
The Cross Section of the Monetary Policy Announcement Premium

Hengjie Ai, Leyla Jianyu Han, Xuhui Pan, and Lai Xu ∗

March 18, 2020

We show that monetary policy announcements require a significant risk compensation in the cross

section of equity returns. Empirically, we use the expected reduction in option-implied variance upon

FOMC announcements to measure the sensitivity of stock returns to monetary policy announcement

surprises. A long-short portfolio formed on the sensitivity measure produces an average FOMC

announcement-day return of 31.67 bps, which is both statistically and economically significant and

is robust after controlling for standard risk factors. We develop an equilibrium model to account

for the dynamics of implied variances and the cross section of returns of portfolios sorted on the

expected implied variance reduction following FOMC announcements.

JEL Codes: D81, G12, E44

Key words: FOMC Announcement, Implied Variance, Cross Section, Equity Returns

∗Hengjie Ai (hengjie@umn.edu) is affiliated with the Carlson School of Management, University of Minnesota;
Leyla Jianyu Han (hanjyu@connect.hku.hk) is associated with the Faculty of Business and Economics, University of
Hong Kong; Xuhui (Nick) Pan (xpan@ou.edu) is at the Price College of Business, University of Oklahoma; and Lai Xu
(lxu100@syr.edu) is at the Whitman School of Management, Syracuse University. We thank Grace Xing Hu, Annette
Vissing-Jorgensen, Nishad Kapadia, Yang Liu, Jun Pan, Morad Zekhnini, Lei Zhang, participants of WFA, University
of Houston, University of Hong Kong, Tsinghua University (PBC), and Tulane University for helpful comments.



1 Introduction

Pre-scheduled monetary policy announcements are associated with large realizations of equity

market excess returns on announcement days (see, e.g., Savor and Wilson (2013) and Lucca

and Moench (2015)). Ai and Bansal (2018) demonstrate that, interpreted as risk premiums, the

substantial equity market returns realized on FOMC announcement days imply that preferences in

macro and finance models must satisfy generalized risk sensitivity. Because the choice of preferences

is of fundamental importance in welfare analysis and policy evaluations, the existence of the

monetary policy announcement premium not only is important for understanding equity market

risk compensation but also provides guidance for policy-making.

This paper uses empirical evidence from the cross section of equity returns to examine the

existence of the monetary policy announcement premium. We show that exposure to monetary

policy announcement surprises is priced in the cross section of equity returns. As a result, market

expectations about firms’ sensitivity to monetary policy announcements strongly predict their equity

returns on FOMC announcement days. A long-short portfolio formed on our monetary policy

sensitivity measure produces an average announcement-day return of 31.67 bps, which is both

statistically and economically significant, even after controlling for standard risk factors.

To evaluate whether firms with differing levels of sensitivity to monetary policy announcements

also have differing expectations about their returns on announcement days, we first develop a novel

measure of market expectations of sensitivity to monetary policy surprises. A natural choice would

be the elasticity (or β) of firms’ equity returns with respect to measures of monetary policy surprises.

However, because FOMC announcements are infrequent (occurring eight times a year), estimates

of β are likely to be noisy and inaccurate, especially if the true level of sensitivity varies over time.

To overcome this difficulty, we use information from the option-implied variance. Our intuition

is that FOMC announcements resolve uncertainty about the macroeconomy and monetary policy

and are associated with reductions in the option-implied variance. Firms that are more sensitive

to monetary policy announcements should experience a greater implied variance reduction after

announcements. Expectations for the implied variance reduction can therefore measure sensitivity

1



to monetary policy announcements.

We find that portfolios sorted on the expected implied variance reduction (EVR) yield a

significant spread in average returns on FOMC announcement days but not on non-FOMC days.

A long-short portfolio formed on our monetary policy sensitivity measure produces an average

announcement-day return of 31.67 bps. In addition, the returns of EVR-sorted portfolios remain

significant after controlling for market beta and other standard risk factors. To further demonstrate

that the spread on the EVR-sorted portfolios reflects risk compensation for monetary policy

announcements, we use measures of monetary policy announcement surprises constructed by

Nakamura and Steinsson (2018) to show that i) the average monetary policy announcement surprises

are indifferent from zero, and therefore rational expectations hold well in our sample period; and

ii) the returns of the EVR-sorted portfolios are monotonic in their sensitivity to monetary policy

surprises.

From the perspective of the cross section of equity returns, our results for the monetary

policy announcement premium provide supporting evidence for previous findings associated with

the macroeconomic announcement premium. Our CAPM result, however, poses a challenge to

the theory as previous theoretical models and empirical findings suggest that the CAPM holds

well on macroeconomic announcement days. Savor and Wilson (2014), for example, find that on

announcement days the CAPM holds well for β-sorted portfolios, Fama-French size and book-to-

market sorted portfolios, and industry portfolios. Wachter and Zhu (2018) and Ai, Bansal, Im, and

Ying (2018) demonstrate that this pattern of the CAPM is consistent with theoretical models of

announcement premiums.

To quantitatively account for the cross-sectional announcement returns, we develop a model in

which FOMC announcement surprises require risk compensation because they reveal the Federal

Reserve’s private information about the prospects for future economic growth and in which investors’

preferences satisfy generalized risk sensitivity (Ai and Bansal, 2018). In our model, aggregate

economic growth is driven by a latent state variable and an i.i.d. component (short-run shocks).

The Federal Reserve has private information about the true value of the latent growth variable,

which is revealed through periodic monetary policy announcements. We specify a cross section of a
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dividend process that differs in both the sensitivity to the Federal Reserve’s announcement surprises

and the publicly observable contemporaneous growth rate shocks.

In our model, the size of the reduction in the implied variance on announcement days provides an

accurate measure of equities’ risk exposure to surprises in monetary policy announcements. Sorting

firms on the implied variance reduction is equivalent to sorting on sensitivity to news in FOMC

announcements. This is because on non-announcement days, investors do not observe the true value

of the latent growth variable and only update their beliefs about that value based on noisy signals

contained in realized economic growth. Scheduled FOMC announcements reveal the true value of

the latent variable and as a result, investors’ posterior beliefs jump on announcement days and

reset to their true value following the announcement. Stocks that have a high exposure to policy

surprises will experience a large drop in the implied variance on announcement days.

In this setup, our model matches several stylized features of the cross-sectional announcement

returns. First, the average announcement-day excess return of the market is about 36.2 bps, and

the spread on the announcement-day return of portfolios sorted on expected sensitivity is about

42.1 bps. Both are close to their empirical counterparts. Because of generalized risk sensitivity,

announcement surprises carry news about the future prospects for the economy and are priced (Ai

and Bansal, 2018). As a result, stocks that are more sensitive to monetary policy announcement

surprises than others will receive a higher risk premium on announcement days.

Second, the CAPM fails to account for the FOMC announcement returns of EVR-sorted

portfolios in our model. In the model, expected reductions in the implied variance accurately

measure the sensitivity to policy announcement surprises. The CAPM β, however, depends both

on the sensitivity of the stock return to policy announcement surprises and, more importantly, on

the sensitivity to contemporaneous shocks to economic growth, which account for a quantitatively

larger fraction of variations in equity market valuations. EVR-sorted portfolios therefore exhibit a

large dispersion in sensitivity to policy announcement surprises but a small dispersion in CAPM β,

which is not enough to account for their announcement-day returns.

Third, even though the CAPM fails to account for the expected returns of EVR-sorted portfolios,
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it does explain the announcement returns of β-sorted portfolios quite well. In the data, as

documented by Savor and Wilson (2014), β-sorted portfolios exhibit significant differences in their

announcement premiums, which can be explained by the CAPM. In our model, β-sorted portfolios

exhibit a large dispersion in CAPM β but a small dispersion in sensitivity to monetary surprises,

as quantitatively, β mostly reflects elasticity with respect to contemporaneous shocks to economic

growth and is only weakly correlated with sensitivity to FOMC announcements. As a result, the

announcement-day return of β-sorted portfolios is mostly absorbed by differences in β, making it

difficult to reject the CAPM in a finite sample.

Related literature Our paper is related to the literature that emphasizes the impact

of monetary policy announcements on equity market returns. Bernanke and Kuttner (2005)

demonstrate that stock markets respond strongly to monetary policy announcements. Gürkaynak,

Sack, and Swanson (2005) document evidence that both monetary policy action and announcements

have an important impact on asset markets.

Within this literature, most closely related to our paper are several recent papers emphasizing

the impact of FOMC announcements on equity market excess returns. Lucca and Moench (2015)

document an FOMC pre-announcement drift. Cieslak, Morse, and Vissing-Jorgensen (2019) provide

evidence for stock market returns over FOMC announcement cycles. Cieslak and Pang (2019)

provide a decomposition of shocks that drive stock and bond market variations to explain stock

and bond returns over the FOMC announcement cycle. Neuhierl and Weber (2018) document

that the return drift around FOMC announcements depends on whether the monetary policy is

expansionary or contradictory. Bollerslev, Li, and Xue (2018) find that after the FOMC meetings,

both volatility and volume increase, but the intra-day volume-volatility elasticity is systematically

below unity. While the above papers study the aggregate equity market excess returns around

FOMC announcement days, our paper examines the heterogeneous impact of FOMC announcements

on the cross section of the stock market.1

Our paper is also related to the broader literature on the macroeconomic announcement

1Relatedly, Mueller, Tahbaz-Salehi, and Vedolin (2017) and Karnaukh (2018) study the impact of FOMC
announcements on the foreign exchange market.
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premium. Savor and Wilson (2013) document a significant equity market return on days with

major macroeconomic announcements. Brusa, Savor, and Wilson (2019) show that the same holds

for many other countries. Savor and Wilson (2014) demonstrate that the CAPM holds well for

macroeconomic announcement days but not for non-announcement days. Hu, Pan, Wang, and

Zhu (2019) provide evidence that the option-implied variance increases before announcements and

drops afterward and attribute the FOMC announcement premium to heightened stock market

uncertainty. Amengual and Xiu (2018) argue that the large declines in the option-implied variance

after the FOMC announcements are associated with a resolution of policy uncertainty. All of above

empirical evidence is broadly consistent with our equilibrium model in which announcements resolve

macroeconomic uncertainty and are associated with reductions in the option-implied variance of

equity market returns.

Our work is also related to papers that study monetary policy and the cross section of equity

returns. Ozdagli and Velikov (2019) use observable firm characteristics to measure the firm exposure

to monetary policy and find that stocks with a more positive reaction to expansionary monetary

policy surprises earn lower returns. Chava and Hsu (2019) find that financially constrained firms

earn lower returns than unconstrained firms after unanticipated increases in the federal funds target

rate. The above papers study monetary policies in general, but not necessarily monetary policy

announcements. In fact, none of them focuses on returns realized on FOMC announcement days,

nor do they find a significant premium realized following announcements.

Our theoretical model builds on recent developments in asset pricing models for the

macroeconomic announcement premium. Ai and Bansal (2018) provide a revealed preference theory

for the macroeconomic announcement premium. Wachter and Zhu (2018) and Ai, Bansal, Im, and

Ying (2018) develop quantitative models of the announcement premium. The information channel

we emphasize in our paper is consistent with recent work by Nakamura and Steinsson (2018),

who provide empirical evidence and develop a theoretical model to show that Federal Reserve

announcements affect beliefs not only about monetary policy but also about economic fundamentals.

The rest of the paper is organized as follows. In Section 2, we develop a measure of expected

sensitivity to monetary policy announcement surprises and present cross-sectional evidence for
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the relationship between expected sensitivity and expected returns. In Section 3, we develop a

continuous-time model with monetary policy announcements and explain cross-sectional equity

returns. We present our quantitative analysis and demonstrate that our model is able to account

for the stylized features of the cross-sectional FOMC announcement premium in Section 4. Section

5 concludes.

2 Empirical Evidence

In this section, we provide evidence that stocks that are more sensitive to monetary policy

announcement surprises earn significantly higher premiums on FOMC announcement days. In

addition, the cross section of the monetary policy announcement premium cannot be explained by

the CAPM.

2.1 Measuring Expected Sensitivity

To study whether risk exposure to monetary policy announcements is priced in the cross section

of equity returns, our strategy is to measure the sensitivity of firms’ equity returns with respect

to monetary policy announcements and to evaluate whether differences in the level of sensitivity

are reflected in firms’ expected returns realized on announcement days. This exercise requires

constructing a firm-level measure of sensitivity with respect to FOMC announcement surprises,

sorting stocks into portfolios based on such a measure, and estimating expected returns by

computing the average returns of the sensitivity-sorted portfolios.

Because our purpose is to measure the expected returns of the sensitivity-sorted portfolios, the

measure of sensitivity should be based on market expectations and cannot depend on information

unavailable at the time of portfolio formation, to avoid any look-ahead bias. Since the FOMC makes

announcements only eight times a year, any sensitivity estimates based on historical announcement

data are likely to be noisy because of a lack of observations. In addition, if the true level of sensitivity

is time varying, sensitivity estimates using historical announcements are likely to be inaccurate.
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To overcome the above difficulty, our measure of sensitivity is based on the option-implied

variance. In contrast to estimated sensitivity using historical announcement data, the option-

implied variance is capable of capturing changes in market expectations in a timely manner.

The construction of our measure is based on the intuition that FOMC announcements reduce

uncertainty about the macroeconomy and monetary policy and are associated with reductions

in the option-implied variance. In the cross section, firms that are more sensitive to monetary

policy announcement surprises should experience higher implied variance reductions following

announcements. To avoid look-ahead bias, we construct a measure of the expected implied variance

reduction, or EVR for short. In what follows, we first present evidence on the implied variance

reductions on FOMC announcement days and then detail the construction of our measure of the

EVR.

Implied variance around monetary policy announcements We first establish that there

are significant reductions in the option-implied variance on FOMC announcement days both at the

market level and at the firm level. We also show that the firm-level implied variance reduction

exhibits substantial heterogeneity. Collectively, the above evidence supports the two premises of

our empirical exercises: i) the implied variance reduction can be used to measure the firm-level

sensitivity to monetary policy announcement surprises, and ii) this sensitivity exhibits a considerable

heterogeneity across firms.

We use the squared option-implied volatility index, VIX2, to measure the implied variance of the

market return. We obtain data on VIX from the Chicago Board Options Exchange (CBOE). The

CBOE’s VIX is a model-free measure of implied volatility computed from the S&P 500 index option

prices. For the firm-level implied variance, on each day and for each time to maturity, we follow

Bakshi, Kapadia, and Madan (2003) to estimate the implied variance by averaging the weighted

prices of out-of-money puts and out-of-money calls over a wide range of strike prices. We then obtain

the 7-day implied variance by interpolating or extrapolating the implied variance in the maturity

dimension. We use the 7-day implied variance because the short-maturity option prices are likely to

be more sensitive to announcement surprises than the long-maturity option prices. Our firm-level
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option data are from OptionMetrics. The sample period is from January 1996 to December 2017.

In our data period, there are 176 pre-scheduled FOMC meetings. If a FOMC meeting lasts for two

days, we treat the second day as the announcement day. We provide more detailed information

about the firm-level implied variance and other data in the Appendix A.1.

We document the patterns of the implied variance reduction on FOMC announcement days

in Table 1. Panel A of the table compares the market-level implied variance (V IX2
t ) on FOMC

announcement days with the same moment one day before announcements, V IX2
t−1. Consistent

with the previous literature (see, e.g., Savor and Wilson, 2013 ), VIX significantly decreases after

FOMC announcements. On average, the daily reduction in VIX2 is about 2.41 (monthly percentage

squared units). We observe the same pattern at the firm level. As shown in Panel B of Table 1, the

average reduction in the implied variance at the firm level is about 4.95 and significant.

Moreover, there is evidence of significant heterogeneity in announcement-day reductions in the

implied variance across firms. We rank firms by their average announcement-day implied variance

reduction and plot the histogram of these reductions in Figure 1. The implied variance decreases

after announcements for most of firms, and the magnitude of reduction differs substantially.

2.2 Expected Variance Reduction

Motivated by the above evidence, we measure the market-expected sensitivity to FOMC

announcement surprises using the expected implied variance reduction. For a FOMC announcement

day t, the expected implied variance reduction (EVR) is computed as2

EV R = IVt−2 −Median of Historical IV. (1)

In the above equation, IVt−2 is the 7-day implied variance (IV) for a firm computed from the closing

price of its options two days before the FOMC announcement. We use closing prices two days

2Note that our measure is different from the variance risk premium (VRP) in the literature; see, for example,
Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011), and Bollerslev, Marrone, Xu, and Zhou (2014).
The VRP is the difference between the variance under the Q-measure and that under the P-measure, whereas our
measure is designed to capture the upcoming announcements, and we do not use any variance measure under the
physical probability.
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before announcements to ensure that our measure is not affected by the pre-FOMC announcement

drift documented by Lucca and Moench (2015). The median of historical IV in equation (1) is

computed as the median value of IV during day −15 and day −8, where the announcement day is

normalized to day 0.3 In our construction, the historical IV is not affected by the upcoming FOMC

announcement, whereas IVt−2 is. A larger increase in IVt−2 relative to its historical level indicates

the market expectation that the equity of the firm will be more sensitive to the upcoming FOMC

announcement.

Our measure of the expected implied variance reduction has significant predictive powers for

the actual implied variance reduction on FOMC announcement days. In equation (2), we report

results from a panel regression of the actual implied variance reduction on our measure of the

expected implied variance reduction. The regression coefficient on the expected variance reduction

is significantly positive with a t-statistic of 8.63 (based on the day-clustered standard error) and a

R2 of 5.9%: 4

Actual IV Reduction = 0.0019
(0.76)

+ 0.2054
(8.63)

× Expected IV Reduction. (2)

The key advantage of using the implied variance to measure expected sensitivity is that the

implied variance reflects market expectations in a timely manner. Alternative measures such as

market β on previous announcement days do not incorporate the same forward-looking information

contained in the implied variance and may not necessarily reflect market expectations on the

upcoming announcement.

2.3 Return of Portfolios Sorted on EVR

Using the EVR measure constructed above, we sort stocks into decile portfolios and examine their

returns on FOMC announcement days. Consider a FOMC announcement day. We compute our

3Our results remain robust if we use the mean value of the historical IV during the same period to adjust IVt−2

or if we use a longer period to measure the historical IV, such as during day −22 and day −8.
4In Appendix A.2, we provide other additional implied variance reduction forecasts for comparison. The results

show that this model predicts the actual implied variance reduction better than others.
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EVR measure for each stock two days ahead of the announcement day and sort stocks into decile

portfolios using the EVR measure. Stocks in the top (bottom) portfolio have the highest (lowest)

EVR and are most (least) sensitive to the upcoming FOMC announcement. We keep track of the

value-weighted portfolio returns and rebalance the portfolios until the next sorting date, which is

two days before the next FOMC announcement day. We repeat the above procedure and compute

the average FOMC announcement-day return and non-FOMC announcement-day return for each

of the portfolios.

Panel A of Table 2 reports the portfolio returns on FOMC announcement days and non-FOMC

days. To save space, we present the returns for portfolios 1, 2, 9, and 10, and the return for the

consolidated portfolios 3 to 8. On FOMC announcement days, the top decile portfolio with the

highest expected sensitivity earns higher expected returns than the bottom decile portfolio with

the lowest expected sensitivity. On average, the long-short portfolio earns a raw return of 31.67

bps on FOMC announcement days. This tradable strategy that invests only on the eight FOMC

announcement days earns an average annual return of 2.53% (31.67 bps × 8). In contrast, most

portfolios, as well as the long-short portfolio, do not earn significant returns on non-FOMC days.

We confirm that the portfolio returns on FOMC announcement days are not driven by standard

firm characteristics such as size or book-to-market ratio (B/M).

We next report results from CAPM regressions for our sorted portfolios. To distinguish

between FOMC announcement days and non-FOMC announcement days, we consider the following

regression:

Rit − rf,t = αiNon · 1Non + αiFOMC · 1FOMC + β
(
RMt − rf,t

)
+ εit, (3)

where Rit is the daily return of the sorted portfolio, RMt is the daily return of the market, and rf,t is

the daily risk-free rate. The variables 1Non and 1FOMC are dummy variables that take values of 1

only on non-FOMC and FOMC announcement days, respectively. Panel B of Table 2 reports results

for the above CAPM regression. Note that the FOMC dummy is monotonically increasing across

portfolios and the FOMC dummy of the long-short portfolio is positive and statistically significant.

The spread between the high sensitivity portfolio and the low sensitivity portfolio averages 30.70
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bps on FOMC announcement days after controlling for market returns. Our results suggest that the

CAPM fails to account for the cross section of returns of portfolios sorted on expected sensitivity

on FOMC announcement days.

The above portfolio return results remain robust if we exclude the recent financial crisis period

(July 2008 to June 2009) or if we exclude firms whose earning announcement dates coincide with

the FOMC announcement days, as shown in Appendix A.2. In an unreported robustness check, we

find that our results are robust even after including Fama-French three or five factors in the above

regression.

2.4 CAPM for β−Sorted Portfolios

The literature has shown that the CAPM holds well on macroeconomic announcement days (see,

e.g., Savor and Wilson, 2014). In this section, we present evidence for the FOMC announcement

premium for CAPM β−sorted portfolios. Our sorting procedure is similar to the one using the

expected sensitivity measure EVR introduced in section 2.2. For each FOMC meeting, we sort all

stocks into decile portfolios based on their CAPM beta, which is calculated using the daily return

during the past twelve months, two days before the FOMC announcement. We then document the

daily portfolio returns until the next rebalancing date, which is two days before the next FOMC

announcement day.

Panel A of Table 3 reports the portfolio returns on FOMC announcement days and non-FOMC

days. We find that on FOMC days, high beta stocks do earn high expected returns: on average, the

long-short portfolio can generate a raw return of 55.17 bps. On the other hand, portfolio returns

on non-FOMC days are rather low with no obvious pattern. This result indicates that the CAPM

may only hold on FOMC announcement days.

In Panel B, we test the CAPM using β-sorted portfolios. By construction, beta monotonically

increases across the portfolios. When we further include a FOMC dummy and a non-FOMC dummy

in the CAPM, the coefficients on the FOMC dummy are insignificant for all portfolios, including

the long-short portfolio. This insignificant FOMC dummy is consistent with the findings in the
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previous literature that the returns of the β-sorted portfolios can be explained by the CAPM.

The failure of the CAPM in explaining the cross section of the EVR sorted portfolios and

the success of the CAPM in accounting for the announcement returns of the β-sorted portfolios

together pose a serious challenge for the structural model of the cross section of the macroeconomic

announcement premium.

2.5 Exposure to Monetary Policy Announcement Surprises

We argue that the cross-sectional returns in the EVR sorted portfolios represent risk compensation

for surprises in monetary policy announcements. In this section, we use two measures of monetary

policy surprises constructed by Nakamura and Steinsson (2018) to provide additional evidence to

support our argument. The first measure is a composite measure constructed as the first principal

component of the unanticipated change over the 30-minute FOMC announcement windows in a

basket of five interest rates. The second is based on changes in the federal funds rate on FOMC

announcement days.

First, we show that rational expectations hold well in the period of our portfolio-sorting exercise.

In Table 4, we report the first and second moments of the two measures of monetary policy surprises:

the composite measure of policy news constructed in Nakamura and Steinsson (2018) (labeled as

Policy News) and the changes in the federal funds rate on announcement days (labeled as FFR).

Both measures of monetary policy surprises exhibit substantial variation; however, in both measures,

the average surprises are not significantly different from zero. This result implies that there are

no systematic biases in the market’s forecast about monetary policy announcements during this

period, and the market excess return and that of the portfolios sorted on expected sensitivity EVR

must be compensation for risk rather than a reflection of biases in expectations.

Second, we show that the cross-sectional returns of portfolios sorted on EVR monotonically

react to policy surprises. We compute the betas of portfolios sorted on EVR with respect to both

measures of monetary policy surprises. We run the following regression on FOMC announcement
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days:

Rit − rf,t = αi + βiNews∆gt + βiMkt

(
RMt − rf,t

)
+ εit, (4)

where Rit is the return of portfolio i, and ∆gt stands for policy surprises on FOMC announcement

day t. We plot the slope coefficient of the above regression, βiNews, for each of the portfolios in

Figure 2.

The slope coefficient βiNews is monotonically increasing for both measures of policy surprises.

After an unexpected interest rate hike, the return for the high EVR portfolio increases and that

for the low EVR portfolio decreases, after controlling for market returns. The fact that the high

EVR portfolio is more sensitive to interest rate hikes is consistent with Nakamura and Steinsson

(2018)’s interpretation that monetary policy announcements convey the Federal Reserve’s private

information about the economy, and surprising interest rate hikes are associated with information

that economic fundamentals are stronger than expected. Consistent with the above information

effect, Nakamura and Steinsson (2018) document that in response to an unexpected increase in the

real interest rate (a monetary tightening), survey estimates of expected output growth rise.

To account for the expected returns of the cross section of portfolios sorted on expected

sensitivity, in the next section, we develop an equilibrium model in which FOMC announcements

reveal the Federal Reserve’s private information about economic growth.

3 Model Setup and Solution

In this section, we set up a continuous-time equilibrium model in which the Federal Reserve’s

monetary policy announcements reveal its private information about the growth prospects for the

economy and study the implications for the cross section of announcement returns. In our model,

aggregate economic growth is driven by a latent state variable and an i.i.d. component (short-run

shocks). The Federal Reserve has private information about the true value of the latent growth

variable, which is revealed through periodic monetary policy announcements.

13



Consumption and preference We consider a continuous-time representative agent economy

in which the representative agent has a recursive preference with constant risk aversion γ and

intertemporal elasticity of substitution (IES) ψ. The growth rate of aggregate consumption contains

a latent predictable component, xt, and an i.i.d. component modeled by increments of Brownian

motion BC,t with constant volatility σ:

dCt
Ct

= xtdt+ σdBC,t. (5)

Similar to the model of Ai (2010), we assume that xt is a continuous-time AR(1) process (an

Ornstein-Uhlenbeck process) and unobservable to investors in the economy. The law of motion of

xt follows the process

dxt = ax (x̄− xt) dt+ σxdBx,t, (6)

where Bx,t is a Brownian motion independent of BC,t.

Information and announcements To build a parsimonious model in which the Federal

Reserve has private information about the future growth prospects for the economy, we assume

that investors in the economy cannot observe the latent variable xt. The Federal Reserve has more

information about xt than investors do, and its private information about xt is revealed through

pre-scheduled FOMC announcements.

Specifically, an investor’s prior belief about xt is represented by a normal distribution. Since

the posterior distribution of xt is also Gaussian, it can be summarized by the first two moments.

We define x̂t = Et [xt] as the posterior mean and qt = Et
[
(xt − x̂t)2

]
as the posterior variance of xt

given information up to time t. Investors can use two sources of information to update their beliefs

about xt at time t. First, the realized consumption path contains information about xt. Second, at

pre-scheduled discrete time points T, 2T, 3T, · · · , additional signals about xt are revealed through

announcements. For n = 1, 2, 3, · · · , we denote sn as the signal observed at time nT and assume

sn = xnT + εn, where εn is i.i.d. and normally distributed with mean zero and variance σ2
s .

At time t = nT , where n is an integer, investors update their beliefs based on the signals st
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about xt using Bayes’ rule:

x̂+
nT = q+

nT

[
1

σ2
s

sn +
1

q−nT
x̂−nT

]
;

1

q+
nT

=
1

σ2
s

+
1

q−nT
, (7)

where x̂+
nT and q+

nT are the posterior mean and variance after announcements, and x̂−nT and q−nT are

the posterior mean and variance before announcements, respectively.

In the interior of (nT, (n+ 1)T ), investors update their beliefs based on the observed

consumption process using a Kalman-Bucy filter:

dx̂t = ax (x̄− x̂t) dt+
qt
σ
dB̃C,t, (8)

where the innovation process is defined by dB̃C,t = 1
σ

[
dCt
Ct
− x̂tdt

]
. The posterior variance, qt,

satisfies the Riccati equation:

dqt =

[
σ2
x − 2axqt −

1

σ2
q2
t

]
dt. (9)

The intuition of our results is the same as that demonstrated in Ai and Bansal (2018). In our

model, the two sources of risk are consumption growth risk, as captured by the Brownian motion

dB̃C,t, and news about latent growth risk, as captured by changes in (the beliefs about) xt. Prior to

the announcements, investors do not observe the true value of xt and update their beliefs about it

with the posterior x̂t. Announcements are associated with immediate updates of investors’ beliefs.

That is, the posterior mean of xnT jumps instantaneously from x̂−nT to x+
nT .

The cross section of equity We assume that there is a cross section of equity claims, indexed

by i. Equity i is the claim to the following dividend process:

dDi
t

Di
t

= [x̄+ ξi (x̂t − x̄)] dt+ ηiσdB̃C,t + σidBi,t, (10)

where dBi,t is the idiosyncratic shock to each firm i, which is uncorrelated with dBC,t and dBx,t.

The term σi is the idiosyncratic volatility, and the parameters (ξi, ηi) measure the sensitivity of

the dividend with respect to news about the latent growth risk and the consumption growth risk,
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respectively. We assume that ξi is uniformly distributed over the interval
[
ξ, ξ
]

and ηi is uniformly

distributed over
[
η, η
]
, and the distributions of ξi and ηi are independent.

Define the price-to-dividend ratio of firm i as p ( x̂t, qt| ξi, ηi), which depends on both ξi and ηi.

The function p ( x̂t, qt| ξi, ηi) is defined as

p ( x̂t, qt| ξi, ηi)Di
t = Et

[∫ ∞
0

πt+s
πt

Di
t+sds

∣∣∣∣ x̂t, qt] , (11)

where the law of motion of Di
t is given in (10) and the solution for state price density πt is provided

later in this section. For simplicity, we henceforth denote the firm-specific price-to-dividend ratio

as pi (x̂t, t). The return on firm i’s equity during the period (t, t+ ∆) is given by

Rit,t+∆ =
pi(x̂t+∆, t+ ∆)

Dit+∆
Dit

+
∫ t+∆
t

Dis
Dit
ds

pi (x̂t, t)
.

Model solution In the interior of (nT, (n+ 1)T ), n = 1, 2, · · · , the law of motion of the state

price density, πt, satisfies the following stochastic differential equation:

dπt = πt

[
−r (x̂t, qt) dt− σπ,tdB̃C,t

]
, (12)

where

r (x̂t, qt) = ρ+
1

ψ
x̂t −

1

2
γ

(
1 +

1

ψ

)
σ2 +

1
ψ − γ
ax + ρ

qt +

(
1
ψ − γ

)(
1− 1

ψ

)
2 (ax + ρ)2

(qt
σ

)2
(13)

is the risk-free interest rate and

σπ,t = γσ +
γ − 1

ψ

ax + ρ

qt
σ

(14)

is the market price of the Brownian motion risk, B̃C,t. Equation (14) contains both the compensation

for the i.i.d. shock BC,t and that for the changes in the belief about xt, captured by the term
γ− 1

ψ

ax+ρ
qt
σ .

The two sources of fundamental risk in the economy are BC,t and Bx,t. However, investors do not

observe xt and cannot distinguish whether a change in consumption growth is due to BC,t or to

innovations in Bx,t. Innovations in consumption growth, from investors’ perspective, affect both the

contemporaneous consumption growth rate and investors’ beliefs about xt. As in Ai (2010), σπ,t
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summarizes risk compensation from both channels.

As we show in Appendix A.3.2, each firm’s price-to-dividend ratio pi (x̂t, t) must satisfy the

partial differential equation of (A.16). In addition, at announcements nT, n = 1, 2, 3, ..., the

boundary condition satisfies

pi
(
x̂−nT , nT

−) =

E

[
e

1
ψ

−γ
ax+ρ

x̂+
nT pi

(
x̂+
nT , nT

+
)
| x̂−nT , q

−
nT

]

e

1
ψ

−γ
ax+ρ

x̂−nT+
(1−γ)( 1

ψ
−γ)

2(ax+ρ)2
[q−nT−q

+
nT ]

. (15)

Under the assumption of generalized risk sensitivity, γ > 1
ψ , the term e

1
ψ

−γ
ax+ρ

x̂+
nT is negatively

correlated with the posterior belief, x+
nT , which is updated immediately following announcements.

As a result, an asset with a payoff that increases after the announcement about x+
nT requires

a positive risk premium, and the magnitude of the announcement premium increases with the

sensitivity of the asset’s payoff with respect to announcements about x+
nT .

In our model, because announcement premiums represent compensation for shocks to beliefs

about x̂t, stocks that are more sensitive to x̂t require a higher level of compensation in terms of

announcement returns. The sensitivity of the stock return with respect to announcement surprises

depends primarily on the parameter ξi. From equation (10), we see that a stock with a higher ξi in

its dividend growth rate is more sensitive to xt. Therefore, the price-to-dividend ratio and return

respond more to news about xt, so this stock requires a high level of risk compensation. We provide

details of the model solutions in the Appendix A.3.

4 Quantitative Implications

Calibration We choose parameters to match the dynamics of consumption growth and the

implied variance, and we report this calibration in Table 5. First, we choose the parameters for

preference and the consumption growth rate in our model to be consistent with the standard long-run

risk literature. Following Bansal and Yaron (2004) and Ai (2010) among others, we set the discount
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rate ρ = 0.01, the risk aversion γ = 10, and IES ψ = 2. We choose the average consumption

growth x̄ = 1.5% and the standard deviation of consumption growth σ = 3.0% to match the first

and second moment of aggregate consumption in the sample period of 1929-2018. We also choose

the autocorrelation ax and the standard deviation of xt to be in line with standard long-run risk

models, such as Bansal and Yaron (2004) and Ai (2010).

The parameters of investors’ beliefs and the cross section of dividend processes are specific

to our model. We choose the parameters of investors’ beliefs and the cross section of dividend

processes to match the dynamics of implied variances in our sample. We set σi = 57% to match the

cross-sectional average implied variance of stocks on non-announcement days. Our model gives an

implied variance of 274.23 in monthly percentage squared units, which is close to 276.21 in our data,

reported in Table 1. We choose the parameter for the informativeness of FOMC announcements,

σs = 4.33%, so that our model matches the standard deviation of aggregate stock market returns on

announcement days of 110 bps, as reported in Ai and Bansal (2018). Finally, we choose ξ = η = 1

and ξ = η = 5 to match the slope in the cross section of expected returns. The calibrated parameter

values are listed in Table 5.

We simulate our model for 122 years. We discard the first 100 years and keep the remaining

22 years so that the time span of our simulation is the same as that in our data, and we can

compare not only the point estimates but also the t-statistics in our model and their counterparts

in the data. Our model closely matches several moments in the data that our calibration does not

explicitly target. In our calibration, the average market excess returns on FOMC announcement

days and non-FOMC days are 36.2 bps and 1.8 bps, very close to the same moments (36.6 bps and

2.0 bps) reported in Lucca and Moench (2015). The average drop in the implied variance in our

model is 9.2 in monthly percentage squared units, comparable to the same number we reported in

Table 1 in our data.

Aggregate FOMC announcement premium In Table 6, we report the average market

excess returns on FOMC announcement days and non-FOMC announcement days for both the

data and the model. As documented in the previous literature, the equity market earns significant
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average excess returns on FOMC announcement days. Our model matches this pattern in the data

quite well.

The intuition behind our results is the same as that demonstrated in Ai and Bansal (2018).

In our model, the two sources of risk are consumption growth risk, as captured by the Brownian

motion dB̃C,t, and news about latent growth risk, as captured by changes in (the beliefs about)

xt (i.e., x̂+
nT − x̂

−
nT ). Prior to the announcements, investors do not observe the true value of xt

and update their beliefs based on observed consumption growth. Because consumption growth is

driven by Brownian motion shocks, the posterior belief, x̂t, updates continuously. At pre-scheduled

announcement times, FOMC announcements are associated with discrete jumps in the posterior

belief from x̂−nT to x̂+
nT .

Because investors’ preferences satisfy generalized risk sensitivity, marginal utility is decreasing in

the continuation value, which is a function of the posterior belief x̂t. Because announcements carry

news about x̂t , they correlate with marginal utilities and are risky from the investors’ perspective.

As a result, stocks that are more sensitive to changes in xt require a larger amount of compensation

following announcements. We now turn to the implications of our model in the cross section of

equity returns.

Portfolios sorted on expected sensitivity In our model, because announcement premiums

represent compensation for shocks to beliefs about x̂t, stocks that are more sensitive to x̂t require

a higher level of compensation in terms of announcement returns. The sensitivity of stock returns

with respect to announcement surprises depends primarily on the sensitivity of dividend growth with

respect to announcements, ξi. From equation (10), we see that a stock with a higher sensitivity to

future economic growth, which is captured by the parameter ξi, is more sensitive to xt. Therefore,

its price-to-dividend ratio and return respond more to news about xt, and it requires a high level

of risk compensation.

In our model, as we show in Appendix A.3.4, the implied variance reduction following
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announcements is given by

∆IVi =

(
ξi − 1

ψ

ax + p̄i

)2(
q−2
nT

q−nT + σ2
s

)
, (16)

where p̄i is the inverse of the steady state price-to-dividend ratio of firm i. The term ∆IVi is

a strictly increasing function of ξi, the sensitivity of the dividend with respect to news about

latent growth. Therefore, in our model, sorting on the implied variance reduction is equivalent to

sorting on sensitivity to news in FOMC announcements. In model simulations, because EVR is

a perfect measure of ξi, high ξi stocks are allocated to high EVR portfolios and therefore have a

high announcement-day return on average. In Table 7, we compare the average FOMC-day and

non-FOMC-day return of portfolios sorted on expected sensitivity in our model and the data. Our

model replicates the pattern of the FOMC announcement premiums for portfolios sorted on expected

sensitivity.

In addition, the FOMC announcement premium in our model is not explained by the CAPM.

We run the same CAPM regression for the portfolios sorted on expected sensitivity and compare

our model output and the data counterparts in Table 8. As shown, the spread in announcement

returns is large and significant across ξ-sorted portfolios, whereas β is only slightly increasing in

expected sensitivity. As a result, as in the data, the coefficient on the FOMC dummy is significant

for most portfolios. Moreover, our model replicates the monotonic pattern of the FOMC dummy

across portfolios sorted on expected sensitivity quite well.

To understand our result, in the left panel of Figure 3, we plot the sensitivity of a stock’s

announcement return with respect to x̂t as a function of ξ normalized by the same sensitivity

measure of market return, that is, pix(x̂t,t)
pi(x̂t,t)

/px(x̂t,t)
p(x̂t,t)

. Because the sensitivity of the announcement

return with respect to x̂t depends on both ξ and η, we plot it for three different values of η:

ηi = 1, 3, 5.

In our model, the dividend process is continuous, and the announcement return of a stock

depends only on its price-to-dividend ratio and can be written as pix(x̂t,t)
pi(x̂t,t)

. Clearly, from the figure, the

sensitivity of price-to-dividend ratio with respect to announcement is increasing in ξ but decreasing

in η, where the impact of η is quantitatively small. The parameter ξ determines the sensitivity of
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dividend growth with respect to the hidden state variable xt, which is revealed upon announcements.

As a result, the return of stocks with higher values of ξ is more sensitive to announcements. By

comparison, the impact of η is much smaller.5 Because the sensitivity of the stock returns with

respect to announcement surprises depends mostly on ξ and not on η: sorting on expected sensitivity

reduction is equivalent to sorting on ξ in our model.

In the right panel, we plot the local CAPM β as a function of ξ for ηi = 1, 3, 5. Local β is

computed as follows:

βi =
Cov

[
dRit, dRt

]
V ar [dRt]

=
ηiσ + pix(x̂t,t)

pi(x̂t,t)
qt
σ

ησ + px(x̂t,t)
p(x̂t,t)

qt
σ

. (17)

In our model, on non-announcement days, because investors do not observe the latent growth

variable xt, the only shock that affects stock market returns is the surprise in consumption growth,

dB̃C,t. As we have explained, innovations in consumption growth affect both the contemporaneous

growth rate of consumption and the posterior belief about future consumption growth, x̂t.

Therefore, qualitatively, the sensitivity of the stock return to contemporaneous consumption growth,

captured by the parameter ηi, and the sensitivity of the stock return to the latent growth variable,

determined by the parameter ξi, will both affect the estimated CAPM β. Therefore, the estimate

of βi increases in both ξi and ηi.

Quantitatively, the estimated β increases strongly with respect to ηi but only mildly with respect

to ξi. As a result, EVR-sorted portfolios display a significant dispersion in ξi but a small dispersion

in estimated β. In the model, although investors do not observe the true value of xt, periodic FOMC

announcements provide information about xt, and the posterior variance of xt, qt, is much smaller

relative to σ in equation (17). Because estimated β is more sensitive to ηi and less sensitive to ξi,

the EVR-sorted portfolios have a small dispersion in β, which cannot fully account for the difference

in the announcement returns in CAPM regressions. As shown in Table 8, the FOMC announcement

dummies are quite significant and monotonically increasing in our model, as in the data.

5In our model, high η stocks are less sensitive to announcement surprises. Stocks with higher η require a higher
risk premium and therefore have a lower cash flow duration. As a result, their price-to-dividend ratio are less sensitive
to news about dividend growth rates.
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Beta-sorted portfolios Savor and Wilson (2014) show that CAPM explains the

announcement premiums of CAPM β-sorted portfolios very well. As we have shown in the last

section, the stochastic discount factor in our model is driven by two sources of risk, and one-factor

model such as the CAPM cannot fully account for the cross section of announcement premiums.

However, as we demonstrate below, despite the failure of the CAPM in explaining the EVR-sorted

portfolios, our model can account for the pattern of announcement returns of CAPM β-sorted

portfolios quite well.

Table 9 presents the announcement premium for β-sorted portfolios in the data and the model.

As in the data, the announcement premiums are significant and monotonically increasing in β in

our model. The average returns on non-FOMC days are much smaller for all portfolios, as are the

spreads between these portfolios. In Table 10, we present the results for the CAPM regressions

for β-sorted portfolios in the model. As in the data, the coefficients for non-FOMC and FOMC

dummies are both insignificant. The FOMC announcement premium in the long-short portfolio

disappears once we control for market β.

To understand our results, note that β in our model is jointly determined by ξi and ηi. As shown

in the last section, because β is not very sensitive to ξi, sorting on ξi (or equivalently sorting on

expected sensitivity) does not generate significant dispersion in β, and that is why the CAPM fails

to account for the returns of the cross section of portfolios sorted on expected sensitivity. However,

sorting on individual firm’s β, as we show in Table 9, does generate a significant dispersion in

the CAPM β. Although the spread is not as great as sorting directly on ξi, the average ξ is

still monotonically increasing in β-sorted portfolios. This explains the significant announcement

premium for β- sorted portfolios. At the same time, because the CAPM β is also monotonic for

β-sorted portfolios, by construction, the dispersion in the announcement premium can be fully

explained by the dispersion in β in a finite sample.
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5 Conclusion

In this paper, we provide empirical evidence and an equilibrium model for the cross section of

FOMC announcement-day returns. We show that stocks that are more sensitive to monetary policy

announcement surprises require a higher level of risk compensation following FOMC announcements.

Our evidence is supportive of the recent literature that emphasizes the importance of risk

compensation in macroeconomic announcements, in particular, monetary policy announcements.

To account for the cross section of FOMC announcement returns, we develop an equilibrium model

in which FOMC announcements reveal the Federal Reserve’s private information about prospects

for future economic growth and stock returns differ in their sensitivity to economic growth rates.

23



Table 1: Implied Variance Around FOMC Announcement Days

Panel A: V IX2

V IX2
t V IX2

t−1 V IX2
t − V IX2

t−1

Mean 39.526 41.940 -2.414
t-stats (-3.39)

Panel B: Average Firm-Level Implied Variance

IVt IVt−1 IVt − IVt−1

Mean 276.210 281.165 -4.954
t-stats (-4.58)

This table reports the implied variance changes from one day before FOMC announcement days to FOMC

announcement days. In Panel A, we report changes in V IX2 (monthly percentage squared units) around FOMC

days and their time series statistics when testing whether the change is significantly different from zero. In Panel B,

we report the cross-sectional average of changes in the firm-level option-implied variance (monthly percentage squared

units) around FOMC announcement days and their time series statistics. The firm-level implied variance uses the

7-days maturity variance. Our full sample period is from January 1996 to December 2017 with 176 FOMC days.

During this period, there are 6652 common stocks with trading options. Among these 6652 firms in our sample, there

are 5446 firms with at least one observed option-implied variance on these 176 FOMC days.
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Table 2: Portfolio Returns Sorted on Expected Sensitivity

Panel A: Average Returns

1 2 3− 8 9 10 (10− 1)

FOMC Return 36.57 28.78 29.40 48.05 68.24 31.67
(1.93) (2.35) (3.36) (3.53) (3.09) (2.67)

Non-FOMC Return 3.42 3.33 3.55 4.16 3.23 -0.19
(1.40) (1.71) (2.60) (2.28) (1.31) (-0.15)

Panel B: CAPM

1 2 3− 8 9 10 (10− 1)

CAPM Beta 1.41 1.15 0.92 1.22 1.44 0.03
Non-FOMC Dummy -0.69 -0.19 0.57 0.49 -0.96 -0.27

(-0.58) (-0.21) (1.96) (0.66) (-0.80) (-0.21)
FOMC Dummy -10.15 -9.31 -1.26 7.59 20.54 30.70

(-1.38) (-2.01) (-0.80) (1.88) (2.48) (2.87)

We conduct a tradable strategy two days before the FOMC announcement days. We measure firm-level sensitivity to

monetary policy announcements by the expected implied variance reduction around FOMC announcements, which is

the difference between the implied variance two days before the announcement (normalized to day 0) and the median

value of the implied variance during day −8 and day −15. Based on this measurement, we sort firms into decile

portfolios with the third portfolio containing 60% of all firms and each of the remaining four portfolios containing

10%, and document the value-weighted portfolio returns. These portfolios are rebalanced two days before the next

FOMC announcement day. Panel A reports the time series average and Newey-West t-statistics (with 12 lags) of

portfolio returns (basis points) on FOMC announcement days and non-FOMC announcement days. Panel B reports

the daily regression results of equation (3), which include the CAPM beta and coefficients of a non-FOMC dummy

and a FOMC dummy, as well as the Newey-West t-statistics.
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Table 3: Portfolio Returns Sorted on CAPM Beta

Panel A: Average Returns

1 2 3− 8 9 10 (10− 1)

FOMC Return 13.05 17.40 30.66 51.74 68.23 55.17
(2.27) (2.98) (2.89) (2.55) (2.70) (2.41)

Non-FOMC Return 3.09 3.63 3.57 2.61 4.05 0.95
(3.25) (3.10) (2.30) (1.02) (1.33) (0.34)

Panel B: CAPM

1 2 3− 8 9 10 (10− 1)

CAPM Beta 0.47 0.68 1.02 1.58 1.73 1.26
Non-FOMC Dummy 1.13 1.19 0.32 -1.92 -0.86 -1.99

(1.72) (1.89) (0.89) (-1.68) (-0.50) (-0.93)
FOMC Dummy -2.78 -4.93 -2.63 1.04 12.50 15.28

(-0.67) (-1.47) (-1.67) (0.17) (1.46) (1.34)

This table reports the CAMP beta-sorted portfolio results. We first compute the beta exposures of each firm based

on the past 12-month daily returns two days before the FOMC announcement days. We sort firms into five portfolios

with the third portfolio containing 60% of the firms and each of the remaining four portfolios containing 10% of the

firms, and document the value-weighted portfolio returns. These portfolios are rebalanced two days before the next

FOMC announcement days. Panel A reports the time series average and Newey-West t-statistics (with 12 lags) of the

portfolio returns (basis points) on FOMC announcement days and non-FOMC announcement days. Panel B reports

daily regression results of the CAPM beta, and coefficients of a non-FOMC dummy and a FOMC dummy, as well as

the Newey-West t-statistics.

Table 4: Monetary Policy Shocks

Policy News FFR

Mean 0.0037 -0.0055
std 0.0342 0.0445

t-stat (1.30) (-1.50)

This table reports the average value and its t-statistics for monetary policy news shocks (Policy News) and federal

funds rate (FFR) shocks from Nakamura and Steinsson (2018). The data sample spans from 1996 to 2014. The policy

news shock is the first principal component of the change in five interest rates over a 30-minute window around the

FOMC announcement. The federal funds rate shock is constructed using the price change of the federal funds futures

over a 30-minute window around the FOMC announcement.
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Table 5: Model Parameters

Parameter Description Values
ρ Time Discount Rate 0.01
γ Risk Aversion 10
ψ IES 2
x̄ Consumption Growth Rate Stationary Mean 1.5%
σ Consumption Growth Rate Volatility 3%
ax Mean Reversion Rate of Unobserved Consumption Growth 0.085
σx Volatility of Unobserved Consumption Growth Rate 0.71%
σi Idiosyncratic Shock Volatility 57%
σs Signal Volatility 4.33%

[ξ, ξ] Sensitivity to News about Latent Growth [1,5]

[η, η] Sensitivity to Consumption Growth Risk [1,5]

This table reports the parameter values used in the model. All parameters are annualized. We assume that

announcements are made at a monthly frequency, that is, T = 1
12

.

Table 6: Market Excess Returns on FOMC Announcement and non-FOMC Days

Data
Non-FOMC Pre-FOMC

Excess Return 2.0 36.6
Model

Non-FOMC Days FOMC Days
Excess Return 1.8 36.2

The top panel reports the S&P 500 excess return on FOMC announcement days from Lucca and Moench (2015)

(January 1980 to March 2011) and the corresponding excess returns on non-FOMC days. The bottom panel is the

model-implied average daily excess returns for 400 stocks with 22 valid years (122 years of simulation and 100 years

of burn-in), a total of 264 FOMC days. We simulate 500 independent sample paths with a daily frequency and report

the value-weighted average excess returns on FOMC and non-FOMC days. All numbers are in basis points.
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Table 7: Announcement Premium for Portfolios Sorted on Expected Sensitivity

Data
1 2 3-8 9 10 (10-1)

FOMC Return 36.57 28.78 29.40 48.05 68.24 31.67
(1.93) (2.35) (3.36) (3.53) (3.09) (2.67)

Non-FOMC Return 3.42 3.33 3.55 4.16 3.23 -0.19
(1.40) (1.71) (2.60) (2.28) (1.31) (-0.15)

Model
1 2 3-8 9 10 (10-1)

FOMC Return 12.87 19.09 36.28 50.95 55.02 42.16
(1.84) (1.95) (2.00) (1.95) (1.95) (1.86)

Non-FOMC Return 1.54 1.67 1.88 2.06 2.14 0.60
(0.35) (0.37) (0.46) (0.39) (0.40) (0.14)

This table documents the announcement and non-announcement returns for portfolios sorted on expected sensitivity
in basis points. The top panel is based on data from January 1996 to December 2017 with 176 FOMC days. We
sort stocks based on the implied variance reduction two days before FOMC dates and record the long-short portfolio
returns on FOMC days. We report FOMC and non-FOMC returns on the decile portfolios, the long-short portfolio,
and the associated Newey-West t-statistics (in parentheses). The bottom panel is the model-implied average daily
returns in basis points and the associated Newey-West t-statistics for decile portfolios. In our simulation, we use 400
stocks with 22 valid years (122 years of simulation and 100 years of burn-in), a total of 264 FOMC days. For each
stock, we simulate 500 independent daily sample paths. We then sort these 400 stocks into 10 portfolios based on
expected sensitivity ξ and report the mean and t-statistics of each portfolio’s excess returns on FOMC and non-FOMC
days.
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Table 8: CAPM for Portfolios Sorted on Expected Sensitivity

Data
1 2 3-8 9 10 (10-1)

CAPM Beta 1.41 1.15 0.92 1.22 1.44 0.03
Non-FOMC Dummy -0.69 -0.19 0.57 0.49 -0.96 -0.27

(-0.58) (-0.21) (1.96) (0.66) (-0.80) (-0.21)
FOMC Dummy -10.15 -9.31 -1.26 7.59 20.54 30.70

(-1.38) (-2.01) (-0.80) (1.88) (2.48) (2.87)
Model

1 2 3-8 9 10 (10-1)
CAPM Beta 0.62 0.72 1.00 1.23 1.29 0.67

Non-FOMC Dummy 0.40 0.34 0.05 -0.20 -0.23 -0.64
(0.68) (0.60) (0.24) (-0.36 (-0.41) (-0.72)

FOMC Dummy -9.34 -6.78 0.15 5.82 7.47 16.81
(-2.91) (-2.20) (0.12) (1.90) (2.38) (3.52)

This table documents the CAPM regression for portfolios sorted on expected sensitivity. The top panel is based

on data from January 1996 to December 2017 with 176 FOMC days. We sort stocks based on the implied variance

reduction two days before FOMC dates. We run a CAPM regression on the market excess return, non-FOMC dummy,

and FOMC dummy. We report the CAPM beta and coefficients of the non-FOMC dummy and FOMC dummy on the

decile portfolios, the long-short portfolio, and the associated Newey-West t-statistics (in parentheses). The bottom

panel reports the model implied CAPM regression coefficients for decile portfolios. In the simulation, we use 400

stocks with 22 valid years (122 years of simulation and 100 years of burn-in), a total of 264 FOMC days. For each

stock, we simulate 500 independent daily sample paths. We then sort these 400 stocks into 10 portfolios based on

expected sensitivity ξ and run CAPM regressions on the simulated market return, non-FOMC dummy, and FOMC

dummy. We report the mean and t-statistics of these regression coefficients.
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Table 9: Announcement Premium for Beta-Sorted Portfolios

Data
1 2 3-8 9 10 (10-1)

FOMC Return 13.05 17.40 30.66 51.74 68.23 55.17
(2.27) (2.98) (2.89) (2.55) (2.70) (2.41)

Non-FOMC Return 3.09 3.63 3.57 2.61 4.05 0.95
(3.25) (3.10) (2.30) (1.02) (1.33) (0.34)

Model
1 2 3-8 9 10 (10-1)

FOMC Return 18.22 23.32 36.58 46.23 48.35 30.13
(1.96) (1.96) (2.00) (1.96) (1.95) (1.83)

Non-FOMC Return 1.11 1.45 1.87 2.23 2.60 1.50
(1.61) (1.86) (2.45) (2.19) (2.24) (1.53)

E[ξi] 1.40 1.82 3.03 4.11 4.49 3.10
E[ηi] 1.81 2.40 2.97 3.69 4.27 2.46

This table documents the announcement and non-announcement returns for beta-sorted portfolios in basis points. The

top panel is based on data from January 1996 to December 2017 with 176 FOMC days. We sort stocks based on the

CAPM regression coefficient of a single stock return on the market excess return. We report FOMC and non-FOMC

returns on decile portfolios, the long-short portfolio, and the associated Newey-West t-statistics (in parentheses). The

bottom panel is the model implied average returns in basis points and the associated Newey-West t-statistics for

decile portfolios. In the simulation, we use 400 stocks with 22 valid years (130 years with 100 years of burn-in and

8 years of pre-sample to estimate stocks’ CAPM beta coefficients), a total of 264 FOMC days. For each stock, we

simulate 500 independent daily sample paths. We then sort these 400 stocks into 10 portfolios based on the estimated

β coefficients and report the mean portfolio ξ, the mean portfolio η, and the mean and t-statistics of each portfolio’s

excess returns on FOMC and non-FOMC days.
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Table 10: CAPM for Beta Sorted Portfolios

Data
1 2 3-8 9 10 (10-1)

CAPM Beta 0.47 0.68 1.02 1.58 1.73 1.26
Non-FOMC Dummy 1.13 1.19 0.32 -1.92 -0.86 -1.99

(1.72) (1.89) (0.89) (-1.68) (-0.50) (-0.93)
FOMC Dummy -2.78 -4.93 -2.63 1.04 12.50 15.28

(-0.67) (-1.47) (-1.67) (0.17) (1.46) (1.34)
Model

1 2 3-8 9 10 (10-1)
CAPM Beta 0.54 0.71 1.00 1.25 1.37 0.83

Non-FOMC Dummy 0.11 0.15 0.04 0.03 0.09 -0.03
(0.21) (0.27) (0.19) (0.05) (0.16) (-0.03)

FOMC Dummy -1.19 -2.18 0.43 0.59 -1.71 -0.52
(-0.40) (-0.73) (0.36) (0.19) (-0.58) (-0.13)

E[ξi] 1.40 1.82 3.03 4.11 4.49 3.10
E[ηi] 1.81 2.40 2.97 3.69 4.27 2.46

This table documents the CAPM regression for beta-sorted portfolios in basis points. The top panel is based on data
from January 1996 to December 2017 with 176 FOMC days. We sort stocks based on the CAPM regression coefficient
of a single stock return on the market excess return. We run the CAPM regression on the market excess return,
the non-FOMC dummy, and the FOMC dummy. We report CAPM beta and coefficients of the non-FOMC dummy
and FOMC dummy on the decile portfolios, the long-short portfolio and the associated Newey-West t-statistics (in
parentheses). The bottom panel reports the model-implied CAPM regression coefficients for decile portfolios. In the
simulation, we use 400 stocks with 22 valid years (130 years with 100 years of burn-in and 8 years of pre-sample to
estimate stocks’ CAPM beta coefficients), a total of 264 FOMC days. For each stock, we simulate 500 independent
daily sample paths. We then sort these 400 stocks into 10 portfolios based on the estimated β coefficients and report
the mean portfolio ξ, the mean portfolio η and the mean of the estimated CAPM beta, the mean and the t-statistics
of the coefficients of the non-FOMC and FOMC dummies.
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Figure 1: Heterogeneous Firm-Level Implied Variance Reduction Around FOMC days
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This figure plots the histogram of the time series mean of the firm-level logarithm implied variance changes (in %)

around FOMC announcement days. For illustration purposes, we only report those firms with 160 or more observations

out of the 176 FOMC meeting days in our data sample.

32



Figure 2: Portfolio Return Sensitivity to Monetary Policy Shocks
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This figure plots the return sensitivity to monetary policy shocks for EVR-sorted portfolios. We regress the portfolios’

excess returns on FOMC announcement-day on monetary policy news shocks or federal funds rate (FFR) shocks,

controlling for the market excess returns. The line marked with blue circle (red square) plots the coefficients of

monetary policy news shocks (FFR shocks). Monetary policy news shocks and FFR shocks are from Nakamura and

Steinsson (2018).
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Figure 3: Model Implied Sensitivity to FOMC Announcement Surprises and Market Returns
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The left panel plots the sensitivity of stock returns with respect to FOMC announcement surprises, normalized by

market sensitivity, as functions of ξ for different values of η, that is,
pix(x̄,t̄)/pi(x̄,t̄)

px(x̄,t̄)/p(x̄,t̄)
. The right panel plots the sensitivity

of stock returns with respect to market returns, that is, CAPM β (see equation (17)). For simplicity, we fix t̄ = 16

(the middle of the month). The steady state value x̄ = 1.5% (see Table 5).
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Appendix

A Appendix

A.1 Implied Variance and Data

In this section, we provide more details of the firm-level implied variance and other data we used in

the paper. To measure the firm-level sensitivity to monetary policy announcement surprises around

Federal Open Market Committee (FOMC) days, we use equity options data from OptionMetrics for

the period of January 1, 1996 to December 31, 2017. We exclude options with missing or negative

bid-ask spread, zero bid, or zero open interest. We restrict the sample to out-of-the-money options

to estimate the model-free implied variance (Bakshi, Kapadia, and Madan (2003)). To ensure that

our results are not driven by misleading prices, we follow Conrad, Dittmar, and Ghysels (2013) and

exclude options that do not satisfy the standard option price bounds. We further remove options

with the maturity less than 3 days. For a firm on a given day and a given maturity, we do not

compute the implied variance if there are less than four OTM options.

Define IVt (τ) as the time-t price of the τ -maturity quadratic payoff on the underlying stock,

IVt (τ) ≡ e−rf τEQ
t

[
r2
t,t+τ

]
, where rf is the continuously compounded interest rate. Bakshi, Kapadia,

and Madan (2003) show that IVt (τ) can be recovered from the prices of out-of-the-money (OTM)

call and put options as follows:

IVt (τ) =

∫ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK +

∫ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK, (A.1)

where St is the price of underlying stock, and Ct (τ ;K) and Pt (τ ;K) are call and put prices with

maturity τ and strike K, respectively.

We compute IVt (τ) for each firm on each day and for each days-to-maturity. In theory,

computing IVt (τ) requires a continuum of strike prices, while in practice we only observe a discrete

and finite set of them. Following Jiang and Tian (2005) and others, we discretize the integrals in

equation (A.1) by setting up a total of 1001 grid points in the moneyness (K/St) range from 1/3
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to 3. First, we use cubic splines to interpolate the implied volatility inside the available moneyness

range. Second, we extrapolate the implied volatility using the boundary values to fill the rest of the

grid points. Third, we calculate option prices from these 1001 implied volatilities using the formula

of Black and Scholes (1973).6 Next, we compute IVt (τ) if there are four or more OTM options

(e.g., Conrad, Dittmar, and Ghysels (2013) and others). Lastly, to obtain the 7-days to maturity

IVt (7) for a firm on a given day, we interpolate or extrapolate IVt (τ) with available τ . This process

yields a daily time series of the risk-neutral expected quadratic payoff for each eligible firm with a

fixed maturity of 7-days. Due to the extrapolation, there are some negative values. We treat them

as missing observations.

We obtain stock return data from the Center for Research in Security Prices (CRSP) and merge

with the OptionMetrics data. During our data period, there are 6652 individual firms with traded

options. In our empirical analysis, we only consider those stocks that have a CRSP share code of

10 or 11, and we exclude those stocks with a price less than $5 or daily return larger than 500% or

less than -500%. We also exclude stocks with annualized implied variance larger than 25.

Fama-French risk factors are from Kenneth French’s Data library. Monetary policy news shocks

and FFR shocks are from Nakamura and Steinsson (2018).

The dates of FOMC meetings are from the website of Federal Reserve Board. Following Savor

and Wilson (2014), we only include the pre-scheduled FOMC meetings during our data period

(1996-2017). There are about eight regularly pre-scheduled FOMC meetings each year. When the

meeting lasts for two days, we consider the second day as the FOMC announcement day. In total,

there are 176 FOMC announcement days in our data period. Among the 6652 firms in our sample,

there are 5446 firms with at least one observed option-implied variance on these 176 FOMC days.

6We apply these steps to the calculation of individual risk-neutral expected quadratic payoffs. The individual
equity options are American. Therefore, directly using the mid-quotes of individual options prices is inappropriate
because the early exercise premium may confound our results. To avoid this issue, we use the implied volatilities
provided by OptionMetrics. These implied volatilities are computed using a proprietary algorithm based on the Cox,
Ross, and Rubinstein (1979) model, which takes the early exercise premium into account.
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A.2 Additional Tables

Table A1: Firm Characteristics of the Portfolios Sorted on Expected Sensitivity

1 2 3− 8 9 10

Size (in $million) 4813 6899 11012 8050 4722

B/M 0.46 0.48 0.50 0.48 0.48

Amihud Illiquidity (x 106) 0.02 0.01 0.01 0.01 0.02

This table reports firm characteristics of the decile portfolios sorted on expected sensitivity including the average firm

size (in $million) and B/M. Book equity is calculated following Davis, Fama, and French (2000) and market equity is

the market capitalization calculated as stock price times the shares outstanding. We also report the value-weighted

Amihud illiquidity measure multiplied by 106.

Table A2: Firm-Level Implied Variance Reduction Forecast

Actual IV Reduction

Model 1 Model 2 Model 3 Model 4

Predicted IV Reduction 0.0466 0.0299 0.0214 -0.0002

(1.85) (0.99) (3.53) (-0.23)

Constant -0.0018 -0.0019 -0.0011 0.0024

(-0.78) (-0.80) (-0.59) (1.13)

R-squared (%) 0.03 0.02 0.20 0.01

This table reports the results when regressing the actual implied variance (IV) reduction on various IV reduction

forecasts. In column 1 (2) we use the median (mean) of IV reduction on previous FOMC days during the past twelve

months as the IV reduction forecast for the upcoming FOMC announcement. In column 3 (4) we adjust IV by the

median (mean) historical realized variance at the every sorting date to get the IV reduction forecast. We report the

t-statistics using the day-clustered standard error in parenthesis.
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Table A3: Portfolio Returns Sorted on Expected Sensitivity (Robustness Check)

Panel A: Exclude the Financial Crisis

1 2 3− 8 9 10 (10− 1)

CAPM Beta 1.44 1.19 0.93 1.24 1.45 0.01

Non-FOMC Dummy -0.94 -0.48 0.51 0.15 -1.51 -0.57

(-0.81) (-0.53) (1.79) (0.20) (-1.27) (-0.43)

FOMC Dummy -14.69 -9.51 0.21 8.20 13.81 28.50

(-2.08) (-2.06) (0.14) (1.97) (1.94) (3.13)

Panel B: Exclude the Firm Earning Announcements

1 2 3− 8 9 10 (10− 1)

CAPM Beta 1.40 1.14 0.90 1.16 1.33 -0.07

Non-FOMC Dummy -0.66 -0.35 0.57 0.11 -0.73 -0.07

(-0.56) (-0.39) (1.98) (0.16) (-0.62) (-0.05)

FOMC Dummy -10.62 -9.70 -1.03 8.05 17.80 28.42

(-1.45) (-2.11) (-0.66) (2.09) (2.44) (2.97)

This table reports the robustness check of our portfolio sorting results, as shown in Table 2. We report the daily

regression results of equation (3), which include the CAPM beta and coefficients of a non-FOMC dummy and a FOMC

dummy, as well as the Newey-West t-statistics. In Panel A, we exclude the recent financial crisis period of July 2008

to June 2009; in Panel B, we exclude those firms reporting earnings on the upcoming FOMC days when we form

portfolios. We use the COMPUSTAT variable ”RDQ” as the reported date of quarterly earnings. Number of firms

reporting earnings on the FOMC days in our sample changes from 1 to 123. On average there are 25 firms reporting

earnings on each FOMC days.
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Table A4: CAPM of Portfolio Returns Controlling for V IX

Panel A: Portfolios Sorted on Expected Sensitivity

1 2 3− 8 9 10 (10− 1)

CAPM Beta 1.52 1.23 0.90 1.26 1.55 0.03

Non-FOMC Dummy -1.09 -0.47 0.64 0.35 -1.34 -0.25

(-0.95) (-0.53) (2.19) (0.47) (-1.13) (-0.19)

FOMC Dummy -9.29 -8.74 -1.41 7.87 21.39 30.67

(-1.28) (-1.94) (-0.90) (1.94) (2.60) (2.87)

Panel B: Portfolios Sorted on CAPM Beta

1 2 3− 8 9 10 (10− 1)

CAPM Beta 0.42 0.60 1.01 1.67 1.95 1.53

Non-FOMC Dummy 1.33 1.49 0.38 -2.27 -1.61 -2.94

(2.01) (2.40) (1.05) (-1.98) (-0.97) (-1.40)

FOMC Dummy -3.22 -5.59 -2.75 1.84 14.18 17.41

(-0.78) (-1.69) (-1.76) (0.31) (1.70) (1.56)

This table reports CAPM beta and the regression coefficients of the non-FOMC dummy and the FOMC dummy in
the following regression:

Rit − rf,t = αiNon · 1Non + αiFOMC · 1FOMC + β
(
RMt − rf,t

)
+ γ∆V IX2

t + εit,

where Rit is the daily return of the portfolio i, RMt is the daily return of the market, and rf,t is the daily risk-free

rate. ∆V IX2
t is the daily change in V IX2. 1Non and 1FOMC are dummy variables that take a value of 1 only on

non-FOMC and FOMC announcement days, respectively.

A.3 Details of the Continuous-time Model

A.3.1 Value Function of the Representative Agent

Ricatti equation solution Because announcements provide information containing the true

value of xt at nT , the posterior variance after each announcement drops from q−nT to q+
nT = q0. In

the interior of (0, T ), the standard optimal filtering implies that the posterior mean and variance

of xt are given by equations (8) and (9). It is easy to see that qt is deterministic and has a closed
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form solution

q (t) =
σ2
x

(
1− e−2â(t+t∗)

)
(â− ax) e−2â(t+t∗) + ax + â

, (A.2)

where â =
√
a2
x + (σx/σ)2 and t∗ = 1

2â ln σ2
x+(â−ax)q0
σ2
x−(â+ax)q0

.

Preference Using the results from Duffie and Epstein (1992), the representative agent’s

preference is specified by a pair of aggregators (f,A) such that the utility of the representative

agent, Vt, is the solution to the following stochastic differential equation:

dVt = [−f(Ct, Vt)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt,

for some square-integrable process σV (t). We adopt the convenient normalization A(V ) = 0 as

Duffie and Epstein (1992), where the normalized aggregator f̄ is,

f̄(Ct, Vt) =
ρ

1− 1/ψ

C
1−1/ψ
t − ((1− γ)Vt)

1−1/ψ
1−γ

((1− γ)Vt)
1−1/ψ
1−γ −1

(A.3)

for ψ 6= 1 and

f̄(C, V ) = ρ {(1− γ)V lnC − V ln [(1− γ)V ]}

for unit IES (ψ = 1).

Hamilton–Jacobi–Bellman (HJB) equation for the recursive utility satisfies

f̄ (Ct, V (x̂t, t, Ct)) + L [V (x̂t, t, Ct)] = 0. (A.4)

Due to homogeneity, consider the value function of the form

V (x̂t, t, Ct) =
1

1− γ
H (x̂t, t)C

1−γ
t , (A.5)
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where H (x̂t, t) satisfies the following HJB equation:

0 =
ρ

1− 1
ψ

(
H (x̂t, t)

−
1− 1

ψ
1−γ − 1

)
+

(
x̂t −

1

2
γσ2

)
+

1

1− γ
Ht (x̂t, t)

H (x̂t, t)

+

[
1

1− γ
ax (x̄− x̂t) + qt

]
Hx (x̂t, t)

H (x̂t, t)
+

1

2 (1− γ)

Hxx (x̂t, t)

H (x̂t, t)

(qt
σ

)2
. (A.6)

Proof. Given (A.3), we have

f̄ (Ct, V ) =
ρ

1− 1
ψ

C1−γ
t

[
H (x̂t, t)

1−
1− 1

ψ
1−γ −H (x̂t, t)

]
.

Furthermore, using Ito’s lemma we get

d
[
H (x̂t, t)C

1−γ
t

]
C1−γ
t

= (1− γ)H (x̂t, t)
(
x̂tdt+ σdB̃C,t

)
− 1

2
γ (1− γ)H (x̂t, t)σ

2dt

+Ht (x̂t, t) dt+Hx (x̂t, t)
[
ax (x̄− x̂t) dt+

qt
σ
dB̃C,t

]
+

1

2
Hxx (x̂t, t)

(qt
σ

)2
dt+ (1− γ)Hx (x̂t, t) qtdt,

L [V (x̂t, t, Ct)]

C1−γ
t

=
L
[
H (x̂t, t)C

1−γ
t

]
(1− γ)C1−γ

t

=

(
x̂t −

1

2
γσ2

)
H (x̂t, t) +

1

(1− γ)

[
Ht (x̂t, t)

+Hx (x̂t, t) ax (x̄− x̂t) +
1

2
Hxx (x̂t, t)

(qt
σ

)2]
+Hx (x̂t, t) qt.

Therefore, divide both sides of (A.4) by C1−γ
t H (x̂t, t), we get (A.6).

Guess H (xt, t) takes the exponential form: H (xt, t) = eBxt+h(t). Therefore, Ht (x̂t, t) =

H (xt, t)h
′ (t), Hx (x̂t, t) = BH (xt, t), Hxx (x̂t, t) = B2H (xt, t). Substituting them into (A.6),

we would get

0 =
ρ (1− γ)

1− 1
ψ

(
e
−

1− 1
ψ

1−γ [Bx̂t+h(t)] − 1

)
+ (1− γ)

(
x̂t −

1

2
γσ2

)
+ h′ (t)

+ [ax (x̄− x̂t) + (1− γ) qt]B +
1

2
B2
(qt
σ

)2
.
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Using ez − 1 ≈ z to approximate and simplify, the above equation becomes

0 = −ρ [Bx̂t + h (t)] + (1− γ)

(
x̂t −

1

2
γσ2

)
+ h′ (t) + [ax (x̄− x̂t) + (1− γ) qt]B +

1

2
B2
(qt
σ

)2
.

Matching the coefficients of x̂t and t yields:

B =
1− γ
ax + ρ

, (A.7)

h′ (t) = ρh (t) +
1

2
γ (1− γ)σ2 −Baxx̄− (1− γ)Bqt −

1

2
B2
(qt
σ

)2
. (A.8)

h (t) can be solved completely by using the following boundary condition.

Boundary conditions Assume there are pre-determined announcements every period at time

nT (n = 1, 2, . . .). On non-announcement days, investors solve optimization problems in the interior

(0+ ≤ t ≤ nT−, n = 1, 2, . . .). On the announcement days, investors solve the optimization problems

at the boundary. For simplicity, denote t = 0 = nT+ as the moment right after the announcement

(or at the announcement), and t = T = nT− as the moment right before the announcement. The

boundary condition satisfies:

H
(
x̂−nT , T

)
= E

[
H (xnT , 0) |x̂−nT , q(T )

]
, n = 1, 2, . . . . (A.9)

where xt ∼ (x̂t, qt).

The intuition is, the continuation value of the H function right before the announcement must

equal to its expected value right after the announcement, conditional on the information at nT−

(before the announcement).

Using the conjectured functional form, the boundary condition can be rewritten as,

eBx̂
−
nT+h(T ) = E

[
eBxnT+h(0)|x̂−nT , q(T )

]
= eBx̂

−
nT+ 1

2
B2q(T )+h(0),
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which gives

h (T ) = h (0) +
1

2
B2q (T ) . (A.10)

Equation (A.8) and (A.10) could be jointly used to solve the h(t) function in closed form. Note

that in order to solve for asset prices, we do not really need the functional form of h(t). However,

we need it in order to compute welfare gains.

A.3.2 Asset Prices

State price density and the risk-free rate For n = 1, 2, · · · , in the interior of

(nT, (n+ 1)T ), the law of motion of the state price density, πt, satisfies the stochastic differential

equation (12), where the risk-free interest rate is

r (x̂t, t) = ρ+
1

ψ
x̂t −

1

2
γ

(
1 +

1

ψ

)
σ2 +

1
ψ − γ
1− γ

Hx (x̂t, t)

H (x̂t, t)
qt +

(
1
ψ − γ

)(
1− 1

ψ

)
2 (1− γ)2

(
Hx (x̂t, t)

H (x̂t, t)

qt
σ

)2

,

(A.11)

and the market price of the Brownian motion risk is

σπ (t) = γσ −
1
ψ − γ
1− γ

Hx (x̂t, t)

H (x̂t, t)

qt
σ
. (A.12)

Proof. Pricing kernel is defined as

dπt
πt

=
df̄C (C, V )

fC (C, V )
+ f̄V (C, V ) dt, (A.13)

where f̄C (C, V ) = ρH (x̂t, t)

1
ψ

−γ
1−γ C−γt ; f̄V (C, V ) = ρ

1
ψ
−γ

1− 1
ψ

H (x̂t, t)
−

1− 1
ψ

1−γ − ρ 1−γ
1− 1

ψ

.
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Applying Ito’s lemma,

df̄C (C, V )

fC (C, V )
=
d[H

1
ψ

−γ
1−γ C−γt ]

H

1
ψ

−γ
1−γ C−γt

=

{
−γx̂t +

1

2
γ (γ + 1)σ2 +

1
ψ − γ
1− γ

Ht

H
+

1
ψ − γ
1− γ

Hx

H
ax (x̄− x̂t)

+
1

2


(

1
ψ − γ

)(
1
ψ − 1

)
(1− γ)2

(
Hx

H

)2

+

1
ψ − γ
1− γ

Hxx

H

(qt
σ

)2

−γ
1
ψ − γ
1− γ

Hx

H
qt

}
dt+

[
−γσ +

1
ψ − γ
1− γ

Hx (x̂t, t)

H (x̂t, t)

qt
σ

]
dB̃C,t.

Matching the drift and diffusion of (12) and (A.13), we can get (A.12) and

r (x̂t, t) = −
1
ψ − γ
1− γ

{
Ht

H
+
Hx

H
ax (x̄− x̂t) +

1

2

[
1
ψ − 1

1− γ

(
Hx

H

)2

+
Hxx

H

](qt
σ

)2
− γHx

H
qt

}

+γx̂t −
1

2
γ (γ + 1)σ2 − ρ

1
ψ − γ
1− 1

ψ

H (x̂t, t)
−

1− 1
ψ

1−γ + ρ
1− γ
1− 1

ψ

. (A.14)

Use the HJB equation to simplify r (x̂t, t) by multiplying
(

1
ψ − γ

)
on both sides of (A.6), we

have

0 = ρ

1
ψ − γ
1− 1

ψ

(
H (x̂t, t)

−
1− 1

ψ
1−γ − 1

)
+

(
1

ψ
− γ
)(

x̂t −
1

2
γσ2

)
+

1
ψ − γ
1− γ

Ht (x̂t, t)

H (x̂t, t)

+

(
1

ψ
− γ
)[

1

1− γ
ax (x̄− x̂t) + qt

]
Hx (x̂t, t)

H (x̂t, t)
+

1
ψ − γ

2 (1− γ)

Hxx (x̂t, t)

H (x̂t, t)

(qt
σ

)2
,

and adding up with (A.14), we can get equation (A.11). Finally, substituting H (xt, t) = e
1−γ
ax+ρ

xt+h(t)

back, we will get (13) and (14).

Price-to-dividend ratio Denote pi (x̂t, t) as the price-to-dividend ratio for firm i. The

present value relationship (11) implies that

πtD
i
t + lim

∆→0

1

∆

{
Et
[
πt+∆p

i (x̂t+∆, t+∆)Di
t+∆

]
− πtpi (x̂t, t)D

i
t

}
= 0 (A.15)
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The above equation can be used to show that pi (x̂t, t) must satisfy the following PDE:

1− pi (x̂t, t)$
i (x̂t, t) + pit (x̂t, t)− pix (x̂t, t) ν

i (x̂t, t) +
1

2
pixx (x̂t, t)

(qt
σ

)2
= 0, (A.16)

where $i (x̂t, t) and νi (x̂t, t) are defined by:

$i (x̂t, t) = ρ− 1

2
γ

(
1 +

1

ψ

)
σ2 + γσ2ηi +

1

ψ
x̂t − x̄− ξi (x̂t − x̄)

+

1
ψ − γ
ax + ρ

qt (1− ηi) +
1

2

(
1
ψ − γ

)(
1− 1

ψ

)
(ax + ρ)2

(qt
σ

)2
,

νi (x̂t, t) = ax (x̂t − x̄) + (γ − ηi) qt −
1
ψ − γ
ax + ρ

(qt
σ

)2
.

Proof. Equation (A.15) implies

1 + pi (x̂t, t)
L
[
πtp

i (x̂t, t)Dt

]
πtpi (x̂t, t)Dt

= 0.

Using Ito’s lemma and equation (10) and (12), we have

L
[
πtp

i (x̂t, t)Dt

]
πtpi (x̂t, t)Dt

= −r (x̂t, t) +
1

pi (x̂t, t)

[
pit (x̂t, t) + pix (x̂t, t) ax (x̄− x̂t) +

1

2
pixx (x̂t, t)

q2
t

σ2

]
+ [x̄+ ξi (x̂t − x̄)] +

pix (x̂t, t)

pi (x̂t, t)
qtηi

−

(
γσ −

1
ψ − γ
1− γ

Hx (x̂t, t)

H (x̂t, t)

qt
σ

)[
ηiσ +

pix (x̂t, t)

pi (x̂t, t)

qt
σ

]
.

Then we can derive the PDE for firm i’s price-to-dividend ratio as

−ρ− 1

ψ
x̂t +

1

2
γ

(
1 +

1

ψ

)
σ2 +

γ − 1
ψ

1− γ
Hx (x̂t, t)

H (x̂t, t)
qt −

1

2

(
1
ψ − γ

)(
1− 1

ψ

)
(1− γ)2

(
Hx (x̂t, t)

H (x̂t, t)

qt
σ

)2

+
1

pi (x̂t, t)

[
1 + pit (x̂t, t) + pix (x̂t, t) ax (x̄− x̂t) +

1

2
pixx (x̂t, t)

qt
σ2

]
+x̄+ ξi (x̂t − x̄) +

pix (x̂t, t)

pi (x̂t, t)
qtηi −

(
γσ −

1
ψ − γ
1− γ

Hxx (x̂t, t)

H (x̂t, t)

qt
σ

)[
ηiσ +

pix (x̂t, t)

pi (x̂t, t)

qt
σ

]
= 0.
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Using Hx(x̂t,t)
H(x̂t,t)

= 1−γ
ax+ρ , we can rewrite the above equation to get (A.16).

In order to pin down the price-to-dividend ratio in terms of PDE as shown in equation (A.16),

we next solve the boundary condition. Denote pi (x̂, 0) = pi (x̂, nT+) and pi (x̂, T ) = pi (x̂, nT−),

and the boundary condition (15) can be derived as follows.

In general, under the recursive utility, the stochastic discount factor for a small interval ∆ is,

SDFt,t+∆ = e−ρ∆

(
Ct+∆

Ct

)− 1
ψ

 Wt+∆(
E
[
W 1−γ
t+∆

]) 1
1−γ


1
ψ
−γ

,

where Wt = [(1− γ)V (x̂t, t, Ct)]
1

1−γ . Thus,

SDFt,t+∆ = e−ρ∆

(
Ct+∆

Ct

)− 1
ψ


(
Ht+∆C

1−γ
t+∆

) 1
1−γ

(
E
[
Ht+∆C

1−γ
t+∆

]) 1
1−γ


1
ψ
−γ

.

At the announcement, ∆→ 0, therefore,

SDFt,t+∆ =
H

1
ψ

−γ
1−γ
t+∆

E [Ht+∆]

1
ψ

−γ
1−γ

=
e

1
ψ

−γ
ax+ρ

x̂t

E
[
e

1−γ
ax+ρ

x̂t
] 1
ψ

−γ
1−γ

.

The boundary condition for the price-to-dividend ratio at the announcement nT can be derived

as:

pi
(
x̂−nT , nT

−) = E

e
1
ψ

−γ
ax+ρ

x̂+
nT pi

(
x̂+
nT , nT

+
)

E
[
e

1−γ
ax+ρ

x̂+
nT

] 1
ψ

−γ
1−γ

| x̂−nT , q
−
T

 =

E

[
e

1
ψ

−γ
ax+ρ

x̂+
nT pi

(
x̂+
nT , nT

+
)
| x̂−nT , q

−
nT

]
(
e

1−γ
ax+ρ

x̂−nT+ 1
2

(
1−γ
ax+ρ

)2
[q−nT−q

+
nT ]
) 1

ψ
−γ

1−γ

=

E

[
e

1
ψ

−γ
ax+ρ

x̂+
nT pi

(
x̂+
nT , nT

+
)
| x̂−nT , q

−
nT

]

e

1
ψ

−γ
ax+ρ

x̂−nT+
(1−γ)( 1

ψ
−γ)

2(ax+ρ)2
[q−nT−q

+
nT ]

,
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which corresponds to equation (15) in the main text. Combining this boundary condition with

equation (A.16) would pin down the solutions for each firm’s price-to-dividend ratio.

Risk premium We define the cumulative return as

dRit
Rit

= µiR,tdt+ σiR,tdB̃C,t + σidBi,t (A.17)

where µiR,t and σiR,t are the risky asset return and volatility for firm i, respectively,

µiR,t =
1

pi (x̂t, t)

[
1 + pit (x̂t, t) + pix (x̂t, t) ax (x̄− x̂t) +

1

2
pixx (x̂t, t)

q2
t

σ2

]
+x̄+ ξi (x̂t − x̄) +

pix (x̂t, t)

pi (x̂t, t)
qtηi, (A.18)

σiR,t = ηiσ +
pix (x̂t, t)

pi (x̂t, t)

qt
σ
. (A.19)

In the interior of (nT, (n+ 1)T ), the instantaneous risk premium is

µR,t − r (x̂t, t) =

[
γσ −

1
ψ − γ
ax + ρ

qt
σ

] [
ηiσ +

pix (x̂t, t)

pi (x̂t, t)

qt
σ

]
. (A.20)

Proof. The cumulative return can be computed as

dRit
Rit

=
1

pi (x̂t, t)Di
t

[
Di
tdt+ d

[
pi (x̂t, t)D

i
t

]]
.

Applying Ito’s lemma, we have

d
[
pi (x̂t, t)D

i
t

]
pi (x̂t, t)Di

t

=

{
1

pi (x̂t, t)

[
pit (x̂t, t) + pix (x̂t, t) ax (x̄− x̂t) +

1

2
pixx (x̂t, t)

q2
t

σ2

]
+x̄+ ξi (x̂t − x̄) +

pix (x̂t, t)

pi (x̂t, t)
qtηi

}
dt+

[
ηiσ +

pix (x̂t, t)

pi (x̂t, t)

qt
σ

]
dB̃C,t + dBi,t.

Matching the drift and diffusion terms with equation (A.17), we can get (A.18) and (A.19).
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The instantaneous risk premium (A.20) can be obtained from

µiR,t − r (x̂t, t) = −Covt

[
d
[
pi (x̂t, t)D

i
t

]
pi (x̂t, t)Di

t

,
dπt
πt

]

=

[
γσ −

1
ψ − γ
1− γ

Hx (x̂t, t)

H (x̂t, t)

qt
σ

][
ηiσ +

pix (x̂t, t)

pi (x̂t, t)

qt
σ

]

= γηiσ
2 +

[
γ
pix (x̂t, t)

pi (x̂t, t)
−

1
ψ − γ
1− γ

ηi
Hx (x̂t, t)

H (x̂t, t)

]
qt −

1
ψ − γ
1− γ

Hx (x̂t, t)

H (x̂t, t)

pix (x̂t, t)

pi (x̂t, t)

(qt
σ

)2
.

A.3.3 Expected Sensitivity

Guess the price-to-dividend ratio having the exponential form: p (x̂t, t) = eAx̂t+g(t). Substituting

this into (A.16) yields,

e−Ax̂t−g(t) −$ (x̂t, t) + g′(t)−Aν (x̂t, t) +
1

2
A2
(qt
σ

)2
= 0.

Use the Taylor expansion around x̄ (since x̂t is an OU process), e−Ax̂t−g(t) ≈ p̄ − Ap̄ (x̂t − x̄),

where p̄ is the inverse of the steady state price-to-dividend ratio. Match the coefficient of x̂t yields,

A =
ξ − 1

ψ

ax + p̄
. (A.21)

Note that the sensitivity of each firm can be approximated as: pix (x̂t, t) /p
i (x̂t, t) =

ξi− 1
ψ

ax+p̄i
.

A.3.4 Implied Variance Reduction

In our model, all shocks are conditional normal, and the variance of the shocks are deterministic.

Therefore, the return variance under the physical and risk-neutral measure are the same. We only

need to compute the variance under the physical measure. The variance before the announcement
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is

V ar
[
lnP (t)− lnP

(
nT−

)
| x̂−nT , q

−
nT

]
= V ar

[
lnP (t)− lnP

(
nT+

)
| x̂−nT , q

−
nT

]
+V ar

[
lnP

(
nT+

)
− lnP

(
nT−

)
| x̂−nT , q

−
nT

]
.

The variance after the announcement could be written as

V ar
[
lnP (t)− lnP

(
nT+

)
| x̂−nT , q

−
nT

]
.

Therefore, the implied variance reduction could be obtained by taking the difference of the above

two expressions:

∆IV = V ar
[
lnP

(
nT+

)
− lnP

(
nT−

)
| x̂−nT , q

−
nT

]
.

Because dividend is continuous upon announcements, we can get

∆IV = V ar
[
ln p

(
nT+

)
− ln p

(
nT−

)
| x̂−nT , q

−
nT

]
. (A.22)

Therefore, for each individual firm i we have

∆IVi =

(
ξi − 1

ψ

ax + p̄i

)2 (
q−nT − q

+
nT

)
=

(
ξi − 1

ψ

ax + p̄i

)2(
q−2
nT

q−nT + σ2
s

)
.

A.3.5 Numerical Solutions

To solve the PDE (A.16) with the boundary condition (15) for each firm i, we consider the following

auxiliary problem7:

p (x̂t, t) = E
[∫ T

t
e−
∫ s
t $(x̂u,u)duds+ e−

∫ T
t $(x̂u,u)dup (x̂T , T )

]
, (A.23)

7We fix (ξi, ηi) for each firm and calculate the firm-specific price-to-dividend pi (x̂t, t). The procedure is the same
for each firm. Thus we drop i for simplicity.
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where the state variable x̂t follows the law of motion

dx̂t = −ν (x̂t, t) dt+
qt
σ
dBt. (A.24)

Note that the solution to (A.23) and (15) satisfies the same PDE. Given an initial guess of the

pre-announcement price-to-dividend ratio, we can solve (A.23) by the Markov chain approximation

method (Kushner and Dupuis, 2001). The major steps are:8

1. Start with an initial guess of a pre-announcement price-to-dividend ratio p (x̂T , T ) = 1/ρ.

2. With the initial guess of p (x̂T , T ), for t = T − ∆, T − 2∆, etc., we use the Markov chain

approximation to compute the discounted problem in (A.23) backwards recursively:

p (x̂t, t) = ∆ + e−$(x̂t,t)∆E [p (x̂t+∆, t+ ∆)] ,

until we obtain p (x̂t, 0).

3. Compute an updated pre-announcement price-to-dividend ratio function, p (x̂T , T ) using (15),

pi
(
x̂−T , T

−) =

E

[
e

1
ψ

−γ
ax+ρ

x̂+
T pi

(
x̂+
T , T

+
)
| x̂−T , q

−
T

]

e

1
ψ

−γ
ax+ρ

x̂−T +
(1−γ)( 1

ψ
−γ)

2(ax+ρ)2
[q−T −q

+
T ]

.

4. Go back to step 1 and iterate until the function p (x̂T , T ) converges.

Now we discuss the numerical details. For simplicity, define the log price-to-dividend ratio

8We construct a locally consistent Markov chain approximation of the diffusion process (A.24) as follows. We

choose a small dx̂, let Q = |ν (x̂, t)| dx̂ +
(
qt
σ

)2
, and define the time increment ∆ = dx̂2

Q
as a function of dx̂. Define

the following Markov chain on the space of x̂:

Pr (x̂+ dx̂ |x̂ ) =
1

Q

[
−ν (x̂, t)+ dx̂+

1

2

(qt
σ

)2
]
,

Pr (x̂− dx̂ |x̂ ) =
1

Q

[
−ν (x̂, t)− dx̂+

1

2

(qt
σ

)2
]
.

One can verify that as dx̂→ 0, the above Markov chain converges to the diffusion process (A.24). In the language of
Kushner and Dupuis (2001), this is a Markov chain that is locally consistent with the diffusion process (A.24).
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% (x̂t, t) ≡ ln p (x̂t, t), therefore,

% (x̂t, t) = ln
[
∆+ e−$(x̂t,t)∆E [p (x̂t+∆, t+∆)]

]
= ln

[
∆+ e−$(x̂t,t)∆e%(x̂t+∆,t+∆)−%x(x̂t,t)ν(x̂t,t)∆+ 1

2
∆%2

x(x̂t,t)( qtσ )
2]

= ln
[
∆+ e%(x̂t+∆,t+∆)−[$(x̂t,t)+%x(x̂t,t)ν(x̂t,t)]∆+ 1

2
∆%2

x(x̂t,t)( qtσ )
2]
.

At the announcement T ,

%
(
x̂−T , T

−) = lnE

[
e

1
ψ

−γ
ax+ρ

x̂+
T+%(x̂+

T ,T
+) | x̂−T , q

−
T

]
−

 1
ψ − γ
ax + ρ

x̂−T +
(1− γ)

(
1
ψ − γ

)
2 (ax + ρ)2

[
q−T − q

+
T

] .
We approximate the expectation in two ways. First, if x̂ is in the interior[

x̄− 5 σx√
2ax

+ max (n) , x̄+ 5 σx√
2ax

+ max (n)
]
, we use the Gaussian quadrature:

E

[
e

1
ψ

−γ
ax+ρ

x̂+
T+%(x̂+

T ,T
+) | x̂−T , q

−
T

]
= ω′e

1
ψ

−γ
ax+ρ

x̂+
T+%(x̂+

T ,T
+), x̂+

T = x̂−T + n,

where nodes n and weights ω are random variables generated from the multivariate normal

distribution.

Second, if x̂ is close to the boundary, we use the local approximation:

% (x̂T , T ) + %x (x̂T , T )

[
1
ψ − γ
ax + ρ

+
1

2
%x (x̂T , T )

] [
q−T − q

+
T

]
.
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