
Internet Appendix for “The Collateralizability Premium”

A Proof of propositions

A.1 Proof of Proposition ??

It is convenient to derive the optimality conditions for firms’ profit maximization using the dynamic

programming formulation. Define Vt (Nt) as firms’ value function at time t. We have, for t = 0, 1,

Vt (Nt) = max {Dt + E [Mt+1Nt+1]} (A1)

Dt + qtKt+1 = Nt +Bt (A2)

Nt+1 = At+1Kt+1 + (1− δ) qt+1Kt+1 − rtBt (A3)

Bt ≤ ζqtKt+1 (A4)

Dt ≥ 0. (A5)

We first derive a set of optimality conditions that characterize the equilibrium. Taking first order

conditions of (??) w.r.t. Kt+1 and Bt, we have:

µ̄tqt = E
[
Mt+1µt+1 {At+1 + qt+1(1− δ)}

]
+ ζηt,

µ̄t = E
[
Mt+1µt+1rt

]
+
ηt
qt
.

The envelope condition implies µt = µ̄t, which we can use to simplify the above equations to write:

qt = E

[
Mt+1

µt+1

µt
{At+1 + qt+1(1− δ)}

]
+ ζ

ηt
µt
, (A6)

1 = E

[
Mt+1

µt+1

µt
rt

]
+
ηt
µt

1

qt
. (A7)

Also, note that whenever the collateral constraint is binding, equations (A2) and (A4) can be

combined to write:

(1− ζ) qt [(1− δ)Kt + It] = Nt.

Using the capital producer’s optimality condition, and the functional form of the adjustment cost,
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we have qt = 1 + τ (it − δ). The above equation can be written as:

nt = (1− ζ) [1 + τ (it − δ)] [1 + it − δ] . (A8)

Note that equation (A8) implicitly define i as a function of n, which we denote as i (n). Given the

definition of i (n), we can write Tobin’s q as qt = 1 + τ [i (nt)− δ], and normalized consumption as

ct = c (At, nt), where

c (A,n) ≡ A− i (n)− 1

2
τ [i (n)− δ]2 . (A9)

Using the above results, we can solve for the prices and quantities in period 1. In period 2,

all of firms’ cash flow are paid back to household as consumption goods. Therefore µ2 = 1. In

addition, capital is valueless at the end of period 2 and q2 = 0. Therefore equations (A6) can

be written as µ1q1 = E [M2A2] + ζη1, and equation (A7) can be written as µ1 = E [M2] r1 + η1
q1

.

Under the assumption of log preference, M2 = C1
C2

= A1K1−H(I1,K1)
A2K2

= c(A1,n1)
A2[(1−δ)+i(n1)] , and therefore,

M2A2 = c(A1,n1)
(1−δ)+i(n1) . Also, the household’s intertemporal Euler equation implies E [M2r1] = 1.

Equations (A6) and (A7) can be further simplified as:

q1 =
1

µ1

c (A1, n1)

(1− δ) + i (n1)
+ ζ

η1

µ1

, (A10)

µ1 = 1 +
η1

q1
. (A11)

Combining equations (A10) and (A11), and using the fact that q1 = 1 + τ [i (n1)− δ], we can

determine η1 and µ1 as functions of (n1, A1):

η1 (A1, n1) =
1

1− ζ

{
A1 − i (n1)− 1

2τ [i (n1)− δ]2

1− δ + i (n1)
− [1 + τ (i (n1)− δ)]

}
, (A12)

and

µ1 (A,n) = 1 +
η1 (A,n1)

1 + τ (i (n1)− δ)
. (A13)

Equation (??) then follows directly from (A10), (A12), and (A13).

To derive the law of motion of n1, note that the binding collateral constraint in period 0 implies

B0 = ζq0K1. Equation N1 = A1K1 + p1K1 − r0B0 therefore implies

n1 = A1 − (1− δ) q1 − r0ζq0. (A14)
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Using the households’ consumption Euler equation, we express the interest r0 as a function of

consumption:

r0 =
1

βE
[
C0
C1

] =
1

βc (A0, n0)

1

E
[

1
c(A1,n1)

] . (A15)

Equation (??) then follows from (A14) and (A15) by noting qt = 1 + τ [i (nt)− δ].

A.2 Proof of Proposition ??

We prove Proposition 2 in two steps. First, we construct an equilibrium and show that under the

assumptions of parameter values, the collateral constraint (A4) for both period 0 and period 1 binds.

Second, we explicitly solve for the expression of the Lagrangian multipliers η1 and µ1 to verify the

counter-cyclicality of η1
µ1

, i.e., inequality (??).

Proposed equilibrium prices and quantities Note that under the assumption of β = τ =

δ = 1, the i (n) function in (A8) and c (A,n) function in (A9) take simple forms:

i (n) =

√
n

1− ζ
, c (A,n) = A− 1

2
− 1

2

n

1− ζ
. (A16)

We propose the following equilibrium prices and quantities and verify that they indeed satisfy the

above listed equilibrium conditions:1

ct = c (At, nt) ; it = i (nt) ; qt = 1 + τ [i (nt)− δ] , t = 0, 1 (A17)

η1 = η1 (A,n) , µ1 = µ1 (A,n) , (A18)

where

η1 (A,n) =
1√

1− ζ
√
n

{
A− 1

2
− 3

2

n

1− ζ

}
, (A19)

µ1 (A,n) = 1 +
1

n

{
A− 1

2
− 3

2

n

1− ζ

}
. (A20)

and the first period net worth is given by:

n1 = n (A1|n0) = A1 − x (n0) , (A21)

1Because all optimization problems are convexity programming problems, the first order conditions are
both necessary and sufficient.
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where x (n0) is given by equation (A23) below.

It is straight forward to show that the proposed prices and quantities satisfy the first order

conditions (A6) and (A7). Below we verify that under our assumptions, the constructed Lagrangian

multipliers are strictly positive, and therefore, the proposed allocation is indeed an equilibrium in

which the collateral constraints are binding in both periods.

Verifying equilibrium conditions We verify that the collateral constraint must be binding

under the proposed prices and quantities through a sequence of lemmas.

Lemma 1. (Law of motion of net worth)

The law of motion of net worth can be written as

n (A|n0) = A− x (n0) .

Given A1 >
1−ζ
1−2ζ , x (n0) is strictly increasing with x (0) = 0 and lim

n0→2(1−ζ)2(A0− 1
2)
x (n0) =∞.

Proof. Because β = 1, δ = 1, we can write equation (??) as n (A|n0) = A− ζ i2(n0)
c(A0,n0)

1

E
[

1
c(A,n(A|n0))

] .

Using the definition of i (n) and c (A,n), n (A|n0) = A − x, where x is implicitly defined as x =

ζ
1−ζ

n0

A0− 1
2
− n0

2(1−ζ)

1

E
[

1
c(A,n(A|n0))

] . Note that by the definition of c (A,n) (equation (A16)), with n1 =

A1 − x, we have

c (A1, n1) = A1 −
1

2
− 1

2

A1 − x
1− ζ

=
x

2 (1− ζ)
+

[
1− 1

2 (1− ζ)

]
A1 −

1

2
. (A22)

Therefore, x (n0) as a function of n0 is defined by the solution to the following equation:

E

 x

x
2(1−ζ) +

[
1−2ζ

2(1−ζ)A1 − 1
2

]
 =

ζ

1− ζ
n0

A0 − 1
2 −

n0
2(1−ζ)

. (A23)

Under the condition that A1 > 1−ζ
1−2ζ , the left-hand side is an increasing function of x, and as

x increases from 0 to ∞, E

[
x

x
2(1−ζ)+

[
1−2ζ
2(1−ζ)A1− 1

2

]
]

increases from 0 to 2 (1− ζ). In addition, the

right-hand side of equation (A23) is a strictly increasing function of n0, and as n0 increases from

0 to 2 (1− ζ)2 (A0 − 1
2

)
, the right-hand side increases from 0 to 2 (1− ζ). As a result, equation
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(A23) defines x (n0) as a strictly increasing function that maps n0 ∈
(

0, 2 (1− ζ)2 (A0 − 1
2

))
to

x ∈ (0,∞).

The next lemma provide conditions under which the collateral constraint must be binding in

period 1.

Lemma 2. (Binding constraint for period 1)

Assume

x (n0) >
2

3
A1, (A24)

then the collateral constraint in period 1 is binding for all realizations of A1, that is, η1 (A1, n1) > 0.

Proof. By equation (A19), the borrowing constraint binds, that is, η1 (A1, n1) > 0 if and only if

A1 −
1

2
>

3

2

n1

1− ζ
. (A25)

Using n1 = A1 − x (n0), the above condition can be written as

3

2 (1− ζ)
x (n0) >

(
3

2 (1− ζ)
− 1

)
A1 +

1

2
. (A26)

Note that under condition A1 >
1−ζ
1−2ζ , 1−2ζ

2(1−ζ)A1 >
1
2 . Therefore, a sufficient condition for (A25) is

3

2 (1− ζ)
x (n0) >

(
3

2 (1− ζ)
− 1 +

1− 2ζ

2 (1− ζ)

)
A1 =

2

2 (1− ζ)
A1,

which is equivalent to (A19).

Our next lemma provides conditions under which the collateral constraint is binding in period

0.

Lemma 3. Suppose

n0 <
1

2
(1− ζ)

(
A0 −

1

2

)
(A27)

and

x (n0) <
1

2 + ζ

[
(1 + 2ζ)A1 +

1

2
(1− ζ)

]
, (A28)

then the collateral constraint in period 0 must be binding, that is, η0 > 0.
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Proof. Combining equations (A6) and (A7), η0 > 0 if and only if

E [M1µ1 (A1 + (1− δ) q1)] > E [M1µ1] r0q0.

Using the fact that M1 = c(A0,n0)
c(A1,n1)i(n0) and r0 = 1

E[M1] , the above condition can be written as:

E
[

µ1A1

c(A1,n1)

]
E
[

1
c(A1,n1)

]
E
[

µ1
c(A1,n1)

] (
A0 −

1

2
− 1

2 (1− ζ)
n0

)
>

n0

1− ζ
. (A29)

We first show that
E
[

µ1A1

c(A1,n1)

]
E
[

1
c(A1,n1)

]
E
[

µ1
c(A1,n1)

] >
2 (2 + ζ)

2ζ + 3
. (A30)

To see this, using (A22), we have

c (A1, n1)

A1
=

x
2(1−ζ) +

[
1− 1

2(1−ζ)

]
A1 − 1

2

A1

<

x
2(1−ζ) +

[
1− 1

2(1−ζ)

]
A1

A1

Under assumption (A28), x (n0) < 1+2ζ
2+ζ A1 and therefore,

c (A1, n1)

A1
<

1

2 (1− ζ)

1 + 2ζ

2 + ζ
+

[
1− 1

2 (1− ζ)

]
=

2ζ + 3

2 (2 + ζ)
. (A31)

As a result,

E

[
µ1A1

c (A1, n1)

]
E

[
1

c (A1, n1)

]
= E

[
µ1A1

c (A1, n1)

]
E

[
A1

c (A1, n1)

1

A1

]
>

2 (2 + ζ)

2ζ + 3
E

[
µ1A1

c (A1, n1)

]
E

[
1

A1

]
>

2 (2 + ζ)

2ζ + 3
E

[
µ1

c (A1, n1)

]
,

where the first inequality uses (A31) and the second inequality above uses the fact that µ1A1

c(A1,n1) is

increasing in A1 and therefore negatively correlated with 1
A1

. This establishes (A30).

Given (A30), a sufficient condition for (A29) is

2ζ + 3

2 (2 + ζ)

(
A0 −

1

2
− 1

2 (1− ζ)
n0

)
>

n0

1− ζ
. (A32)
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To see the above inequality holds, note that assumption (A27) implies

A0 −
1

2
>

2

1− ζ
n0.

Therefore,

A0 −
1

2
− 1

2 (1− ζ)
n0 >

3

2 (1− ζ)
n0 >

2 (2 + ζ)

2ζ + 3
n0,

which proves (A31).

To summarize the above results, we define n∗ and n̂ as follows. We denote x−1 to be the inverse

function of x (n0) defined in (A23), which is a strictly increasing function due to our previous

discussion. We denote Amin to be the lowest possible realization of A1 and Amax to be the highest

possible realization of A1. We set

n∗ = min

{
x−1

(
2

3
Amax

)
,

1

2
(1− ζ)

(
A0 −

1

2

)}
; (A33)

n̂ = x−1

(
1

2 + ζ

[
(1 + 2ζ)Amin +

1

2
(1− ζ)

])
. (A34)

By the above lemmas, if n0 ∈ (n∗, n̂), the collateral constraints in both periods are binding.

Monotonicity of the Lagrangian multiplier In this section, we prove that under the

conditions outlined in the previous section, (??) holds by establishing that η(n1,A1)
µ(n1,A1) is a strictly

decreasing function of A1.

Lemma 4. (Monotonicity of the Lagrangian multiplier)

Under the assumption of n0 ∈ (n∗, n̂),

d

dA1

[
η (n1, A1)

µ (n1, A1)

]
< 0,

that is, the Lagrangian multiplier component of asset price (??) is counter-cyclical.

Proof. Using equations (A19) and (A20), we have

η (n1, A1)

µ (n1, A1)
=

√
n1

1− ζ
A1 − 1

2 −
3
2
n1

1−ζ

A1 − 1
2 −

(
3
2

1
1−ζ − 1

)
n1

.
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Using the law of motion of net worth, n1 = A1 − x, we have:

η (n1, A1)

µ (n1, A1)
=

√
A1 − x
1− ζ

3
2(1−ζ)x−

1
2 −

(
3

2(1−ζ) − 1
)
A1(

3
2(1−ζ) − 1

)
x− 1

2 −
(

3
2(1−ζ) − 2

)
A1

.

Therefore,

d

dA1
ln

[
η (n1, A1)

µ (n1, A1)

]
=

1

2

1

A1 − x
−

3
2(1−ζ) − 1

3
2(1−ζ)x−

1
2 −

(
3

2(1−ζ) − 1
)
A1

+

3
2(1−ζ) − 2(

3
2(1−ζ) − 1

)
x− 1

2 −
(

3
2(1−ζ) − 2

)
A1

To save notation, we denote a = 3
2(1−ζ) − 1. We have:

d

dA1
ln

[
η (n1, A1)

µ (n1, A1)

]
=

1

2

1

n1
− a

x− 1
2 − an1

+
a− 1

x− 1
2 − (a− 1)n1

=

(
x− 1

2

) [
x− 1

2 − 2an1

]
− n1

[
x− 1

2 − a (a− 1)n1

]
.

2n1

[
x− 1

2 − an1

] [
x− 1

2 − (a− 1)n1

]
It is straightforward to show that condition (A25) implies x − 1

2 − (a− 1)n1 > x − 1
2 − an1 > 0.

We only need to show that the denominator is negative. Since ζ < 1
2 , (a− 1) < 1 and

(
x− 1

2

)[
x− 1

2
− 2an1

]
− n1

[
x− 1

2
− a (a− 1)n1

]
<

(
x− 1

2

)[
x− 1

2
− 2an1

]
− n1

[
x− 1

2
− 2an1

]
=

(
x− 1

2
− n1

)[
x− 1

2
− 2an1

]
.

Also, ζ > 1
4 implies a > 1. Therefore, x − 1

2 − an1 > 0 implies x − 1
2 > n1. It remains to show

x− 1
2 − 2an1 < 0. Using the definition a = 3

2(1−ζ) − 1, under assumption (A28),

x− 1

2
− 2an1 = x− 1

2
− 2a (A1 − x)

=

(
3

(1− ζ)
− 1

)
x− 1

2
−
(

3

(1− ζ)
− 2

)
A1

< 0,

which completes the proof.

A.3 Proof of Proposition ??

We prove Proposition ?? in two steps: first, given prices, the quantities satisfy the household’s
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and the entrepreneurs’ optimality conditions; second, the quantities satisfy the market clearing

conditions.

To verify the optimality conditions, note that the optimization problems of households and

firms are all standard convex programming problems; therefore, we only need to verify first order

conditions. Equation (??) is the household’s first-order condition. Equation (??) is a normalized

version of resource constraint (??). Both of them are satisfied as listed in Proposition ??.

To verify that the entrepreneur i’s allocations {Ni,t, Bi,t,Ki,t, Hi,t, Li,t} as constructed in Propo-

sition ?? satisfy the first order conditions for the optimization problem (??), note that the first order

condition with respect to Bi,t implies

µit = Et

[
M̃t+1

]
Rft +

ηit
qK,t

. (A35)

Similarly, the first order condition for Ki,t+1 is

µit = Et

[
M̃ i
t+1

∂
∂Ki,t+1

π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
+ (1− δ) qK,t+1

qK,t

]
+ ζ

ηit
qK,t

. (A36)

Finally, optimality with respect to the choice of type-H capital implies

µit = Et

[
M̃ i
t+1

∂
∂Hi,t+1

π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
+ (1− δ) qH,t+1

qH,t

]
. (A37)

Next, the law of motion of the endogenous state variable n can be constructed from equation

(??):2

n′ = (1− λ)
[
ανA′ + φ (1− δ) qK

(
A′, n′

)
+ (1− φ) (1− δ) qH

(
A′, n′

)
− ζφqK (A,n)Rf (A,n)

]
+λχ

n

Γ (A,n)
. (A38)

With the law of motion of the state variables, we can construct the normalized utility of the

2We make use of the property that the ratio of K over H is always equal to φ/(1− φ), as implied by the
law of motion of the capital stock in (??).
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household as the fixed point of

u (A,n) =

{
(1− β)c (A,n)

1− 1
ψ + βΓ (A,n)

1− 1
ψ (E[u

(
A′, n′

)1−γ
])

1− 1
ψ

1−γ

} 1

1− 1
ψ

.

The stochastic discount factors must be consistent with household utility maximization:

M ′ = β

[
c (A′, n′) Γ (A,n)

c (A,n)

]− 1
ψ

 u (A′, n′)

E
[
u (A′, n′)1−γ

] 1
1−γ


1
ψ
−γ

(A39)

M̃ ′ = M ′[(1− λ)µ
(
A′, n′

)
+ λ]. (A40)

In our setup, thanks to the assumptions that the idiosyncratic shock zi,t+1 is observed before the de-

cisions on Ki,t+1 and Hi,t+1 are made, we can construct an equilibrium in which µit and ηit are equal-

ized across all the firms because ∂
∂Hi,t+1

π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
= ∂

∂Ki,t+1
π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
are the same for all i.

Our next step is to verify the market clearing conditions. Given the initial conditions (initial

net worth N0, K1
H1

= φ
1−φ , Ni,0 = zi,1N0) and the net worth injection rule for the new entrant firms

(N entrant
t+1 = χNt for all t), we establish the market clearing conditions through the following lemma.

For simplicity, we assume the collateral constraint to be binding. The case in which this constraint

is not binding can be dealt with in a similar way.

Lemma 5. The optimal allocations {Ni,t, Bi,t,Ki,t+1, Hi,t+1} constructed as in Proposition ??

satisfy the market clearing conditions, i.e.,

Kt+1 =

∫
Ki,t+1 di, Ht+1 =

∫
Hi,t+1 di, Nt =

∫
Ni,t di (A41)

for all t ≥ 0.

First, in each period t, given prices and Ni,t, the individual entrepreneur i’s capital decisions

{Ki,t+1, Hi,t+1} must satisfy the condition

Ni,t = (1− ζ) qK,tKi,t+1 + qH,tHi,t+1 (A42)

and the optimal decision rule (??). Equation (A42) is obtained by combining the entrepreneur’s

budget constraint (??) with a binding collateral constraint (??).
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Next, we show by induction, that, given the initial conditions, market clearing conditions (A41)

hold for all t ≥ 0. In period 0, we start from the initial conditions. First, Ni,0 = zi,1N0, where zi,1

is chosen from the stationary distribution of z. Then, given zi,1 for each firm i, we use equations

(A42) and (??) to solve for Ki,1 and Hi,1. Clearly, Ki,1 = zi,1K1 and Hi,1 = zi,1H1. Therefore, the

market clearing conditions (A41) hold for t = 0, i.e.,

∫
Ki,1 di = K1,

∫
Hi,1 di = H1,

∫
Ni,0 di = N0. (A43)

To complete the induction argument, we need to show that if market clearing holds for t + 1, it

must hold for t+ 2 for all t, which is the following claim:

Claim 1. Suppose
∫
Ki,t+1 di = Kt+1,

∫
Hi,t+1 di = Ht+1 ,

∫
Ni,t di = Nt, and N

entrant
t+1 = χNt,

then ∫
Ki,t+2di = Kt+2

∫
Hi,t+2di = Ht+2

∫
Ni,t+1di = Nt+1 (A44)

for all t ≥ 0.

1. Using the law of motion for the net worth of existing firms, one can show that the total net

worth of all surviving firms can be rewritten as follows:

(1− λ)

∫
Ni,t+1di

= (1− λ)

∫
[At+1 (Ki,t+1 +Hi,t+1) + (1− δ) qK,t+1Ki,t+1 + (1− δ) qH,t+1Hi,t+1 −Rf,tBi,t] di,

= (1− λ) [At+1 (Kt+1 +Ht+1) + (1− δ) qK,tKt+1 + (1− δ) qH,tHt+1 −Rf,tBt] ,

since by assumption
∫
Ki,t+1 di = Kt+1,

∫
Hi,t+1 di = Ht+1 , and

∫
Bi,t di = Bt = ζqK,tKt+1.

Using the assignment rule for the net worth of new entrants, N entrant
t+1 = χNt, we can show

that the total net worth at the end of period t+ 1 across survivors and new entrants together

satisfies
∫
Ni,t+1 di = Nt+1, where aggregate net worth Nt+1 is given by equation (??).

2. At the end of period t+ 1, we have a pool of firms consisting of old ones with net worth given

by (??) and new entrants. All of them will observe zi,t+2 (for the new entrants zi,t+2 = z̄)

and produce at the beginning of the period t+ 1.

We compute the capital holdings for period t + 2 for each firm i using (A42) and (??). At

this point, the capital holdings and the net worth of all existing firms will not be proportional

to zi,t+2 due to heterogeneity in the shocks. However, we know that
∫
Ni,t+1 di = Nt+1, and
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∫
zi,t+2 di = 1. Integrating (A42) and (??) across all i yields the two equations

(1− ζ) qK,t+1

∫
Ki,t+2 di+ qH,t+1

∫
Hi,t+2 di = Nt+1 (A45)∫

Ki,t+2 di+

∫
Hi,t+2 di = Kt+2 +Ht+2, (A46)

where we have used
∫
Ni,t+1 di = Nt+1 and

∫
zi,t+2 di = 1. Given that the constraints of all

entrepreneurs are binding, the budget constraint (A42) also holds at the aggregate level, i.e.,

Nt+1 = (1− ζ) qK,t+1Kt+2 + qH,t+1Ht+2.

Together with the above system, this implies
∫
Ki,t+2di = Kt+2 and

∫
Hi,t+2di = Ht+2.

Therefore, the claim is proved.

In summary, we have proved that the equilibrium prices and quantities constructed in Propo-

sition ?? satisfy the household’s and entrepreneur’s optimality conditions, and that the quantities

satisfy market clearing conditions.

Finally, we provide a recursive relationship that can be used to solve for θ (A,n) given the

equilibrium constructed in Proposition ??. The recursion (??) implies

µtNi,t + θtzi,t+1 (Kt +Ht) =EtMt+1

[
(1− λ)

(
µt+1Ni,t+1 + θt+1 (Kt+1 +Ht+1) zi,t+2

)
+ λNi,t+1

]
=EtMt+1

[{
(1− λ)µt+1 + λ

}
Ni,t+1

]
+ (1− λ) zi,t+1Et [Mt+1θt+1 (Kt+1 +Ht+1)] .

(A47)

Below, we first focus on simplifying the term EtMt+1

[{
(1− λ)µt+1 + λ

}
Ni,t+1

]
. Note that a

binding collateral constraint together with the entrepreneur’s budget constraint (??) implies

(1− ζ) qK,tKi,t+1 + qH,tHi,t+1 = Ni,t. (A48)

Equation (A48) together with the optimality condition (??) determine Ki,t+1 and Hi,t+1 as functions

of Ni,t and zi,t+1:

Ki,t+1 =
qH,tzi,t+1 (Kt+1 +Ht+1)−Ni,t

qH,t − (1− ζ) qK,t
; Hi,t+1 =

Ni,t − (1− ζ) qK,tzi,t+1 (Kt+1 +Ht+1)

qH,t − (1− ζ) qK,t
. (A49)

Using Equation (A49) and the law of motion of net worth (??), we can represent Ni,t+1 as a linear

12



function of Ni,t and zi,t+1:

Ni,t+1 = zi,t+1αAt+1 (Kt+1 +Ht+1) + (1− δ) qK,t+1
qH,tzi,t+1 (Kt+1 +Ht+1)−Ni,t

qH,t − (1− ζ) qK,t

+ (1− δ) qH,t+1
Ni,t − (1− ζ) qK,tzi,t+1 (Kt+1 +Ht+1)

qH,t − (1− ζ) qK,t
−Rf,tζqK,t

qH,tzi,t+1 (Kt+1 +Ht+1)−Ni,t

qH,t − (1− ζ) qK,t
.

Because we are only interested in the coefficients on zi,t+1, collecting the terms that involves zi,t+1

on both sides of (A47), we have:

θtzi,t+1 (Kt +Ht) = zi,t+1 (Kt+1 +Ht+1)× Term,

where

Term = Et

M̃t+1

 αAt+1 + (1− δ) qK,t+1
qH,t

qH,t−(1−ζ)qK,t

− (1− δ) qH,t+1
(1−ζ)qK,t

qH,t−(1−ζ)qK,t −Rf,tζqK,t
qH,t

qH,t−(1−ζ)qK,t


+(1− λ)Et [Mt+1θt+1] .

We can simplify the first term using the first order conditions (??)-(??) to get

Et

[
M̃t+1 {α (1− ν)At+1}

]
.

Therefore, we have the following recursive relationship for θ (A,n):

θ (A,n) = [1− δ + i (A,n)]
{
α (1− ν)E

[
M ′
{
λ+ (1− λ)µ

(
A′, n′

)}
A′
]

+ (1− λ)E
[
M ′θ

(
A′, n′

)]}
.

(A50)

The term α (1− ν)A′ is the profit for the firm due to decreasing return to scale. Clearly, θ (A,n)

has the interpretation of the present value of profit. In the case of constant returns to scale,

θ (A,n) = 0.

B Empirical Analysis

In this section, we provide empirical evidence on the relation between collateralizability and the

cross-section of stock returns. First and most importantly, we show that high asset collateralizability

firms have lower cash flow betas with respect two alternative proxies for financial shocks. Second,

we conduct standard ? two-pass regression and show the proxies of financial shocks are significantly

negatively priced. High collateralizability firms are less negatively exposed to these shocks. These
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two pieces of evidence taken together strongly corroborate the model mechanism that collateralizable

assets provide an insurance against aggregate shocks. We then perform other standard multi-

factor asset pricing tests, and investigate the joint link between collateralizability and other firm

characteristics on one hand and future stock returns on the other using multivariate regressions.

B.1 Cash flow risks of collateralizability-sorted portfolios

Our theory suggests that the collateralizability premium comes from the countercyclicality of the

marginal value of collateralizable capital. In our model, firms, rather than households, directly

trade physical assets directly, because they are more efficient than households in deploying these

assets. Since firms are constrained, type-K and type-H capital, whose prices contain a Lagrangian

multiplier component, can have different prices and expected returns even though they generate

identical cash flows from the firm’s perspective (measured in net worth units). The counter-cyclical

nature of the Lagrangian multiplier provides a hedge against aggregate shocks and makes the price of

collateralizable capital less sensitive to aggregate shocks and less cyclical. However, it is important

to note, in our model, households are not constrained and free to trade the firms’ equity and debt,

so that differences in expected returns on the firms’ equity must be due to differences in the cash

flows accruing to equity holders (measured in consumption units). Put differently, the Lagrangian

multiplier component of asset prices affects the risk exposure of cash flows to the equity holders, i.e.,

to households. We measure the cash flow to equity holders and show empirically at the portfolio

level that the equity cash flows of firms with high asset collateralizability exhibit a lower, i.e., less

negative, sensitivity respect to financial shocks, consistent with the model simulation.

We consider two alternative proxies for financial shocks: the change in the general cost of

external finance (debt and equity) as suggested by ? (∆EM), and the log change in the cross-

sectional dispersion of firm-level cash flow growth (∆σCS), similar in spirit to ?.

When we measure the cash flow accruing to equity holders at the portfolio level, we follow

? and first aggregate cash flow (represented by EBIT) across the firms in a given portfolio and

then normalize this sum by the total lagged sales (SALE) of that portfolio. We then compute the

sensitivity, i.e., the beta, of the portfolio cash flow growth with respect to the two proxies of financial

shocks. The results are reported in Table B.1.
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We make several observations. First and importantly, one can see from Panel A, the cash

flow betas with respective the equity finance cost shock (∆EM) display a monotonically increasing

pattern from low to high collateralizability portfolios, and cash flow beta of low collateralizability

portfolio is statistically significantly more negative that that of high collateralizability portfolio. In

particular, the high collateralizability quintiles 4 and 5 exhibit insignificantly negative betas. This

again highlights the main economic mechanism of our model that collateralizable assets provide an

insurance against aggregate shocks. We also find this increasing pattern of cash flow betas across

collateralizabilty portfolios with respect to ∆σCS , although the cash flow beta difference is less

significant.

Finally, to precisely connect the empirical evidence to our model, we run the same test based

on data from a simulation of our model. As we show in Panel B of Table B.1, our model produces

the same increasing pattern of cash flow betas with respective to two alternative simulated proxies

of financial shocks across collateralizability-sorted portfolios. First, we directly use the innovation

to the entrepreneurs’ exit probability, εx.

Second, we construct the log change in the cross-sectional dispersion of cash flow growth (∆σCS)

in a similar procedure as in the data. In our simulated model, this shock is positively correlated

with innovations in λ, because higher values of λ in our model lower firm net worth and increase

leverage. These effects make firm cash flow more sensitive to primitive productivity shocks including

idiosyncratic productivity shocks. As a result, in our model, the cross section dispersion of cash

flow growth is strongly positively correlated with shocks to λ. The ? measure therefore backs out

the structural shocks to λ and can explain the cross-section of collateralizability-sorted portfolios.

In Table B.1, we report that cash flow betas of collateralizability-sorted portfolios with respect to

this proxy display the same increasing pattern as the ones with structural shocks to λ. The results

strongly confirm our key model mechanism and are consistent with the data.

B.2 Collateralizability spreads and financial shocks

In this section, we provide empirical evidence for the link between the collateralizability spread and

financial shocks consistent with our model interpretation.

Empirically, we consider a two-factor asset pricing model with the market (Mkt) and one of
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Table B.1: Cash Flow Exposure to the Financial Shock

This table shows the sensitivity of cash flows of collateralizability-sorted portfolios to the financial shock.

Panel A and B report exposure coefficients from empirical data and model simulated data, respectively.

The portfolio-level normalized cash flow is constructed by aggregating cash flow (EBIT) within each quintile

portfolio, and then dividing it by the lagged sales of the same portfolio. In Panel A (data), we report the

regression coefficients from regressing portfolio-level normalized cash flow on two alternative empirical proxies

of the financial shocks: ∆EM and ∆σCS . ∆EM is the first difference of average external finance cost from

?. ∆σCS is the log change of the dispersion of firm-level cash flow growth. In the model (Panel B), we

regress cash flow growth of each portfolios on two alternative proxies of financial shocks: the innovation to

the liquidation probability εx and the log change of the dispersion of portfolio-level cash flow growth ∆σCS .

For dispersion measure ∆σCS , every year t we sort firms in to 20 portfolios based on their collateralizability

in year t − 1, then we aggregate cash flow growth across all firms within each portfolio. Then we compute

the cross-sectional standard deviation of 20 portfolios every year as the dispersion measure. We winsorize

firm-level variables at the top and bottom 1%, respectively. All shocks are normalized to have zero mean

and unit standard deviation. All regressions are conducted at the annual frequency. The t-statistics (in

parentheses) are adjusted following ?. All regression coefficients are multiplied by 100.

Panel A: Data

Financial Shocks 1 2 3 4 5 1-5

∆EM -1.94 -1.95 -1.41 -0.34 -0.14 -2.13
(-1.83) (-1.36) (-1.81) (-0.67) (-0.63) (-2.08)

∆σCS -0.40 0.08 0.28 0.31 0.17 -0.55
(-0.88) (0.30) (1.51) (1.47) (1.12) (-1.10)

Panel B: Model

Financial Shocks 1 2 3 4 5 1-5

εx -3.97 -3.67 -2.46 -0.93 -1.06 -2.90
(-14.18) (-8.75) (-3.06) (-0.74) (-1.12) (-3.11)

∆σCS -2.24 -1.87 -1.62 0.58 2.26 -4.50
(-5.07) (-3.64) (-2.61) (0.48) (2.58) (-4.56)
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the two financial shock proxies (∆EM or ∆σCS) as factors. Following the standard approach

developed by ?, we first estimate the exposures (betas) of excess returns of five collateralizability-

sorted portfolios with respect to the market and the financial shock factor using the whole sample.

Next, we run period-by-period cross-sectional regressions of realized portfolio returns on betas to

estimate the market prices of risks, which are calculated as the average slopes from the period-by-

period cross-sectional regressions.

We also conduct the ? two-pass regression based on data from a simulation of our model. The

only difference is that, rather than running a two-factor model, we run a one-factor regression with

just the financial shock εx, since our model, by design, features a one-factor structure due to the

perfect correlation between TFP and financial shocks.

The results are presented in Table B.2, respectively, where Panel A and Panel B present the

exposures of the five portfolios to factors, while the estimated market prices of risk are shown in

Panel C.

We make several observations. First, the betas with respect to ∆EM display a monotonically

increasing pattern from low to high collateralizability portfolios. In particular, the high collateraliz-

ability quintile exhibits a (marginally) significantly less negative beta than the low collateralizability

quintile. This pattern is confirmed in an even stronger fashion when we use ∆σCS as a proxy for

financial shocks. The betas with respect to this factor also display a monotonically increasing

pattern from low to high collateralizability portfolios. It is worth noting that, with respect to

this proxy of financial shocks, the difference in return beta between portfolio 1 and 5 is statisti-

cally significant. When we run the test using simulated data from the model, the return betas of

collateralizability-sorted portfolios display a pattern consistent with the data.

Furthermore, in the second stage cross-sectional regressions, we use five collateralizability-sorted

portfolios as the test assets, we compare the two-factor model (Mkt+ ∆EM or Mkt+ ∆σCS) with

the standard CAPM with only the market factor. We observe that the CAPM fails. When we add

the financial shock factor, the estimated market price of risk for this new factor is negative and

significant. The average pricing error (i.e., the intercept) becomes smaller and even statistically

insignificant. The second stage empirical results are again confirmed by the model simulation.
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Table B.2: Betas and Price of Risks of the Financial Shock

This table presents the risk price estimates for the financial shock. The factors considered in the empirical

data are the market return and one of the two alternative empirical proxies for the financial shock, that is,

external finance shock (∆EM) and cross-sectional dispersion shock of firm-level cash flow growth (∆σCS).

In the data, we construct the external finance shock by taking the first difference of the average costs of

external finance from ?. Dispersion shock ∆σCS is the log change of the dispersion of firm-level cash flow

growth. In the model, we use innovation to the probability of liquidity εx and log change of dispersion of

portfolio-level cash flow growth ∆σCS as our proxies for the financial shock. The dispersion measure ∆σCS

is constructed in the same procedure as in Table B.1. Panels A and B present the first-stage estimates of

factor exposures of collateralizability-sorted portfolios in the data and in the model, respectively. Panel C

reports the risk prices (λFin) of the financial shock estimated from the second-stage regressions. The risk

prices reported in Panel C are the mean slopes of period-by-period cross-sectional regressions of portfolio

excess returns on risk exposures (betas). All shocks are normalized to have zero mean and unit standard

deviation. The regressions are conducted at the annual frequency. R2 is calculated as the mean across R2 of

the period-by-period regressions. The mean absolute pricing errors (MAE) across the test assets in Panel C

are expressed in percentage terms. The t-statistics (in parentheses) are adjusted following ?.

Panel A: Portfolio Factor Exposures - Data

1 2 3 4 5 1-5

∆EM -0.142 -0.128 -0.113 -0.091 -0.084 -0.058
(-2.580) (-2.804) (-2.135) (-2.126) (-1.723) (-1.598)

∆σCS -0.029 -0.007 -0.003 0.007 0.016 -0.045
(-0.990) (-0.251) (-0.113) (0.260) (0.592) (-2.074)

Panel B: Portfolio Factor Exposures - Model

1 2 3 4 5 1-5

εx -0.047 -0.042 -0.035 -0.019 -0.004 -0.043
(-15.665) (-12.723) (-12.757) (-3.327) (-1.291) (-10.291)

∆σCS -0.022 -0.020 -0.016 -0.008 -0.003 -0.019
(-4.274) (-3.690) (-3.990) (-2.627) (-1.698) (-4.459)

Panel C: Price of Risks

Data Model

CAPM ∆EM Mkt+∆EM ∆σCS Mkt+∆σCS εx ∆σCS

λMkt 0.700 -0.005 0.072
(t) (2.227) (-0.011) (0.338)
λFin -1.230 -1.094 -1.435 -1.272 -0.854 -2.118
(t) (-2.478) (-1.729) (-2.442) (-1.876) (-6.879) (-6.955)

Intercept -0.441 -0.045 0.103 0.091 0.009 -0.004 -0.004
(t) (-1.888) (-0.777) (0.214) (2.386) (0.041) (-1.808) (-1.616)

MAE 4.612 3.947 3.266 4.033 3.149 0.561 0.554
R2 0.387 0.445 0.624 0.451 0.633 0.739 0.737
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B.3 Asset pricing tests

We now perform a number of standard asset pricing tests to show that the collateralizability pre-

mium cannot be explained by standard risk factors, as represented by the ? four factor model,

the ? five factor model, or the organizational capital factor proposed by ?. We also investigate

the incremental predictive power of current asset collateralizability for future stock returns at the

firm-level.

First, we investigate to what extent the variation in the returns of the collateralizability-sorted

portfolios can be explained by standard risk factors suggested by ? and ?. In particular, we run

monthly time-series regressions of the (annualized) excess returns of each portfolio on a constant

and the risk factors included in the above models. Table B.3 reports the intercepts (i.e., alphas)

and exposures (i.e., betas). The intercepts can be interpreted as pricing errors (abnormal returns),

which remain unexplained by the given set of factors.

We make two key observations. First, the pricing errors of the collateralizablity-sorted portfolios

with respect to the given sets of factors are large and statistically significant. The estimated alphas

of the low-minus-high portfolio are 9.34% for the ? model and 5.80% for the ? five-factor model,

respectively, with associated t-statistics of around 3.5 and 2.1.

Second, in order to distinguish our collateralizability measure from organizational capital, we

also control for this factor constructed by ?,3 together with the three Fama-French factors.

The results are shown in Panel C of Table B.3. The pricing error of the low-minus-high portfolio

is still significant in the presence of the organizational capital factor (OMK) and amounts almost

9% per year with a t-statistic of greater than 2.6. In particular, the five portfolios sorted on

collateralizability are not strongly exposed to this factor, indicated by economically small and

statistically insignificant coefficients, except for Quintile 5.

Taken together, the cross-sectional return spread across collateralizability sorted portfolios can-

not be explained by either the ? four-factor model, the ? five-factor model, or the organizational

capital factor proposed by ?.

Second, we extend the previous analysis to the investigation of the link between collateraliz-

ability and future stock returns using firm-level multivariate regressions that include firm’s collat-

3We would like to thank Dimitris Papanikolaou for sharing this time series of the organizational factor.
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eralizability and other controls as return predictors. In particular, we perform standard firm-level

cross-sectional regressions (?) to predict future stock returns:

Ri,t+1 = αi + β · Collateralizability i,t + γ · Controlsi,t + εi,t+1,

where Ri,t+1 is stock i’s cumulative (raw) return over the respective next year, i.e., from July of

year t to June of each year t+1. The control variables include current collateralizability, size, book-

to-market (BM), profitability (ROA), and book leverage. To avoid using future information, all the

balance sheet variables are based on the values available before the end of year t. Table B.4 reports

the results. The regressions exhibit a significantly negative slope coefficient for collateralizability

across all specifications, which supports our theory, since a higher current degree of collateralizability

implies lower overall risk exposure, so that expected future returns should indeed be smaller with

higher collateralizability.

In our empirical measure, only structure and equipment capital contribute to firms’ collater-

alizability, but not intangible capital. Therefore, by construction, our collateralizability measure

weakly negatively correlates with measures of intangible capital. In order to empirically distinguish

our theoretical channel from the ones focusing on organizational capital (?) and R&D capital (?,

?), we also control for OG/AT , the ratio of organizational capital to total assets, and XRD/AT ,

the ratio of R&D expenses to total assets, as suggested in the literature. The results in Table

B.4 show that the negative slope coefficients for collateralizability remain significant, although they

become smaller in magnitude, after controlling for these two firm characteristics. Instead of using

the ratio of R&D expenditure to total assets, we also used the ratio of R&D capital to total assets

as a control. The results remain very similar.

B.4 Additional empirical evidence

In this section, we provide additional empirical evidence regarding the collateralizability premium.

First, we demonstrate the robustness of our findings by forming collateralizability portfolios within

industries to make sure that our baseline result is not driven by industry-specific effects, and by

performing a rolling-window estimation of the collateralizability parameters. Second, we present

correlations between collateralizability and firm characteristics. Finally, we perform double sorts

with respect to collateralizability and financial leverage.
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Table B.3: Asset Pricing Tests of Collateralizability-sorted Portfolios

This table shows the coefficients of regressions of excess returns of collateralizability-sorted portfolios on the factors from the

? four-factor model (Panel A), the ? five-factor model (Panel B), and a model featuring the Fama-Franch three-factor model

augmented by the organizational capital factor from ? (Panel C). The t-statistics are computed based on ? adjusted standard

errors. The analysis is performed for financially constrained firms. Firms are classified as constrained in year t, if their year end

WW or SA index are higher than the corresponding median in year t− 1, or if the firms do not pay dividends in year t− 1. The

sample period is from July 1979 to December 2016, with the exception of Panel C, where the sample ends in December 2008

due to the length of the organizational capital factor. We annualize returns by multiplying by 12.

Panel A: Carhart Four-Factor Model

1 2 3 4 5 1-5
α 5.43 2.94 2.04 -1.87 -3.91 9.34
(t) 2.80 1.76 1.35 -1.45 -2.44 3.47
βMKT 1.07 1.07 1.07 1.12 1.10 -0.03
(t) 25.25 27.91 32.58 35.68 26.93 -0.48
βHML -0.62 -0.49 -0.21 -0.12 0.01 -0.63
(t) -9.72 -8.60 -3.87 -2.31 0.16 -6.03
βSMB 1.34 1.11 1.06 0.97 0.84 0.50
(t) 15.66 15.77 22.71 15.28 8.72 3.27
βMOM -0.04 -0.06 -0.05 -0.02 -0.07 0.03
(t) -0.73 -1.74 -1.27 -0.56 -1.31 0.33
R2 0.85 0.87 0.88 0.90 0.84 0.27

Panel B: Fama-French Five-Factor Model

1 2 3 4 5 1-5
α 13.02 12.45 12.87 9.22 7.22 5.80
(t) 2.84 2.75 3.07 2.16 1.67 2.06
βMKT 0.49 0.07 0.08 0.20 0.07 0.42
(t) 0.75 0.13 0.15 0.37 0.12 1.01
βSMB 2.03 1.24 1.17 1.28 1.38 0.65
(t) 2.00 1.55 1.43 1.62 1.79 1.08
βHML -3.84 -4.34 -3.67 -3.15 -2.49 -1.35
(t) -2.55 -3.21 -2.99 -2.65 -1.92 -1.12
βRMW -2.77 -3.12 -2.32 -1.90 -1.34 -1.43
(t) -1.47 -2.11 -1.48 -1.33 -0.97 -1.11
βCMA 2.10 1.00 1.74 0.92 0.94 1.17
(t) 0.83 0.46 1.02 0.53 0.62 0.58
R2 0.09 0.10 0.08 0.07 0.06 0.04

Panel C: Control for Organizational Capital Factor

1 2 3 4 5 1-5
α 5.06 3.42 1.56 -0.95 -3.90 8.96
(t) 2.30 1.67 0.85 -0.61 -1.74 2.66
βMKT 1.10 1.07 1.10 1.11 1.08 0.03
(t) 19.82 21.75 24.43 30.89 23.11 0.35
βHML -0.56 -0.50 -0.19 -0.14 -0.00 -0.55
(t) -7.23 -7.46 -2.71 -1.85 -0.04 -3.68
βSMB 1.40 1.12 1.05 0.97 0.81 0.59
(t) 14.95 16.91 18.30 14.51 6.09 3.07
βOMK -0.02 0.01 0.01 -0.04 -0.14 0.13
(t) -0.31 0.23 0.14 -0.99 -2.33 1.29
R2 0.86 0.87 0.88 0.89 0.83 0.29
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B.4.1 Alternative portfolio sorts

To implement the first robustness check, we consider the Fama-French industry classification with

17 sectors. We sort firms into collateralizability quintiles according to their collateralizability score

within their respective industry. Portfolio 1 will thus contain all firms which are in the lowest

quintile relative to their industry peers, and so on for portfolios 2 to 5. By doing so, we essentially

control for industry fixed effects. Table B.5 reports the results of this exercise, and one can see that

the results are very close to the findings of our benchmark analysis presented in Table ??.

In our benchmark analysis, we estimate the collateralizability coefficients for structure and

equipment capital, ζS and ζE , using the whole sample. One might argue that this introduces a

look-ahead bias, since the estimation is based on data not observable at the time when decisions

are made. To see whether a potential look-ahead bias indeed has an effect on our results, we now

perform the portfolio sort in year t exclusively on information up to t − 1. In more detail, we

use estimates denoted by ζ̂S,t−1 and ζ̂E,t−1 derived from expanding window regressions using data

available up to the end of year t− 1. The first window consists of data for the period from 1975 to

1980.4.

Table B.6 presents the results in a fashion analogous to Table ??. For all three measures for

financial constraints, the collateralizability spread is positive, large, and significant. This shows

that our baseline results do not suffer from a look-ahead bias with respect to the estimation of the

collateralizability coefficients.

In order to capture the fact that structure capital is more collateralizable than equipment capital

(?, ?), we employ a constrained version of the leverage regression in Table ?? by estimating the

equation

Bi,t
ATi,t

= (ζE + e∆)StructSharel,t + ζEEquipSharel,t + γXi,t + εi,t,

i.e., we impose the restriction ζS = ζE + e∆ > ζE . Then we perform a maximum likelihood

estimation of above equation to obtain the time series of the estimates of ζE and ∆. In our sample,

the estimated e∆ across expanding windows is of mean 0.15 with standard error of 0.02.

4The regressor, marginal tax rate, is only available after 1980, therefore we drop this regressor. All other
regressors are available from 1975 onwards. The results are similar if we start our sample in 1980 with
marginal tax rate.
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Table B.5: Portfolios Sorted on Collateralizability within Industries

This table reports annualized average monthly value-weighted excess returns (E[R] − Rf ) for

collateralizability-sorted portfolios, and their alphas with respect to different factor models. The sample

period is from July 1979 to December 2016. αFF3+MOM and αFF5 are the alphas with respect to the ?

four-factor model and the ? five-factor model, respectively. At the end of June each year t, we consider each

of the 17 Fama-French industries and sort the constrained firms in a given industry into quintiles based on

their collateralizability scores at the end of year t− 1. We hold the portfolios for a year, from July of year t

until the June of year t+ 1. Portfolios are rebalanced in July every year. Firms are classified as constrained

in year t, if their year end WW or SA index are higher than the corresponding median in year t− 1, or if the

firms do not pay dividends in year t− 1. The WW and the SA index are constructed according to ? and ?,

respectively. Additionally, we consider a subsample where the firms are classified as constrained by all three

measures jointly. We annualize returns by multiplying by 12. The t-statistics are estimated following ?.

1 2 3 4 5 1-5

Financially constrained firms - All measures
E[R]−Rf (%) 13.14 10.46 11.67 7.97 6.86 6.28
(t) 2.63 2.22 2.41 1.79 1.46 2.60
αFF3+MOM 4.59 2.06 2.64 -1.31 -2.74 7.33
(t) 2.48 0.98 1.35 -0.68 -1.47 3.21
αFF5 13.87 10.94 13.01 10.97 7.04 6.83
(t) 2.75 2.31 2.52 2.36 1.38 2.85

Financially constrained firms - WW index
E[R]−Rf (%) 12.53 11.77 9.83 8.36 6.02 6.51
(t) 2.68 2.71 2.22 1.99 1.41 3.07
αFF3+MOM 4.23 2.83 1.62 -0.76 -3.05 7.28
(t) 2.51 1.78 0.97 -0.50 -2.37 3.57
αFF5 14.25 12.26 11.76 10.28 6.37 7.88
(t) 2.97 2.75 2.56 2.35 1.33 3.58

Financially constrained firms, SA index
E[R]−Rf (%) 11.28 11.51 8.08 8.32 6.02 5.26
(t) 2.35 2.41 1.77 1.94 1.35 2.54
αFF3+MOM 3.58 4.65 -0.62 -0.49 -2.50 6.08
(t) 1.99 2.25 -0.41 -0.33 -1.50 2.99
αFF5 12.20 13.36 10.07 9.54 7.37 4.83
(t) 2.60 2.57 2.08 2.09 1.58 2.22

Financially constrained firms, Non-Dividend
E[R]−Rf (%) 14.99 12.98 6.99 7.92 9.69 5.30
(t) 3.50 2.83 1.70 1.98 2.12 2.27
αFF3+MOM 7.39 5.23 0.39 -0.12 2.24 5.15
(t) 3.90 2.59 0.23 -0.08 1.22 2.18
αFF5 14.90 14.95 8.16 8.88 11.45 3.44
(t) 3.59 3.59 2.16 2.16 2.61 1.47
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As a further note, one advantage of our approach to sort stocks into portfolios does not rely

on absolute precision in the estimation of ζE and ζS (which could potentially be subject to various

sources of biases, e.g., due to endogeneity of capital structure choices, measurement errors in cap-

ital etc.). The outcome of the portfolio sort only depends on the ranking of the collateralizability

measure for a given firm, not on its exact magnitude. In our empirical construction of the collat-

eralizability measure, we consider three types of capital according to BEA, structure, equipment,

and intellectual capital. As long as ζS > ζE and intellectual capital does not contribute to col-

lateralizability, the rank of a firm with respect to asset collateralizability will depend only on the

composition of its capital, not on the numerical values of the estimated ζ-coefficients.

Table B.6: Portfolios Sorting based on Expanding Window Estimated Collateralizability

This table reports average value-weighted monthly excess returns (in percent and annualized) for portfolios

sorted on collateralizability. The sample period is from July 1981 to December 2016. At the end of June

of each year t, we sort the constrained firms into five quintiles based on their collateralizability measures

(estimated using expanding window) at the end of year t− 1, where quintile 1 (quintile 5) contains the firms

with the lowest (highest) share of collateralizable assets. We hold the portfolios for a year, from July of year

t until the June of year t+ 1. Firms are classified as constrained in year t, if their year end WW or SA index

are higher than the corresponding median in year t − 1, or if the firms do not pay dividends in year t − 1.

The WW and SA indices are constructed according to ? and ?, respectively. Standard errors are estimated

using Newey-West estimator. The table reports average excess returns E[R]− Rf , as well as the associated

t-statistics, and Sharpe ratios (SR). We annualize returns by multiplying by 12.

1 2 3 4 5 1-5

Financially constrained firms - WW index
E[R]−Rf (%) 11.76 10.68 9.80 7.18 5.20 6.55
(t) 2.33 2.31 2.24 1.71 1.30 2.18
SR 0.41 0.41 0.40 0.30 0.24 0.38

Financially constrained firms - SA index
E[R]−Rf (%) 9.61 10.74 9.36 7.82 3.64 5.97
(t) 1.84 2.21 2.11 1.74 0.88 2.07
SR 0.32 0.40 0.38 0.31 0.16 0.35

Financially constrained firms - Non-Dividend
E[R]−Rf (%) 14.32 9.18 6.93 7.13 6.75 7.57
(t) 3.11 2.07 1.59 1.59 1.63 2.83
SR 0.54 0.36 0.28 0.28 0.29 0.49

B.4.2 Collateralizability and additional firm characteristics

As indicated by the results in Table ??, our model can quantitatively replicate the patterns of lever-
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age, asset growth and the investment rate. In Table B.7, we now present additional characteristics

of the firms in our collateralizability-sorted portfolios.

Cash flow and size are relatively flat across the five portfolios, low collateralizability firms

on average hold more cash. Although cash is not modeled in our paper, this empirical finding

is still consistent with our model intuition. Firms with less collaterizable assets hold more cash

to compensate for the fact that they can hardly obtain collateralized loans, and even less so in

recessions. The probability of debt issuance is increasing with asset collateralizability, while the

probability of equity financing shows the opposite tendency. This reflects the substitution effect

between the two types of external financing. Additionally, firms with more collateralizable assets

on average have more short-term and long-term debt.

In Table B.8, we report the correlations of the collateralizability measure with other firm char-

acteristics which have been shown in the past literature to predict the cross-section of stock returns,

including the book-to-market ratio (BM) , the R&D-to-asset ratio (XRD/AT), the organizational

capital-to-asset ratio (OG/AT), (log) size (log(ME)), the investment rate, i.e., the ratio of invest-

ment to capital (I/K), and the return on assets (ROA). Notably, the collateralizability measure

and these firm characteristics are only weakly correlated, with the correlation coefficients ranging

between −33% to 16%.

B.4.3 Double sorting on collateralizability and leverage

As discussed in the main text, firms with higher asset collateralizablility have higher debt capacity

and thus tend to have higher financial leverage. When a firm is highly levered, its equity is more

exposed to aggregate risks. The effects of collateralizability and leverage can thus offset each other

in determining the overall riskiness of the firm and consequently its expected equity return.

In order to disentangle these two effects, we conduct an independent double sort on collateraliz-

ability and financial leverage. The average returns for the resulting portfolios are reported in Table

B.9. First, within each quintile sorted on book leverage, the collateralizability spread is always

significantly positive. Second, the average returns of the high-minus-low leverage portfolios within

each collateralizability quintile are not statistically significant.
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Table B.7: Firm Characteristics

This table reports the median of firm characteristics across portfolios of firms sorted on collateralizability.
The sample starts in 1979 and ends in 2016. Collateralizability is defined as in Section D.2. Book leverage is
lease adjusted following ?. BM is the book-to-market ratio. I

K+H is the sum of physical investments (CAPX),
R&D and organizational capital investments over the sum of PPEGT and intangible capital. More details on
the definition of R&D and organizational capital investments can be found Appendix D.3. log(ME) is the
nature log of the market capitalization. Cash flow is defined as OIBDP to total asset ratio. Gross profitability
is defined as revenue minus cost of goods denominated by total assets. ROE is the return on equity, which
is the OIBDP divided by book equity. Asset growth is the growth rate of total assets. Type-K asset growth
is the growth rate of PPEGT. Age is defined as the years a firm being recorded in COMPUSTAT. WW and
SA index are following ? and ?, respectively. Dividend is calculated as the mean of the dividend dummy
within each portfolio, which represents the probability of a firm paying dividend of that portfolio. Cash/AT
is defined as cash and cash equivalents over total asset ratio. The probability of equity (debt) issuance is
defined as the mean of a dummy variable within that quintile, which takes value of one if the flow to equity
(debt) is negative. Flow to equity is defined as purchases of common stock plus dividends less sale of common
stock. Flow to debt is defined as debt reduction plus changes in current debt plus interest paid, less debt
issuance. Probability of external financing is defined as the mean of a dummy variable, which takes value of
one when the sum of flow to debt and equity are negative.

1 2 3 4 5
Collateralizability 0.081 0.168 0.260 0.377 0.619
Book leverage 0.104 0.163 0.228 0.343 0.460
BM 0.441 0.576 0.611 0.673 0.670
I

K+H
0.174 0.169 0.162 0.165 0.191

log(ME) 3.822 3.988 4.000 4.153 4.178
Cash flow 0.037 0.094 0.110 0.113 0.098
Gross profitability 0.478 0.423 0.375 0.339 0.276
ROE 0.060 0.164 0.204 0.231 0.223
Asset growth 0.003 0.048 0.068 0.079 0.116
Type-K asset growth 0.075 0.092 0.100 0.108 0.129
Age 7.000 9.000 9.000 8.000 8.000
WW -0.159 -0.183 -0.189 -0.194 -0.191
SA -2.284 -2.506 -2.540 -2.576 -2.580
Prob(Dividend) 0.136 0.146 0.178 0.172 0.162
Cash/AT 0.246 0.142 0.114 0.087 0.104
Prob(Equity issuance) 0.665 0.594 0.523 0.501 0.496
Prob(Debt issuance) 0.097 0.118 0.114 0.122 0.143
Prob(External finance) 0.240 0.215 0.191 0.190 0.208
Short-term debt/AT 0.007 0.011 0.012 0.015 0.017
Long-term debt/AT 0.006 0.011 0.014 0.019 0.012
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Table B.8: Correlations Among Firm Characteristics

This table reports the correlation between collateralizability and other firm characteristics. The sample
period is from 1978 to 2016, it focuses on constrained firms identified using ? index. Log(ME) is the log of
market capitalization deflated by CPI. BM is the book-to-market ratio. XRD/AT is R&D expenditure over
total book assets. OG/AT is organizational capital over total book assets. I/K is the investment rate, it is
calculated as the Compustat item CAPX divided by PPENT. ROA is Compustat item IB divided by book
assets.

Variables Collateralizability BM XRD/AT OG/AT log(ME) I/K ROA

Collateralizability 1.000
BM 0.105 1.000
XRD/AT -0.333 -0.180 1.000
OG/AT -0.233 -0.065 0.117 1.000
log(ME) -0.013 -0.159 -0.006 -0.207 1.000
I/K 0.011 -0.021 0.008 -0.001 0.004 1.000
ROA 0.161 -0.041 -0.456 -0.154 0.126 -0.015 1.000

Table B.9: Independent Double Sort on Collateralizability and Leverage

This table reports annualized average value-weighted monthly excess returns for portfolios double-sorted
independently on collateralizability and leverage. The sample starts in July 1979 and ends in December
2016. At the end of June in each year t, we independently sort financially constrained firms into quintiles
based on collateralizability (horizontal direction) and into quintiles based on book financial leverage (vertical
direction), then we compute the value-weighted returns of each portfolio. The book financial leverage is
defined as financial debt over total asset ratio. A firm is considered financially constrained in year t, if its
WW index (?) is above the respective median at the end of year t−1. The t-statistics are estimated following
?. All returns are annualized by multiplying with 12.

L Col 2 3 4 H Col L-H t-stat

L Lev 11.96 7.58 10.51 10.14 5.48 6.48 1.81
2 13.84 11.38 11.19 5.31 5.98 7.85 1.96
3 13.07 14.16 11.05 9.70 4.50 8.57 2.06
4 15.48 10.10 11.73 5.39 5.04 10.43 2.51
H Lev 16.94 10.82 10.74 8.39 7.25 9.69 2.09
H-L 4.98 3.24 0.23 -1.75 1.76
t-stat 1.17 0.81 0.06 -0.55 0.60
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C Sensitivity analysis

In this section, we discuss the sensitivity of our quantitative results to several important parameters.

To save space, we only discuss the moments which are sensitive to the respective each parameter.

The results are reported in Table C.10.

Collateralizability parameter (ζ) The parameter ζ determines the collateralizability of

type-K capital. We vary this parameter by ±10% around the benchmark value of 0.513 from

Table ?? and make the following observations.

First, since we assume the collateral constraint is binding, higher collateralizability mechanically

increases the average leverage ratio. Second, higher collateralizability leads to a lower risk premium

for type-K capital, but to a higher risk premium for type-H capital, which overall implies a higher

collateralizability premium. This is consistent with our model mechanism. Note that the price of

type-K capital contains not only the present value of future cash flows, but also the present value of

Lagrangian multipliers. According to equation (??), an increase in ζ makes the second component

more important, which in turn makes the hedging channel more important and type-K capital less

risky. On the other hand, a higher leverage ratio makes the entrepreneur’s net worth more volatile,

and therefore increases the risk premium of type-H capital.

Type-K and type-H capital ratio (φ) We vary this parameter by ±10%. A higher φ

implies a larger proportion of collateralizable assets in the economy, and as a result, it mechanically

increases the leverage ratio and the overall asset collateralizability. A higher leverage ratio in

turn leads to a more volatile entrepreneur’s net worth, and therefore, increases the risk premia for

both types of capital. On the other hand, higher φ implies more type-K capital, which can be

used to hedge against aggregate risk. Therefore, higher φ may also reduce the overall riskiness of

the aggregate economy and lower down the risk premium. As shown in Panel B, hedging effect

dominates, thus the overall risk premium is lower and return spread is also lower.

Shock correlation (ρA,x) As explained in Section ??, we assume a negative correlation be-

tween the aggregate productivity shock and the financial shock in order for the model to generate

a positive correlation between consumption and investment growth, consistent with the data. For
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parsimony, we had imposed a perfectly negative correlation in our benchmark calibration. We vary

this parameter and consider the cases ρA,x = −0.8 and− 0.9.

In terms of results, the correlation between consumption and investment growth becomes less

positive, confirming our model intuition presented in Section ??. Furthermore, varying this corre-

lation parameter does not qualitatively change the collateralizability spread and has limited effects

on various risk premia as well.

Table C.10: Sensitivity Analysis

The table shows the results of sensitivity analyses, where key parameters of the model are varied around the

values from the benchmark calibration shown in Table ??. A star superscript denotes the parameter value

from the benchmark calibration.

Panel A: the role of collateralizability parameter ζ

Data Benchmark 0.9ζ 1.1ζ

σ(∆y) 3.05 (0.60) 3.52 3.50 3.49

E[ Bt
Kt+Ht

] 0.32(0.01) 0.34 0.33 0.38

E[RM −Rf ] 5.71 (2.25) 4.16 3.26 4.36
σ(RM −Rf ) 20.89 (2.21) 12.14 12.00 12.27
E[R̄K,Lev − R̄H ] -7.35 -6.22 -7.78

Panel B: the role of capital composition φ: ±10%

Data Benchmark 0.9φ 1.1φ

σ(∆y) 3.05 (0.60) 3.52 3.57 3.49

E[ Bt
Kt+Ht

] 0.32(0.01) 0.34 0.31 0.35

E[RM −Rf ] 5.71 (2.25) 4.16 4.26 3.69
σ(RM −Rf ) 20.89 (2.21) 12.14 12.18 12.11
E[R̄K,Lev − R̄H ] -7.35 -7.44 -6.81

Panel C: the role of shock correlations

Data Benchmark corr(εA, εx) = −0.8 corr(εA, εx) = −0.9

σ(∆y) 3.05 (0.60) 3.52 3.42 3.55
corr(∆c,∆i) 0.40 (0.28) 0.42 0.31 0.37

E[ Bt
Kt+Ht

] 0.32(0.01) 0.34 0.32 0.32

E[RM −Rf ] 5.71 (2.25) 4.16 3.73 3.82
σ(RM −Rf ) 20.89 (2.21) 12.14 11.05 11.69
E[R̄K,Lev − R̄H ] -7.35 -6.09 -6.69

Persistence parameters of exogenous shocks (ρx and ρA) We vary persistence parame-

ters of exogenous shocks (ρx and ρA) one at a time. The parameter variations we consider change
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Table C.10: Sensitivity Analysis (Continued)

Panel D: the role of ρx: ± half life

Data Benchmark 80% Half life 120% Half life

σ(∆y) 3.05 (0.60) 3.52 3.41 3.62
AC1(∆y) 0.49 (0.15) 0.53 0.50 0.56
AC1( Bt

Kt+Ht
) 0.86 (0.33) 0.85 0.86 0.85

E[ Bt

Kt+Ht
] 0.32(0.01) 0.34 0.34 0.35

E[RM −Rf ] 5.71 (2.25) 4.16 3.98 4.44
σ(RM −Rf ) 20.89 (2.21) 12.14 11.66 12.49
E[R̄K,Lev − R̄H ] -7.35 -6.73 -7.80

Panel E: the role of ρA: ± half life

Data Benchmark 80% Half life 120% Half life

σ(∆y) 3.05 (0.60) 3.52 3.51 3.52
AC1(∆y) 0.49 (0.15) 0.53 0.53 0.53
AC1( Bt

Kt+Ht
) 0.86 (0.33) 0.85 0.85 0.86

E[ Bt

Kt+Ht
] 0.32(0.01) 0.34 0.34 0.35

E[RM −Rf ] 5.71 (2.25) 4.16 3.63 4.60
σ(RM −Rf ) 20.89 (2.21) 12.14 12.10 12.31
E[R̄K,Lev − R̄H ] -7.35 -6.79 -7.70

Panel F: the role of σx: ±10%

Data Benchmark 0.9σx 1.1σx

σ(∆y) 3.05 (0.60) 3.52 3.41 3.62
σ(∆i) 10.30 (2.36) 8.67 8.00 9.16
E[RM −Rf ] 5.71 (2.25) 4.16 3.98 4.44
σ(RM −Rf ) 20.89 (2.21) 12.14 11.66 12.49
E[R̄K,Lev − R̄H ] -7.35 -6.73 -7.80

Panel G: the role of σA: ±10%

Data Benchmark 0.9σA 1.1σA

σ(∆y) 3.05 (0.60) 3.52 3.25 3.78
σ(∆i) 10.30 (2.36) 8.67 8.48 8.78
E[RM −Rf ] 5.71 (2.25) 4.16 3.20 5.29
σ(RM −Rf ) 20.89 (2.21) 12.14 11.37 12.88
E[R̄K,Lev − R̄H ] -7.35 -6.76 -7.84
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the half-life of a shock to x or a by ±20%.

First, an increase in ρx has opposite effects on the risk premia of type-K and type-H capital. On

the one hand, a more persistent financial shock makes type-K capital an even better hedging device,

which reduces the equilibrium risk premium. On the other hand, entrepreneurs’ net worth becomes

more volatile, and as a result, the risk premium of type-H capital increases. Put together, this

leads to a higher risk premium for the aggregate market and to a larger collateralizability spread.

Second, an increase in ρA generates a stronger long-run risk channel in cash flows, and as a result,

we observe higher risk premia for both type-K and type-H capital. The effects of lower ρx and ρA

are exactly opposite to those generated by higher values for these parameters.

Shock volatilities (σx and σA) We vary the shock volatilities σx and σA, one at a time, by

±10%. We observe that the effect caused by increasing the two shock volatilities are very similar.

A higher σx or σA leads to an increase in both the market risk premium and the collateralizability

spread, which is intuitively clear, since the economy in general becomes riskier.

D Data and measurement

We now provide details on the data sources, the construction of our empirical collateralizability

measure, and on the measurement of intangible capital.

D.1 Data sources

Our major sources of data are (1) firm level balance sheet data from the CRSP/Compustat Merged

Fundamentals Annual Files, (2) monthly stock returns from CRSP, and (3) industry level non-

residential capital stock data from the BEA table.5 We adopt the standard screening process for the

CRSP/Compustat Merged Database. We exclude utilities and financial firms (SIC codes between

4900 and 4999 and between 6000 and 6999, respectively). Additionally, we only keep common stocks

that are traded on NYSE, AMEX and NASDAQ. The accounting treatment of R&D expenses was

standardized in 1975, and we allow three years for firms to adjust to the new accounting rules, so

that our sample starts in 1978. Following ?, we exclude firm-year observations for which the value

5The BEA table is from “private fixed asset by industry”, Table 3.1ESI.
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of total assets or sales is less than $1 million. We focus on the impact of asset collateralizability

on debt capacity of firms, therefore we drop small firms, which do not have much debt in the first

place. In practice, we drop firm-year observations with market capitalization below $8 million,

which roughly corresponds to the bottom 5% of firms. All firm characteristics are winsorized at the

1% level. The potential delisting bias of stock returns is corrected following ? and ?.

In order to obtain a long sample with broader coverage,6 we use the narrowly defined industry

level non-residential fixed asset (structure, equipment and intellectual) from the BEA tables to back

out industry level structure and equipment capital shares.

In Table D.11, we provide the definitions of the variables used in our empirical analyses.

D.2 Measurement of collateralizability

This section provides details on the construction of the firm specific collateralizability measure,

complementing the description of the methodology provided in Section ??.

We first construct proxies for the share of the two types of capital, denoted by StructShare

and EquipShare. Then we run the leverage regression (??), which allows us to later calculate the

firm-specific collateralizability score.

The BEA classification features 63 industries. We match the BEA data to Compustat firm level

data using NAICS codes, assuming that, for a given year, firms in the same industry have the same

structure and equipment capital shares. We construct measures of structure and equipment shares

for industry l in year t as

StructSharel,t =
StructureBEAl,t

Fixed AssetBEAl,t

Fixed AssetCompustat
l,t

PPEGTCompustat
l,t + IntangibleCompustat

l,t

and

EquipSharel,t =
EquipmentBEAl,t

Fixed AssetBEAl,t

Fixed AssetCompustat
l,t

PPEGTCompustat
l,t + IntangibleCompustat

l,t

,

where ATl,t are total assets in industry l in year t, i.e., the sum of assets across all firms in our

sample belonging to industry l in year t. The first component on the right hand side refers to the

6COMPUSTAT shows the components of physical capital (PPEGT) only for the period from 1969 to 1997.
However, even for the years between 1969 and 1997, only 40% of the observations have non-missing entries
for the components of PPEGT, which are buildings (PPENB), machinery and equipment (PPENME), land
and improvements (PPENLI).
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structure (equipment) share from BEA data, which is given as the ratio of structure (equipment)

to fixed assets at the industry level. The second component refers to the industry level fixed asset

to total asset ratio in Compustat. We use PPEGT in Compustat as the equivalent for fixed assets

in the BEA data. By doing so, we map the BEA industry level measure of structure (equipment)

to fixed asset ratio to corresponding measures in the Compustat, at the industry level. Since we

distinguish assets by their collateralizability, we normalize fixed assets by the total value of physical

and intangible capital.

We interpret the weighted sum, ζSStructSharel,t + ζEEquipSharel,t, as the contribution of

structure and equipment capital to financial leverage. The product of this sum and the book value

of assets, (ζSStructSharel,t + ζEEquipSharel,t) · ATi,t, then represents the total collateralizable

capital of firm i in year t.7 Given this, the collateralizability score for firm i in year t is computed

as

ζi,t =
(ζS · StructSharel,t + ζE · EquipSharel,t) ·ATi,t

PPEGTi,t + Intangiblei,t
, (D51)

where PPEGTi,t and Intangiblei,t are the physical capital and intangible capital of firm i in year t,

respectively. The importance of taking intangible capital into account has been emphasized in the

recent literature, e.g., by ? and ?. The asset-specific collateralizablity parameters ζS and ζE we

adopt in our empirical analyses are the ones shown in the last column of Table ??, where firms are

classified as constrained based jointly on all three measures (SA index, WW index, and non-dividend

paying).

In the above collateralizability measure, we implicitly assume the collateralizability parameter

for intangible capital to be equal to zero. We do this based on empirical evidence that intangible

capital can hardly be used as collateral, since only 3% of the total value of loans to companies are

actually collateralized by intangibles like patents or brands (?). Our results remain qualitatively very

similar when we exclude intangible capital from the denominator of the collateralizability measure

in (D51) and only exploit the differences in collateralizability between structure and equipment

capital.

7Alternatively, we also used the market value of assets to compute total collateralizable capital. The
empirical collteralizability spread based on this sorting measure is even stronger than that obtained in our
benchmark analysis.
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D.3 Measuring intangible capital

In this section, we provide details regarding the construction of firm-specific intangible capital. The

total amount of intangible capital of a firm is given by the sum of externally acquired and internally

created intangible capital, where the latter consists of R&D capital and organizational capital.

Externally acquired intangible capital is given by item INTAN in Compustat. Firms typically

capitalize this type of asset on the balance sheet as part of intangible assets. For the average firm

in our sample, INTAN amounts to about 19% of total intangible capital with a median of 3%,

consistent with ?. We set externally acquired intangibel capital to zero, whenever the entry for

INTAN is missing.

Concerning internally created intangible capital, R&D capital does not appear on the firm’s

balance sheet, but it can be estimated by accumulating past expenditures. Following ? and ?, we

capitalize past R&D expenditures (Compustat item XRD) using the so-called perpetual inventory

method, i.e.,8

RDt+1 = (1− δRD)RDt +XRDt,

where δRD is the depreciation rate of R&D capital. Following ?, we set the depreciation rates for

different industries following ?. For unclassified industries, the depreciation rate is set to 15%.9

Finally, we also need the initial value RD0. We use the first non-missing R&D expenditure,

XRD1, as the first R&D investment, and specify RD0 as

RD0 =
XRD1

gRD + δRD
, (D52)

where gRD is the average annual growth rate of firm level R&D expenditure. In our sample, gRD is

around 29%.

Following ? and ?, our organizational capital is constructed by accumulating a fraction of Com-

pustat item XSGA, ”Selling, General and Administrative Expense”, which indirectly reflects the

reputation or human capital of a firm. However, as documented by ?, XSGA also includes R&D

expenses XRD, unless they are included in the cost of goods sold (Compustat item COGS). Addi-

tionally, XSGA sometimes also incorporates the in-process R&D expense (Compustat item RDIP ).

8This method is also used by the BEA R&D satellite account.
9Our results are not sensitive to the choice of depreciation rates.
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Hence, following ?, we subtract XRD and RDIP from XSGA.10 Additionally, also following ?, we

add the filter that when XRD exceeds XSGA, but is less than COGS, or when XSGA is missing,

we keep XSGA with no further adjustment. Afterwards, we replace missing XSGA with zero. As

in ?, ?, and ?, we count only 30% of SGA expenses as investment in organizational capital, the rest

is treated as operating costs.

Using a procedure analogous to the one described above for internally created R&D capital,

organizational capital is constructed as

OGt+1 = (1− δOG)OGt + SGAt,

where SGAt = 0.3(XSGAt−XRDt−RDIPt) and the depreciation rate δOG is set to 20%, consistent

with ? and ?. Again analogous to the case of R&D capital we set the initial level of organizational

capital OG0 according to

OG0 =
SGA1

gOG + δOG
.

The average annual growth rate of firm level XSGA, gOG, is 18.9% in our sample.

10RDIP (in-process R&D expense) is coded as negative in Compustat. Subtracting RDIP from XSGA
means RDIP is added to XSGA. As discussed in ?, XSGA does not include this component, so we add this
component back to XSGA, then subtract the total amount of R&D expenditures.
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Table D.11: Definition of Variables

Variables Definition Sources

Structure share We first construct the structure shares from BEA industry capital
stock data, defined as structure capital over total fixed asset ratio.
Then we rescale the structure shares by the corresponding industry
average of physical asset (PPEGT) to book asset ratio (AT).

BEA + Compustat

Equipment share We first construct the equipment shares from BEA industry capi-
tal stock data, defined as equipment capital over total fixed asset
ratio. Then we rescale the equipment shares by the corresponding
industry average of physical asset (PPEGT) to book asset ratio
(AT).

BEA + Compustat

Intangible capital Intangible capital is defined following ?. We capitalize R&D and
SGA expenditures using the perpetual inventory method.

Compustat

Collateralizability Collateralizable capital divided by PPEGT + Intangible. Collater-
alizable capital and intangible capital are defined in Section D.2

BEA + Compustat

BE Book value of equity, computed as the book value of stockholders’
equity, plus balance sheet deferred taxes and investment tax credit
(if available), minus the book value of preferred stock. Depending
on availability, we use the redemption, liquidation, or par value (in
that order) as the book value of preferred stock.

Compustat

ME Market value of equity is copmputed as price per share times the
number of shares outstanding. The share price is taken from CRSP,
the number of shares outstandings from Compustat or CRSP, de-
pending on availability.

CRSP+Compustat

BM Book to market value of equity ratio. Compustat

Tangibility Physical capital (PPEGT) to the sum of physical (PPEGT) and
intangible capital ratio.

Compustat

Book size Natural log of the sum of PPEGT and intangible capital. Compustat

Gross profitability Compustat item REVT minus COGS divided by AT. Compustat

OG/AT Organizational capital divided by total assets (AT). Compustat

XRD/AT R&D expenditure to book asset ratio. Compustat

Book leverage Lease adjusted book leverage is defined as lease adjusted debt over
total asset ratio (AT). The lease adjusted debt is the financial debt
(DLTT+DLC) plus the net present value of capital lease as in ?.

Compustat

Dividend dummy Dummy variable equal to 1, if the firm’s dividend payment (DVT,
DVC or DVP) over the year was positive.

Compustat

Sales growth volatility Rolling window standard deviation of past 4 year’s sales growth. Compustat

Rating dummy Dummy variable equal to 1, if the firm has either a bond rating or
a commercial paper rating, and 0 otherwise.

Compustat

Marginal tax rate Following ?. John Graham’s website

WW index Following ?. Compustat

SA index Following ?. Compustat

Return on asset Cash flow (EBITDA) divided by total assets (AT). Compustat
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Table D.11: Definition of Variables (Continued)

Variables Definition Sources

Cash Compustat item CHE. Compustat

Equity issuance The negative of flow to debt. Compustat item -(PRSTKC+DV-SSTK). Compustat

Debt issuance The negative of flow to debt. Compustat item -(DLTR+DLCCH+XINT-
DLTIS).

Compustat

External finance The sum of equity and debt issuance. Compustat

Short-term debt Compustat item DLC. Compustat

Long-term debt Compustat item DLTR. Compustat

Return on equity Operating income before depreciation (OIBDP) divided by book equity. Compustat

Financial leverage Total financial debt (DLTT + DLC) over total book asset (AT) ratio. Compustat

Cash flow Compustat item EBITDA divided by total assets Compustat

Asset growth Growth rate of total assets Compustat

Type-K asset growth Growth rate of PPEGT Compustat

Return on equity Cash flow (EBITDA) divided by book equity Compustat

Age The current year minus the year where a firm has the first non-missing obser-
vation.

Compustat
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