g2

Oσ
2
O + g2

Zσ
2
Z)

+VK,U (K,U)KU (gUσ
2
U + gOσ

2
O + gZβσ

2
Z)


(47)

with the incentive constraint (38) being imposed on the maximization problem on the right

hand side of Equation (47). Furthermore, according to the normalization, v
(
U
K

)
= V (K,U)

K
,

we have VK(K,U) = v(u)−uv′(u), VU(K,U) = v′(u), VKK(K,U) = 1
K
u2v′′(u), VUU(K,U) =

1
K
v′′(u), and VKU(K,U) = − 1

K
uv′′(u). Using these homogeneity conditions, we can simplify
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Equation (47) as the following normalized HJB differential equation

0 = max
c,i,gO,gU



A− c− h(i) + v(u) (i− r − κ− δ + βµZ − βγσ2
Z)

+uv′ (u)


ρ+κ
1−γ

(
1−

(
c
u

)1−γ
)
− (i− δ)

+1
2
γ (g2

Uσ
2
U + g2

Oσ
2
O + g2

Zσ
2
Z)

−γσ2
Z (gZ − β)− βµZ


+1

2
u2v′′(u)

[
(gU − 1)2 σ2

U + (gO − 1)2 σ2
O + (gZ − β)2 σ2

Z

]


. (48)

The first-order conditions for gO and gZ imply

gO(u) =
uv′′(u)

γv′(u) + uv′′(u)
, (49)

and

gZ(u) =
γv′(u) + βuv′′(u)

γv′(u) + uv′′(u)
. (50)

Define Γ (u) = uv′′(u)
v′(u)

as the Arrow-Pratt measure of relative risk aversion of the value

function, then we can write the above policy functions as gO(u) = Γ(u)
γ+Γ(u)

, and gZ(u) = γ+βΓ(u)
γ+Γ(u)

.

Finally, we note that under the optimal policies, the normalized continuation utility, u,

follows

du

u
=


−ρ+κ

1−γ

((
c(u)
u

)
− 1
)
− (i(u)− δ + βµZ)

+1
2
γ (g2

Oσ
2
O + g2

Uσ
2
U + g2

Zσ
2
Z)

− (gO(u)− 1)σ2
O − (gU(u)− 1)σ2

U − β (gZ − β)σ2
Z

 dt (51)

+ (gO(u)− 1)σOdBO + (gU(u)− 1)σUdBU + (gZ(u)− β)σZdBZ .

In particular, if β = 1, then gZ − β = 0, and the law of motion of u does not depend on the

aggregate shock BZ,t.
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B.3 The First-Best Case

We first provide the solution for the value function for the first-best case, where there is no

moral hazard or limited commitment. We also assume that β = 1. The value function should

still satisfy the ODE in Equation (48) except that σU = 0 and the incentive compatibility

constraints are no longer necessary. We guess that the value function is linear: v (u) = v̄−bu,

for some constants v̄ and b. Then, the ODE in Equation (48) can be used to determine the

constants ū and b.

Given the guess of the value function, it is straightforward to verify that

b =
1

r + κ+ γσ2
Z

, (52)

and the constant v̄ and the optimal investment are jointly determined by the following

simplified HJB equation

0 = max
i
A− i− φi2 + v̄ (i− r̂) (53)

with r̂ = r+κ+ δ−µZ +γσ2
Z . Let î be the first-best investment-to-capital ratio. Optimality

with respect to investment implies

v̄ = 1 + 2φî.

Using Equation (53), we know that î must satisfy φî2 − 2φr̂î+ (A− r̂) = 0. Therefore

î = r̂ −
√
r̂2 − 1

φ
(A− r̂)

For the solution to be well defined, we must have

r̂ ≥
√

1 + 4Aφ− 1

2φ
.

Intuitively, the interest rate needs to be high enough to guarantee that the value of the firm

is finite.
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B.4 Proof of Proposition 1

Proposition 1 is a special case of the general setup discussed above with β = 1. Setting

β = 1, Equation (50) implies that gZ = 1 and gZ − β = 0. This proves the HJB Equation

(21). In addition, the boundary conditions can be shown by following the argument in the

proof of Lemma 1 in Ai and Li (2015).

C Aggregation

In this section, we close the model by demonstrating that in the case of β = 1, the aggregate

capital stock Kt grows at the same rate as Zt, and the allocations constructed from the

optimal contracting problem satisfy the aggregate market clearing condition (13). We also

derive an ODE that characterizes the cross-sectional distribution of promised utility that is

needed for aggregation.

We define kj,t =
Kj,t
Zt

. From Equation (3), in equilibrium, kj,t must satisfy

dkj,t = kj,t
[
(i(uj,t)− δ) dt+ σTdBj,t

]
, (54)

where i(u) is the optimal policy described in Proposition 1. In addition, for each j, let uj,t

be defined as in Equation (51) where BO and BU are interpreted as firm-j specific Brownian

motions. Given the process of kj,t and uj,t, let Φ (u, k) be the invariant distribution of

(uj,t, kj,t). Note that under the assumption that β = 1, the law of motion of uj,t does not

depend on aggregate shock BZ,t, as a result, the distribution Φ (u, k) does not depend on

Zt.
31

We construct firm-level managerial compensation, investment, and dividend payout

policies as Cj,t = c(uj,t)kj,tZt, Ij,t = i(uj,t)kj,tZt, and Dj,t = [A− c(uj,t)− h(i(uj,t))] kj,tZt.

31Φ (u, k) can be characterized as the solution to a forward equation. However, an explicit characterization
of this distribution is unnecessary. Numerically, it is enough to compute an appropriately defined projection
of Φ (u, k) onto the space of u, which we define as the summary measure m.

55



We define firm-owner consumption as CF,t = (1 − α)Yt +
∫
Dj,tdj. That is, firm owners

consume all labor income and dividend payment. To see that this construction satisfies the

resource constraint, note that

∫
Cj,tdj +

∫
h(ij,t)Kj,tdj + CF,t =

∫
Cj,tdj +

∫
h(ij,t)Kj,tdj + (1− α)Yt +

∫
Dj,tdj

=

∫
AKj,tdj + (1− α)Yt

= Yt,

where the last line uses condition (33).

To construct the balanced growth path, we first define a summary measure that can be

used to compute the market clearing conditions. For every u, define

m (u) =

∫
kΦ (u, k) dk.

Intuitively, m(u) is the total amount of k for a given firm type u. Because policy functions

are homogeneous with respect to k, the summary measure contains all the information in the

two dimensional distribution Φ (u, k) that is needed to compute aggregate quantities.

We can compute the aggregate managerial compensation as

∫
C (uj,tKj,t, Kj,t) dj =

∫
c(uj,t)Kj,tdj

=

∫
c(uj,t)kj,tdj × Zt

=

∫
kc (u) Φ (u, k) dudk × Zt

=

∫
c (u)φ (u) du× Zt.

Note that the term
∫
c (u)φ (u) du is time invariant. As a result, aggregate managerial
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compensation is proportional to Zt. Similarly, aggregate capital stock is

∫
Kj,tdj =

∫
kj,tdj × Zt =

∫
m (u) du× Zt.

It follow that Kt grows at the same rate as Zt, which verifies our conjecture in Appendix A

that Kt = K0
Zt
Z0

. Now we can use Equation (33) to compute the aggregate output as

Yt =
1

α
Z1−α

0 Kt =
1

α
Z1−α

0

∫
m (u) du× Zt. (55)

The above equation implies that Yt also grows at the same rate as Zt. We can similarly

prove that CF,t grows at the same rate as Zt, which verifies Equation (34) in Appendix A.

Finally, we present a differential equation that describes the summary measure m(u).

According to Equation (51), when β = 1, gZ − β = 0, the law of motion of the normalized

continuation utility satisfies Equation (22), where

µu(u) =

−ρ+κ
1−γ

((
c(u)
u

)
− 1
)
− (i(u)− δ + µZ) + 1

2
γ (g2

O(u)σ2
O + g2

U(u)σ2
U)

− (gO(u)− 1)σ2
O − (gU(u)− 1)σ2

U

 . (56)

Therefore, numerically, we can compute the summary measure m (u) by solving the following

forward equation:32

0 = m̄(u)− (κ− (i(u)− δ + µZ))m(u)− d

du

[
m(u)µu(u) + u

(
(gO(u)− 1)σ2

O + (gU(u)− 1)σ2
U

)]
+

1

2

d2

du2

(
m(u)u2

(
(gO(u)− 1)2 σ2

O + (gU(u)− 1)2 σ2
U

))
.

32For a detailed derivation of the summary measure for a similar problem, see Ai, Kiku, Li, and Tong
(2021).
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D Details of the Counter-Factual Exercise

In the decomposition in Equation (30), when constructing
∫
C (K,U |Θ0) Φ̄ (dK, dU |Θ0), we

let C (K,U |Θ0) be the optimal consumption policy function for the case with no moral

hazard. We compute the stationary distribution Φ̄ (dK, dU |Θ0) using the law of motion of K

in Equation (46) and the law of motion of u in Equation (51) where i(u) is the optimal policy

function without moral hazard, but gU and gO are the optimal policies with moral hazard.

That is, we let moral hazard distort the intertemporal allocation of consumption but not the

current-period consumption.

E Construction of CEO Wealth

Executive compensation data over the 1992–2019 time period come from the Standard &

Poor’s ExecuComp database that contains information on salary, bonuses, stock and options

grants, and other forms of payouts that are reported by companies according to the SEC

reporting requirements. We define CEO wealth at the end of fiscal year t as:

Wt = SALARYt + BONUSt + ALLOTHTOTt + OTHANNt + SHRS UNVEST VALt (57)

+ Vstock,t + Voption,t + Divt + TradingGainst + PVt(future payouts)

where the variables is all capital letters correspond to ExecuComp data definitions, in

particular SALARYt and BONUSt are the base salary and bonus earned by an executive

in fiscal year t, ALLOTHTOTt accounts for severance payments, tax reimbursements, 401K

contributions, signing bonuses, etc., OTHANNt includes other miscellaneous items, and

SHRS UNVEST VALt is the market value of restricted shares held by an executive as of

fiscal year end. Vstock,t and Voption,t are the market values of shares and stock options

owned, Divt and TradingGainst are dividends and net revenue from stock trading, and

PVt(future payouts) is the present value of future payoffs.

The market value of stock holdings is computed by multiplying the reported
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number of shares owned (SHROWN TOTt) by the end-of-fiscal year price (pt):

Vstock,t = SHROWN TOTt ∗ pt. Different approaches have been employed in the literature

to measure of the market value of stock options owned by an executive. One

straightforward approach considered in Aggarwal and Samwick (1999), and Clementi and

Cooley (2009) is to rely on the reported value of the in-the-money vested and unvested

options (OPT UNEX EXER EST VAL+OPT UNEX UNEXER EST VAL). This measure,

however, does not account for the value of exercisable and un-exercisable options that are

currently out-of-the-money. To address this limitation, we consider an alternative measure

proposed by Himmelberg and Hubbard (2000) and also considered in Clementi and Cooley

(2009). In particular, we assume that none of the options granted in a current year are

exercisable immediately, we also assume that 25 percent of the options vest each year. Under

these assumptions,

Voption,t = OPTION AWARDS BLK VALUEt + (1− 0.25) ∗OPT UNEX UNEXER NUMt−1 ∗ vun,t (58)

+ (0.25 ∗OPT UNEX UNEXER NUMt−1 + OPT UNEX EXER NUMt−1 −OPT EXER NUMt) ∗ vex,t

where OPT UNEX UNEXER NUMt−1 and OPT UNEX EXER NUMt−1 are the numbers of

un-exercised un-exercisable and un-exercised exercisable options at the beginning of fiscal year

t, OPTION AWARDS BLK VALUEt is the Black-Scholes value of stock options granted, and

OPT EXER NUMt is the number of options exercised in year t. Following Himmelberg and

Hubbard (2000), we assume that the strike prices of exercisable and un-exercisable options

are 0.1pt + 0.3pt−1 + 0.6pt−2 and 0.6pt + 0.3pt−1 + 0.1pt−2, respectively. To compute the

Black-Scholes values of exercisable and un-exercisable options (vex,t and vun,t), we assume

that exercisable and un-exercisable options, on average, mature in three and five years,

respectively. Correspondingly, we use 3- and 5-year constant maturity Treasury bond rates

to proxy for the risk-free rate. We estimate conditional volatility using realized variances of

monthly equity returns over the previous three years. Realized variances and dividend yields

are computed using monthly CRSP data, and all computations are adjusted for stock splits.

We estimate the net revenue from stock trading following the approach of Clementi and

Cooley (2009). In particular, we solve for the net amount of shares purchased in fiscal year

59



t (NetPurchaset) by exploiting the law of motion of shares owned (SHROWN TOTt):

SHROWN TOTt = SHROWN TOTt−1 + OPT EXER NUMt + Vestt + NetPurchaset (59)

where OPT EXER NUMt is the number of shares acquired on option exercise, and Vestt

is the number of vested shares. The latter is obtained using the evolution of the restricted

share holdings, STOCK UNVEST NUMt,

STOCK UNVEST NUMt = STOCK UNVEST NUMt−1 + RSTKGRNTt/pt −Vestt (60)

where RSTKGRNTt is the value of restricted stock granted in year t and pt is the share

price. If the net amount of shares purchased is greater that zero (NetPurchaset > 0), we set

the net revenue from stock trading to zero; otherwise, we estimate the net revenue as:

TradingGainst = max{0, −NetPurchaset ∗ pav,t − Costt} (61)

where pav,t is the average price during fiscal year t, and Costt is the cost of option

exercise. That is, we impose that the net trading profit is non-negative. To estimate

the cost of exercising options, we solve for the strike price using the information on the

value realized from option exercise (OPT EXER VAL) and the amount of exercised options

(OPT EXER NUMt), assuming that options are exercised when the stock price is at its

maximum, i.e.,

OPT EXER VALt = (pmax,t − Striket) ∗OPT EXER NUMt (62)

Costt = OPT EXER NUMt ∗ Striket (63)

where pmax,t is the maximum share price in year t.

Finally, we estimate the present value of future payouts as:

future payout = SALARYt + BONUSt + ALLOTHTOTt −ALLOTHPDt (64)

+ Divt + RSTKGRNTt + OPTION AWARDS BLK VALUEt

PVt(future payouts) =
1

r
future payout (65)
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where ALLOTHTOTt − ALLOTHPDt includes 401K contributions and life insurance

premiums, RSTKGRNTt and OPTION AWARDS BLK VALUEt are the value of restricted

stock grants and the Black-Scholes value of options granted during fiscal year t, respectively,

and r is the discount rate.
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Table 1

Model Parameters

Panel A: Estimated Parameters

Parameter Estimate

σO 0.337 (0.006)

σU 0.099 (0.004)

γ 0.913 (0.072)

ρ 0.004 (0.001)

A 0.168 (0.001)

δ 0.066 (0.001)

φ 0.970 (0.055)

ūMIN 0.035 (0.003)

ū0 0.196 (0.079)

Panel B: Calibrated Parameters

Parameter Value

σZ 0.030

µZ 0.015

ρF 0.030

κ 0.050

α 0.330

Table 1 presents the estimates of the model parameters and their standard errors in parentheses (Panel A) and

the values of the calibrated parameters (Panel B). The estimated parameters include volatility of observable

and unobservable shocks (σO and σU , respectively), risk aversion (γ), the discount rate of the manager (ρ),

the total factor productivity (A), the capital depreciation rate (δ), the adjustment cost parameter (φ), and

parameters that determine the outside option of managers and the initial normalized utility (ūMIN and ū0,

respectively). The set of calibrated parameters consists of volatility of aggregate shocks (σZ), the aggregate

growth rate (µZ), the discount rate of the shareholders (ρF ), the death rate of managers (κ), and the capital

share (α).

67



Table 2

Sample and Model-Implied Moments

Moments Data Model t-stat(Diff)

Power Law 1.184 1.177 0.38

CS-Std of Growth Rates 0.399 0.343 1.88

Growth: P1 (Small) 0.098 0.122 −0.63

P2 0.051 0.071 −1.00

P3 0.027 0.035 −0.81

P4 0.016 0.015 0.26

P5 (Large) 0.003 0.003 0.04

I/K: P1 (Small) 0.186 0.236 −1.19

P2 0.157 0.171 −1.12

P3 0.140 0.126 1.65

P4 0.113 0.104 0.69

P5 (Large) 0.086 0.092 −0.44

PPS: P1 (Small) 0.511 0.544 −0.92

P2 0.517 0.475 1.08

P3 0.533 0.521 0.43

P4 0.590 0.582 0.22

P5 (Large) 0.632 0.658 −0.37

Table 2 reports moments in the data and in the model along with the robust t-statistics for the difference

between sample- and model-implied moments. The set of moments consists of the power law in firm size,

the cross-sectional standard deviation of firms’ growth rates, the median growth and investment rates, and

executive pay-performance sensitivity for the cross section of size-sorted portfolios (P1–P5). Growth rates

are measured in logs, PPS is measured in a panel regression of log growth in CEO wealth on log firm return,

controlling for firm and time fixed effects, and the power law is estimated using firms in the top size-sorted

portfolio. The data are annual, measured in real terms and cover the period from 1992 to 2019.
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Table 3

Estimates of the Constrained Model Specification

Parameter Estimate

σ 0.310 (0.0027)

γ 0.932 (0.0145)

ρ 0.005 (0.0002)

A 0.223 (0.0006)

δ 0.117 (0.0009)

φ 0.229 (0.0091)

ūMIN 0.012 (0.0008)

ū0 0.254 (0.0631)

σ2
O 0.5σ2

σ2
U 0.5σ2

Table 3 presents the estimates of the constrained model specification and their standard errors in parentheses.

The estimated parameters include total volatility (σ), risk aversion (γ), the discount rate of the manager (ρ),

the total factor productivity (A), the capital depreciation rate (δ), the adjustment cost parameter (φ), and

parameters that determine the outside option of managers and the initial normalized utility (ūMIN and ū0,

respectively). The bottom rows show the constrains imposed on volatilities of observable and unobservable

shocks (σO and σU , respectively). The remaining parameters are calibrated as in Panel B of Table 1.
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Table 4

Model-Implied Moments of the Constrained Specification

Moments Data Model t-stat(Diff)

Power Law 1.184 1.292 −2.39

CS-Std of Growth Rates 0.399 0.295 2.32

Growth: P1 (Small) 0.098 0.067 0.84

P2 0.051 0.056 −0.27

P3 0.027 0.023 0.46

P4 0.016 0.008 1.65

P5 (Large) 0.003 0.003 0.02

I/K: P1 (Small) 0.186 0.195 −0.24

P2 0.157 0.180 −1.60

P3 0.140 0.140 0.05

P4 0.113 0.120 −0.55

P5 (Large) 0.086 0.118 −1.85

PPS: P1 (Small) 0.511 0.718 −2.41

P2 0.517 0.689 −2.32

P3 0.533 0.701 −2.43

P4 0.590 0.713 −2.19

P5 (Large) 0.632 0.722 −1.14

Table 4 shows the implications of the constrained model specification detailed in Table 3. We report moments

in the data and in the model, and robust t-statistics for the difference between sample- and model-implied

moments. The set of moments consists of the power law in firm size, the cross-sectional standard deviation of

firms’ growth rates, the median growth and investment rates, and executive pay-performance sensitivity for

the cross section of size-sorted portfolios (P1–P5). Growth rates are measured in logs, PPS is measured in a

panel regression of log growth in CEO wealth on log firm return, controlling for firm and time fixed effects,

and the power law is estimated using firms in the top size-sorted portfolio. The data are annual, measured

in real terms and cover the period from 1992 to 2019.
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Table 5

Cross-Sectional Implications

Panel A: Investment Rates

Data Model

Firm Size Low-β High-β High−Low Low-β High-β High−Low

Small 0.116 0.150 0.034 (2.65) 0.196 0.227 0.031

Large 0.069 0.127 0.057 (2.63) 0.077 0.110 0.033

Large−Small −0.047 −0.023 −0.120 −0.118

(−2.74) (−1.71)

Panel B: Pay-Performance Sensitivity

Data Model

Firm Size Low-β High-β High−Low Low-β High-β High−Low

Small 0.530 0.535 0.004 (0.24) 0.532 0.603 0.071

Large 0.550 0.772 0.222 (4.78) 0.545 0.794 0.249

Large−Small 0.020 0.237 0.013 0.191

(0.57) (4.98)

Panel C: Power Law

Data Model

Low-β High-β High−Low Low-β High-β High−Low

1.64 1.25 −0.39
(−2.80)

1.30 0.99 −0.31

Table 5 presents variation in investment growth rates (Panel A), pay-performance sensitivity (Panel B), and

power-law exponent (Panel C) across 2x3 portfolios sorted by exposure to aggregate risks (β) and size. To

conserve space, the statistics of the mid-size portfolios are omitted. In the data, firm exposure to aggregate

risk is measured by the industry-level market beta estimated using monthly excess returns over the 1992–2019

period. Robust t-statistics for the cross-sectional differences are reported in parentheses. Growth rates are

measured in logs, PPS is measured in a panel regression of log growth in CEO wealth on log firm return,

controlling for firm and time fixed effects, and the power law is estimated using firms in the top size-sorted

portfolio. The sample moments are based on annual data that are measured in real terms and cover the

period from 1992 to 2019.
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Table 6

Policy Experiments

Benchmark Bound on CEO pay ratio Bound on PPS

Output 100 99.85 99.29

CEO pay 100 79.64 122.67

Gini coefficient 0.6385 0.7477 0.6893

Table 6 presents the level of output, CEO pay, and the Gini coefficient of the distribution of CEO

compensation in our benchmark model and in policy experiments. We normalize the level of output and

CEO pay in the baseline model to 100.
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Figure 1. Normalized Value Function

Figure 1 plots the normalized value function. The horizontal axis represents the normalized continuation

utility of the manager, u, and the vertical axis represents the normalized firm value. uMIN and uMAX are

the lower and upper bounds of u respectively.
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Figure 2. Investment Rate and Marginal Cost of Incentive Provision

Figure 2 plots the investment-to-capital ratio i(u) (top panel), the marginal cost of incentive provision,

(ρ+ κ)c(u)−γuγ−1 (middle panel), and the log-log PPS with respect to unobservable shocks, gU (u) (bottom

panel), under the optimal contract as functions of the normalized utility.
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Figure 3. Elasticity of Continuation Utility

The top panel of Figure 3 plots the policy functions for the log-log PPS with respect to observable shocks,

gO (u), and unobservable shocks, gU (u) (solid and dashed lines, respectively). The bottom panel presents

the corresponding functions for the level-level PPS, gO (u) · u and gU (u) · u.
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Figure 4. Manager’s Equity Share and Firm Size

Figure 4 plots the equilibrium relationship between the manager’s equty share (in logs) and firm size under

different assumptions about the relative magnitude of unobservable and observable shocks,
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U

σ2
O

.
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Figure 5. Investment and Firm Size

Figure 5 plots the equilibrium relationship between the average investment-to-capital ratio, i(u), and firm

size under different assumptions about the relative magnitude of unobservable and observable shocks,
σ2
U

σ2
O

.
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Figure 6. Average Elasticity of Continuation Utility and Firm Size

Figure 6 plots the equilibrium relationship between the average elasticity of continuation utility with respect

to observable and unobservable shocks (ξ) and firm size under different assumptions about the relative

magnitude of unobservable and observable shocks,
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σ2
O

.

78



Small 2 3 4 Large

0

0.05

0.10

0.15

(a) Growth Rates

Small 2 3 4 Large

0.08

0.14

0.20

0.26

(b) Investment Rates

Small 2 3 4 Large

0.45

0.50

0.55

0.60

0.65

(c) Pay-Performance Sensitivity

Figure 7. Growth, Investment and Pay-Performance Sensitivity

Figure 7 shows variation in average growth and investment rates, and pay-performance sensitivity across five

size-sorted portfolios. The dotted lines represent the two-standard error band around the point estimates.

Growth rates are measured in logs, PPS is measured in a panel regression of log growth in CEO wealth on

log firm return, controlling for firm and time fixed effects. The data are annual, measured in real terms and

cover the period from 1992 to 2019.
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Figure 8. Implications of Aggregate Risk for Normalized Value Function

Figure 8 plots the normalized value functions for different values of aggregate risk exposure: β = 0.75 (dashed

line), β = 1 (solid line), and β = 1.25 (dash-dotted line).
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Figure 9. Implications of Aggregate Risk for Policy Functions

Figure 9 plots the policy functions, gZ(u) (top panel), gU (u) (middle panel), and i(u) (bottom panel) for

different values of aggregate risk exposure: β = 0.75 (dashed line), β = 1 (solid line), and β = 1.25 (dash-

dotted line). We normalize uMAX so that the domain of u is the same for all specifications.
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Figure 10. Data and Model-Implied Lorenz Curves

Figure 10 shows data- and model-based Lorenz curves (solid and dashed lines, respectively). The data

plot is based on 2018 CEO compensation series, the model plot is based on the estimated baseline model

specification.
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Figure 11. Lorenz Curves for Different Model Specifications

Figure 11 plots the Lorenz curve for our baseline model (solid line), that for the model with an upper bound

on PPS (dashed line), and that for the model with an upper bound on CEO pay ratio (dash-dotted line).
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Figure 12. Implications of a Cap on CEO Pay Ratio

Figure 12 plots the policy functions gU (u) (top panel), c(u) (middle panel), and i(u) (bottom panel) for the

benchmark model (solid line) and the corresponding functions for the model with an upper bound on CEO

pay ratio (dashed line).
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Figure 13. Implications of a Cap on PPS

Figure 13 plots the policy functions gU (u) (top panel), c(u) (middle panel), and i(u) (bottom panel) for the

benchmark model (solid line) and the corresponding functions for the model with an upper bound on log-log

PPS with respect to unobservable shocks, gU (dashed line).
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