Appendices for Reviewers to "A tractable model of limited enforcement and the life-cycle dynamics of firms"

A Proof of Lemma 1

Fixing Z_0 , suppose $(\{K_{1,t}\}, \{C_{1,t}\})$ and $(\{K_{2,t}\}, \{C_{2,t}\})$ are the two optimal contracts which promise the entrepreneur the initial utility levels, \underline{U}_1 and \underline{U}_2 , respectively. Obviously, for any $\eta \in (0, 1)$,

$$(\{\eta K_{1,t} + (1-\eta) K_{2,t}\}, \{\eta C_{1,t} + (1-\eta) C_{2,t}\})$$

is a contract that promises the entrepreneur $\eta \underline{U}_1 + (1 - \eta) \underline{U}_2$ and satisfies the borrowing constraint (4). On the other hand, the operating profit is concave in K, hence this contract yields an expected payoff of the investor no less than $\eta V(Z_0, \underline{U}_1) + (1 - \eta) V(Z_0, \underline{U}_2)$ and we have the desired result.

B Proof of Proposition 1

The main task in the proof is to verify the optimality of the optimal contract and the associated normalized value function. It is easy to show the following preliminary result.

Lemma B.1. $v(\cdot)$ satisfies HJB (9); $v''(u) \leq 0$ and $v'(u) \geq -1$; the inequalities are strict over $[0, \hat{u})$ and binding for $u \geq \hat{u}$.

Verification of the optimality of the contract is divided in to Lemmas B.2 and B.3.

Lemma B.2. The contract characterized in Proposition 1 generates the normalized value function v(u).

Proof. Suppose $\underline{u} = \underline{u} \in [0, \hat{u}]$, and let \hat{v}_t be the normalized firm value to the investor at t under the contract and \hat{T} be the time such that $u_{\hat{T}} = \hat{u}$ under the contract. Then for $t \geq \hat{T}$, $k_t = \frac{\hat{u}}{\theta}$ and $dC_t = Z_t (\beta - \mu) \hat{u} dt$. Then the normalized payoff to the investor at \hat{T}

$$\hat{v}_{\hat{T}} = \frac{1}{Z_{\hat{T}}} E_{\hat{T}} \left[\int_{\hat{T}}^{\infty} e^{-r(t-\hat{T})} Z_t \left(\left(\frac{\hat{u}}{\theta} \right)^{\alpha} - (r+\delta) \frac{\hat{u}}{\theta} - (\beta-\mu) \hat{u} \right) dt \right] \\
= \frac{1}{r-\mu} \left[\left(\frac{\hat{u}}{\theta} \right)^{\alpha} - (r+\delta) \frac{\hat{u}}{\theta} - (\beta-\mu) \hat{u} \right]$$
(B.1)

Since $v'(\hat{u}) = -1$, the HJB equation (9), definition of \hat{u} , (11), and (B.1) imply $v(\hat{u}) = \hat{v}_{\hat{T}}$. Now, for $t \leq \hat{T}$, we define

$$\Psi_{t} \equiv \int_{0}^{t} e^{-rs} \left(\left(Z_{s}^{1-\alpha} K_{s}^{\alpha} - (r+\delta) K_{s} \right) ds - dC_{t} \right) + e^{-rt} Z_{t} v \left(u_{t} \right).$$

Obviously, $\Psi_{\hat{T}} = Z_0 \hat{v}_0$, the normalized payoff to the investor at t = 0, and

$$e^{rt}d\Psi_t = Z_t \left[k_t^{\alpha} - (r+\delta) \, k_t - (r-\mu) \, v \, (u) + (\beta-\mu) \, u_t v' \, (u_t)\right] dt$$

Since $\hat{u} < u^*$, $k_t = \frac{u_t}{\theta}$, the optimal policy implied by the maximization problem on the right hand side of (9). Therefore, (9) implies that $\{\Psi_t\}$ is a super martingale and

$$v\left(\underline{u}\right) = \frac{1}{Z_0}\Psi_0 = \frac{1}{Z_0}E_0\left[\Psi_{\hat{T}}\right] = \hat{v}_0$$

and we have the desired result.

Lemma B.3. The contract characterized in Proposition 1 is optimal

Proof. We show that the normalized payoff of the investor under any contract satisfying the constraint (4) and promising the entrepreneur $\underline{u} > 0$ is no larger than $v(\underline{u})$. Let $\left(\left\{\tilde{C}_t\right\}, \left\{\tilde{K}_t\right\}\right)$ be such an alternative contract which implies the entrepreneur's continuation-utility process $\left\{\tilde{U}_t\right\}$. We accordingly define \tilde{u}_t , \tilde{k}_t , \tilde{g}_t and the investor's normalized payoff process \tilde{v}_t . Let $\tilde{T} = \inf\{t \ge 0 : \tilde{u}_t = 0\}$. Then (4) implies that $\tilde{u}_t = 0$, $\tilde{k} = 0$ and $\tilde{v}_t = 0$ for $t \ge \tilde{T}$. So $\tilde{v}_{\tilde{T}} = v(0)$.¹ For t < T we define

$$\tilde{\Psi}_t \equiv \int_0^t e^{-rs} \left[Z_s \left(\tilde{k}_s^{\alpha} - (r+\delta) \, \tilde{k}_s \right) ds - d\tilde{C}_s \right] + e^{-rt} Z_t v \left(\tilde{u}_t \right) ds$$

So $\tilde{\Psi}$ is the expected payoff of the investor if she follow the alternative contract up to t and then switches to the contract we described in the proposition. Obviously, $\tilde{\Psi}_0 = Z_0 v(v_0)$ and $\tilde{\Psi}_{\tilde{T}}$ is the expected payoff of the investor under the alternative contract. Hence

$$e^{-rt}d\tilde{\Psi}_{t} = Z_{t} \left\{ \begin{bmatrix} \tilde{k}_{t}^{\alpha} - (r+\delta)\,\tilde{k}_{t} - (r-\mu)\,v\,(\tilde{u}_{t}) + (\beta-\mu)\,\tilde{u}_{t}v'\,(\tilde{u}_{t}) \end{bmatrix} dt \\ - (1+v'\,(\tilde{u}_{t}))\,\frac{1}{Z_{t}}d\tilde{C}_{t} \end{bmatrix} \right\}$$
(B.2)

¹Notice that $\tilde{T} = \infty$ if \tilde{u}_t never hits zero under the contract.

Since v satisfies the HJB equation (2), the coefficient of dt in the first row is non-positive; the coefficient of $d\tilde{C}_t$ is non-positive because $v'(\tilde{u}) \ge -1$ (Lemma B.1). Therefore $\left\{\tilde{\Psi}_t\right\}$ is a super martingale and

$$v\left(v_{0}\right) = \frac{1}{Z_{0}}\tilde{\Psi}_{0} \ge \frac{1}{Z_{0}}E_{0}\left[\tilde{\Psi}_{\tilde{T}}\right]$$

So we have the desired result.

C Proof of Proposition 2

Given the policy functions under the optimal contract, for $u \in [0, \hat{u}]$, w(u) satisfies the following HJB differential equation.

$$0 = \left(\frac{u}{\theta}\right)^{\alpha} - (r+\delta)\frac{u}{\theta} - (r-\mu)w(u) + (\beta-\mu)uw'(u)$$

Obviously, on the left boundary, w(0) = 0; on the right boundary, when \hat{u} is reached, $k_t = \hat{k} = \frac{\hat{u}}{\theta}$ which is time invariant. Therefore $w(\hat{u}) = \frac{\hat{\pi}}{r-\mu}$. So w is characterized by (14) and (14).

Now we show that w(u) increases with u. Notice that we only need to show the result over $[0, \hat{u}]$. Suppose that two optimal contracts start with two different initial utility levels promised to the entrepreneur, \underline{u}^1 and \underline{u}^2 , with $\underline{u}^1 < \underline{u}^2 < \hat{u}$. Denote the $\{u_t\}$ -process under the two contracts $\{u_t^1\}$ and $\{u_t^2\}$ respectively. According to the policy functions characterized in Proposition 1, $k(u_t^1) \leq k(u_t^2) < \hat{k} < k^*$ and then

$$\pi\left(k\left(u_{t}^{1}\right)\right) \leq \pi\left(k\left(u_{t}^{2}\right)\right) \text{ for all } t \geq 0$$

with the inequality being strict before u_t^1 hits \hat{u} . Here $\pi(k) = k^{\alpha} - (r + \delta) k$. Therefore

$$w\left(\underline{u}^{1}\right) - w\left(\underline{u}^{2}\right) = E_{0}\left[\int_{0}^{\infty} e^{-rt} Z_{t}\left(\pi\left(k\left(u_{t}^{1}\right)\right) - \pi\left(k\left(u_{t}^{2}\right)\right)\right) dt\right] < 0.$$

So we have $w'(u) \ge 0$ and the inequality is strict if $u < \hat{u}$.

D Proof of Proposition 4

We focus on Parts (a) and (c) as the results in Part (b) are straightforward.

Part (a): It is easy to show result about μ and we show the one about θ . According

to the definition of \hat{T} , we need to show that \hat{u} strictly increases with θ . Notice that

$$\begin{aligned} \frac{\partial \hat{u}}{\partial \theta} &= \left[\frac{\alpha}{r+\delta+\theta\left(\beta-r\right)} \right]^{\frac{1}{1-\alpha}} + \left[\frac{\alpha}{r+\delta+\theta\left(\beta-r\right)} \right]^{\frac{\alpha}{1-\alpha}} \frac{-\alpha\left(\beta-r\right)}{\left(r+\delta+\theta\left(\beta-r\right)\right)^2} \\ &= \left[\frac{\alpha}{r+\delta+\theta\left(\beta-r\right)} \right]^{\frac{1}{1-\alpha}} \frac{r+\delta}{r+\delta+\theta\left(\beta-r\right)} \\ &> 0. \end{aligned}$$

So we have the desired result.

Part (c): We need to show that \hat{u} strictly increases with α when the condition is satisfied. According to (11),

$$\frac{\partial \hat{u}}{\partial \alpha} = \frac{\theta}{1-\alpha} \left[\frac{\alpha}{r+\delta+\theta(\beta-r)} \right]^{\frac{1}{1-\alpha}} + \theta \ln \left[\frac{\alpha}{r+\delta+\theta(\beta-r)} \right] \left[\frac{\alpha}{r+\delta+\theta(\beta-r)} \right]^{\frac{1}{1-\alpha}} \frac{1}{(1-\alpha)^2}.$$

The first term on the right hand side is positive, and so is the second if $\frac{\alpha}{r+\delta+\theta(\beta-r)} > 1$. Hence, we have the desired result.

E Proof of Proposition 5

According to (15)

$$q\left(\hat{u}\right) = \frac{\hat{k}}{w\left(\hat{u}\right)} = \left(\frac{\hat{\pi}}{r-\mu}\right) / \left(\frac{\hat{u}}{\theta}\right).$$

By plugging in (11), we have (16). The value matching conditions (13) and (15) imply

$$y\left(\hat{u}\right) = w\left(\hat{u}\right) - v\left(\hat{u}\right) = \frac{\beta - \mu}{r - \mu}\hat{u}.$$

Thus

$$l\left(\hat{u}\right) = \left(\left(\frac{\hat{u}}{\theta}\right) - \frac{\beta - \mu}{r - \mu}\hat{u}\right) / \left(\frac{\hat{\pi}}{r - \mu}\right).$$

By plugging in (11), we have (17). It is easy to check that $q(\hat{u})$ is positive and Assumption 1 guarantees the positivity of $l(\hat{u})$. The dependences of $q(\hat{u})$ and $l(\hat{u})$ on the parameters are obvious.