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Abstract

A common prediction of macroeconomic models of credit market frictions is that the

tightness of financial constraints is countercyclical. As a result, theory implies a negative

collateralizability premium; that is, capital that can be used as collateral to relax

financial constraints provides insurance against aggregate shocks and commands a lower

risk compensation compared with non-collateralizable assets. We show that a long-

short portfolio constructed using a novel measure of asset collateralizability generates

an average excess return of around 8% per year. We develop a general equilibrium

model with heterogeneous firms and financial constraints to quantitatively account for

the collateralizability premium.
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1 Introduction

A large literature in economics and finance emphasizes the importance of credit market

frictions for the overall impact of macroeconomic fluctuations.1 Although models differ in

details, a common prediction is that financial constraints exacerbate economic downturns

because they are more binding in recessions. As a result, theories of financial frictions predict

that assets relaxing financial constraints should provide insurance against aggregate shocks.

We evaluate the implications of this mechanism for the cross-section of equity returns.

From an asset pricing perspective, when financial constraints are binding, the value of

collateralizable capital includes not only the dividends it generates but also the present value

of the Lagrangian multipliers of the collateral constraints it relaxes. If financial constraints

are tighter in recessions, then a firm holding more collateralizable capital should require a

lower expected return in equilibrium, since the collateralizability of its assets provides a hedge

against the risk of becoming financially constrained in recessions, making the firm less risky

overall.

To examine the relationship between asset collateralizability and expected returns, we

first construct a measure of firms’ asset collateralizability. Guided by the corporate finance

theory linking firms’ capital structure decisions to collateral constraints (e.g., Rampini and

Viswanathan (2013)), we measure asset collateralizability as the value-weighted average of

the collateralizability of the different types of assets owned by the firm. Our measure can be

interpreted as the fraction of firm value that can be attributed to the collateralizability of its

assets.

We sort stocks into portfolios according to this collateralizability measure and document

that the spread between the low and the high collateralizability portfolio is on average close

to 8% per year within the subset of financially constrained firms. The difference in returns

remains significant after controlling for factors such as the market, size, value, momentum,

and profitability.

To quantify the effect of asset collateralizability on the cross-section of expected returns,

1Quadrini (2011) and Brunnermeier, Eisenbach, and Sannikov (2012) provide comprehensive reviews of
this literature.
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we develop a general equilibrium model with heterogeneous firms and financial constraints.

In our model, firms are operated by entrepreneurs who experience idiosyncratic productivity

shocks. As in Kiyotaki and Moore (1997, 2012), lending contracts cannot be fully enforced

and therefore require collateral. Firms with high productivity and low net worth have higher

financing needs; therefore, in equilibrium, they acquire more collateralizable assets in order

to borrow. In the constrained efficient allocation in our model, heterogeneity in productivity

and net worth translate into heterogeneity in the collateralizability of firm assets. In this

setup, we show that, at the aggregate level, collateralizable capital requires lower expected

returns in equilibrium, and, in the cross-section, firms with high asset collateralizability earn

low risk premiums.

In our model, assets with different levels of collateralizability are traded, and firms with

higher financing needs endogenously acquire more collateralizable assets. Because owners

of collateralizable assets rationally expect that potential buyers will be able to use the as-

sets as collateral to relax their borrowing constraint, the price of collateralizable assets must

contain the present value of the appropriately normalized Lagrangian multipliers associated

with financial constraints. The countercyclicality of these Lagrangian multipliers, there-

fore, in equilibrium, translates into the cross-sectional dispersion of expected returns across

collateralizable-sorted portfolios.

We show that our model, when calibrated to match the conventional macroeconomic

quantity dynamics and asset pricing moments, is able to generate a significant collateraliz-

ability spread. As in the data, firms with more asset collateralizability have higher financial

leverage. Despite the higher leverage, a higher degree of asset collateralizability is associated

with lower average returns. Quantitatively, our model matches the empirical relationship

between asset collateralizability, leverage, and expected returns in the data quite well.

Related Literature This paper builds on the large macroeconomics literature studying

the role of credit market frictions in generating fluctuations across the business cycle (see

Quadrini (2011) and Brunnermeier, Eisenbach, and Sannikov (2012) for recent reviews).

The papers most closely related to ours are those emphasizing the importance of borrowing

constraints and contract enforcements, such as Kiyotaki and Moore (1997, 2012), Gertler
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and Kiyotaki (2010), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014),

and Elenev, Landvoigt, and Van Nieuwerburgh (2018). Gomes, Yamarthy, and Yaron (2015)

study the asset pricing implications of credit market frictions in a production economy.

A common prediction of the papers in this literature is that the tightness of borrowing

constraints is countercyclical. We study the implications of this prediction for the cross-

section of expected returns.

Several papers in this literature, in particular, develop models in which asset prices include

not only the present value of the cash flow but also the present value of the Lagrangian

multipliers for the relevant borrowing constraint it relaxes. Examples include, Kiyotaki and

Moore (1997), Gertler and Kiyotaki (2010), and Elenev, Landvoigt, and Van Nieuwerburgh

(2018). More recently, Liu, Wang, and Zha (2013) and Miao and Wang (2018) study the

implications of related setups where the non-cash flow component of asset prices can be

interpreted as bubbles. None of the above papers, however, focus on the implications of the

model for the cross section of expected returns.

Our paper is also related to the corporate finance literature that emphasizes the impor-

tance of asset collateralizability for the capital structure decisions of firms. Albuquerque

and Hopenhayn (2004) study dynamic financing with limited commitment, Rampini and

Viswanathan (2010, 2013) develop a joint theory of capital structure and risk management

based on asset collateralizability, and Schmid (2008) considers the quantitative implications

of dynamic financing with collateral constraints. Falato, Kadyrzhanova, and Sim (2013) pro-

vide empirical evidence for the link between asset collateralizability and leverage in aggregate

time series and in the cross section.

Our paper further belongs to the literature on production-based asset pricing, for which

Kogan and Papanikolaou (2012) provide an excellent survey. From a methodological point

of view, our general equilibrium model allows for a cross section of firms with heterogeneous

productivity and is related to previous work including Gomes, Kogan, and Zhang (2003),

Gârleanu, Kogan, and Panageas (2012), Ai and Kiku (2013), and Kogan, Papanikolaou, and

Stoffman (2017). Compared with these papers, our model incorporates financial frictions. In

addition, our aggregation result is novel in the sense that despite heterogeneity in productivity

and the presence of aggregate shocks, the equilibrium in our model can be solved for without
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having to use any distribution as a state variable.

Finally, our paper is connected to the broader literature linking investment to the cross-

section of expected returns. Berk, Green, and Naik (1999) discuss how optimal investment

decisions affect the valuation of growth options and assets in place. Zhang (2005) provides an

investment-based explanation for the value premium. Li (2011) and Lin (2012) focus on the

relationship between R&D investment and expected stock returns. Eisfeldt and Papanikolaou

(2013) develop a model of organizational capital and expected returns. Belo, Lin, and Yang

(2017b) study implications of equity financing frictions on the cross-section of stock returns.

The rest of the paper is organized as follows. We summarize our empirical results on the

relationship between asset collateralizability and expected returns in Section 2. We describe

a general equilibrium model with collateral constraints in Section 4 and analyze its asset

pricing implications in Section 5. In Section 6, we provide a quantitative analysis of our

model. Section 7 concludes. A detailed presentation of our empirical analysis is provided in

Section B of the appendix.

2 Empirical Facts

2.1 Measuring collateralizability

To empirically examine the link between asset collateralizability and expected returns, we

first construct a measure of asset collateralizability at the firm level. Models with financial

frictions typically feature a collateral constraint that takes the following general form:

Bi,t ≤
J∑
j=1

ζjqj,tKi,j,t+1, (1)

where Bi,t denotes the total amount of borrowing by firm i at time t, and where qj,t is the

price of type-j capital at time t.2 The amount Ki,j,t+1 of type-j capital used by firm i at time

t+ 1 is determined at time t (i.e., we assume a one-period time to build, as in standard real

2In the model, we assume firms can only issue one-period bonds. A firm has to repay all the debt in order
to borrow new debt. Under this assumption, the current one-period bond indeed represents the total debt
of a firm.
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business cycle models).

Different types of capital differ with respect to their degree of collateralizability. The

parameter ζj ∈ [0, 1] in (1) measures the degree to which type-j capital is collateralizable.

The expression ζj = 1 implies that type-j capital can be fully collateralized, whereas ζj = 0

means that this type of capital cannot be collateralized at all. Equation (1) thus says that

total borrowing by the firm is constrained by the total collateral it can provide.

Our collateralizability measure is a value-weighted average of the collateralizability of

different types of firm assets. Specifically, the overall collateralizability of firm i’s assets at

time t, ζ̄ i,t, is defined as

ζ̄ i,t ≡
J∑
j=1

ζj
qj,tKi,j,t+1

Vi,t
, (2)

where Vi,t denotes the total value of firm i’s assets. In models with collateral constraints, the

value of the collateralizable capital typically includes the present value of both the cash flows

it generates and of the Lagrangian multipliers of the collateral constraint. These represent

the marginal value of relaxing the constraint through the use of collateralizable capital. In

Section 6.4 we show that, in our model, the firm-level collateralizability measure ζ̄ i,t can be

intuitively interpreted as the relative weight of the present value of the Lagrangian multipliers

in the total value of the firm’s assets. As a result, it summarizes the heterogeneity in firms’

risk exposure arising from the asset collateralizability.

To empirically construct the collateralizability measure ζ̄ i,t for each firm, we follow a two-

step procedure. First, we use a regression-based approach to estimate the collateralizability

parameters ζj for each type of capital. Motivated by previous work (e.g., Rampini and

Viswanathan (2013, 2017)), we classify assets into three broad categories based on their

collateralizability: structure, equipment, and intangible capital. Focusing on the subset of

financially constrained firms for which the constraint (1) holds with equality, we divide both

sides of the equation by the total value of a firm’s assets at time t, Vi,t, and obtain

Bi,t

Vi,t
=

J∑
j=1

ζj
qj,tKi,j,t+1

Vi,t
.

The above equation links firm i’s leverage ratio,
Bi,t
Vi,t

to its value-weighted collateralizability
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measure. Empirically, we run a panel regression of firm leverage,
Bi,t
Vi,t

, on the value weights of

the different types of capital,
qj,tKi,j,t+1

Vi,t
, to estimate the collateralizability parameters ζj for

structure and equipment, respectively.3 The results for the estimates of the collateralizability

parameters are shown in Table 1.

We run this leverage regression for the full sample as well as for subsets of financially

constrained firms. We use four different measures to determine whether a firm is considered

financially constrained: the WW index (Whited and Wu (2006)), the SA index (Hadlock and

Pierce (2010)), an indicator of whether the firm has paid dividends or not in a given year,

and all three measures combined.

As we can see in all of the specifications, there is a significant difference between structure

and equipment capital, in which the former contributes more to a firm’s debt capacity than

the latter, represented by a significantly greater regression coefficient. This result is in line

with Campello and Giambona (2013).

The firm-specific “collateralizability score” at time t, denoted by ζ̄ i,t, is then computed as

a value-weighted average of the collateralizability coefficients across different types of assets;

that is,

ζ̄ i,t =
J∑
j=1

ζ̂j
qj,tKi,j,t+1

Vi,t
,

where ζ̂j is the coefficient estimated from the panel regression described above. We provide

further details regarding the construction of the collateralizability measure in Appendix D.2.

2.2 Collateralizability and expected returns

Equipped with the time series of the collateralizability measure for each firm, we follow the

standard procedure and construct collateralizability-sorted portfolios. Consistent with our

theory, we focus on the subset of financially constrained firms, whose asset valuations contain

a non-zero Lagrangian multiplier component.

Table 2 reports average annualized excess returns, t-statistics, volatilities, Sharpe ratios

3We impose the restriction that ζ = 0 for intangible capital, both because previous work typically argues
that intangible capital cannot be used as collateral, and because its empirical estimate is slightly negative in
unrestricted regressions.
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and market betas for the five collateralizability-sorted portfolios. We consider the same three

basic indicators for whether a firm is financially constrained as above.

The top panel shows that, based on the WW index, the average equity return for firms

with low collateralizability (quintile 1) is 7.86% higher on an annualized basis than that of

a typical high collateralizability firm (quintile 5). We call this return spread the (negative)

collateralizability premium. The return difference is statistically significant with a t-value of

2.53, and its Sharpe ratio is 0.44. The premium is robust with respect to the way we measure

whether a firm is financially constrained, as can be seen from the middle and bottom panels

of Table 2.4

In sum, the evidence on the collateralizability spread in the group of financially con-

strained firms strongly supports our theoretical prediction that collateralizable assets are less

risky and therefore are expected to earn a lower return. In the next section, we develop a

general equilibrium model with heterogeneous firms and financial constraints to formalize the

above intuition and to quantitatively account for the negative collateralizability premium.

3 A Three-Period Model

To illustrate the basic premise of our theory, in this section, we develop a simple three-period

model with closed-form solutions to illustrate the importance of Lagrangian multipliers for

asset prices in models with financial constraints. In the next section, we then extend this

model to a fully dynamic setup with heterogeneous firms.

In our setup, the household maximizes utility subject to standard intertemporal budget

4The negative collateralizability premium is also present for financially unconstrained firms, but not as
significantly as for constrained firms. It amounts to about 1% per year in our sample period. This result is
consistent with our theory. As we show in our model, the collateralizability premium applies to unconstrained
firms because the value of their assets includes the present value of the Lagrangian multipliers of all constraints
that potentially become binding in the future. The collateralizability premium for these firms should be lower,
because for currently unconstrained firms, the Lagrangian multiplier represents only a small fraction of the
firm’s value.
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constraints:

max
{Ct,Bt,ωt}

E

[
2∑
t=0

βt lnCt

]
(3)

C0 +B0 + ω0V0 = W0 + Π0,

C1 +B1 + ω1V1 = ω0 (V1 +D1) +B0r0 + Π1,

C2 = ω1 (V2 +D2) +B1r1 + Π2.

The economy has three periods. The household has log utility with discount rate β ∈ (0, 1],

and its initial wealth is W0. It also receives profits from the capital producer, {Πt}. The

household trades two assets: equity from the consumption goods producing firm (which pays

dividends Dt and is valued at Vt at time t) and debt (a one-period bond which pays a gross

rate of interest of rt−1 at time t).5 This implies that in equilibrium, the stochastic discount

factor (SDF) implied by household consumption will price both the equity and the bond.6

We denote the holdings of shares and bonds by ωt and Bt, respectively.

We denote the stochastic discount factor by Mt and specify the profit maximization

problem of the representative firm as

max
{Dt,Bt,Kt+1,Nt+1}

E

[
2∑
t=0

MtDt

]
(4)

Dt + qtKt+1 = Nt +Bt, (t = 0, 1, 2) (5)

Nt+1 = At+1Kt+1 + (1− δ) qt+1Kt+1 − rtBt (t = 0, 1) (6)

Bt ≤ ζqtKt+1, (t = 0, 1) (7)

Dt ≥ 0 (t = 0, 1, 2). (8)

Here, qt denotes the price of capital at time t, Kt+1 is the amount of capital at time t + 1

(determined at time t), Nt is the firm’s net worth at time t, At denotes productivity, and δ

is the rate of capital depreciation.

5In what follows, we simply refer to the consumption goods producing firm as “the firm.” As in neoclassical
models, the capital goods producer does not make intertemporal decisions.

6As in standard neoclassical models, allowing for a full set of Arrow-Debreu securities will pin down a
unique stochastic discount factor without affecting other equilibrium prices and quantities. Our model is one
in which the financial market is complete in the sense of Debreu (1959). Here, we do not explicitly specify a
full set of Arrow-Debreu securities for the household to trade, just to save notation.
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The firm’s problem is where our model departs from the frictionless neoclassical setup.

The key constraint for borrowing is Bt ≤ ζqtKt+1. Without this collateral constraint, our

model reduces to the frictionless neoclassical model. Below we show that whenever this

constraint is binding, the price of capital contains not only the present value of the cash flow

but also the present value of the Lagrangian multiplier (appropriately normalized) on this

constraint.

To complete the specification of the model, the producer of capital goods maximizes

profit, given the price of capital qt:

Πt = max {qtKt+1 − (1− δ) qtKt −G (It, Kt)}

Kt+1 = (1− δ)Kt + It,

where G (I,K) = I + 1
2
τ
(
It
Kt
− δ
)2

Kt is the total cost of investment, including a quadratic

capital adjustment cost with parameter τ .7 Finally, market clearing requires ωt = 1 for

all t; that is, the household fully owns the equity of the consumption goods producer. The

aggregate resource constraint is Ct+G (It, Kt) = AtKt; that is, output is used for consumption

and investment.

Our model should be interpreted as one in which households can trade a full menu of

Arrow-Debreu securities. In this sense, the market is complete. However, households cannot

trade capital directly; only firms can. As we will see in the following analysis, whenever

firms are constrained, the price of capital may not equal the value of its replicating portfolio

(constructed from Arrow-Debreu securities). In particular, the price of capital may contain

a Lagrangian multiplier component. Firms cannot exploit this as an arbitrage opportunity

because they are constrained. Our assumptions capture the fact that households can buy

and sell stocks and bonds on public financial markets, but they basically never trade physical

assets such as equipment and structures directly because they are less efficient than firms in

deploying these assets.

The key to understanding the asset pricing implications of our model is the firm’s opti-

mization problem. To keep the notation consistent with the fully dynamic model presented

7Here we use the no-arbitrage condition to impose that the price of one unit of Kt must be (1− δ) qt, as
capital depreciates at rate δ.
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below, we focus on the recursive formulation of the firm’s optimization problem and write

the value function as Vt (Nt) = µtNt, for t = 0, 1, 2. Given prices, the firm’s maximization

problem is a linear programming problem, and therefore the value function must be linear.

We denote the Lagrangian multiplier for the collateral constraint (7) as ηt
qt

and that for the

dividend constraint (8) as µ̄t. For t = 0, 1, we can write the Lagrangian multiplier for the

firm’s optimization problem as

µtNt = max
Kt+1,Bt

 E
[
Mt+1µt+1 {At+1Kt+1 + (1− δ) qtKt+1 − rtBt}

]
−ηt
qt

[Bt − ζqtKt+1] + µ̄t [Nt +Bt − qtKt+1] .

 . (9)

In the above formulation, we assume all dividends are paid in period 2 without loss of

generality. We provide details of the first-order conditions and the envelope condition in

Appendix A. To save notation, we use lowercase letters to denote quantities normalized by

current period capital, for example, it = It
Kt

and ct = Ct
Kt

. We summarize our main asset

pricing result in the following proposition.

Proposition 1. Suppose there exists an equilibrium in which the firm’s collateral constraints

are binding in both t = 0 and t = 1, then the price of capital in period 1 is given by

q1 =
1

µ (n1, A1)
βE

[
A1 − i (n1)− 1

2
τ (i (n1)− δ)2

(1− δ) + i (n1)

]
+ ζ

η (n1, A1)

µ (n1, A1)
, (10)

where the functional form of i (n1) is given in equation (A8) in Appendix A. The net worth

n1 = n (A1|n0) is a function of A that satisfies the following functional equation:

n (A|n0) = A+(1− δ) [1 + τ (i (n (A|n0))− δ)]−ζh (i (n0)− δ) 1

β

i (n0) + 1− δ
c (A0, n0)

1

E
[

1
c(A,n(A|n0))

] .
(11)

The Lagrangian multiplier component of the asset price is positive (i.e., η(n1,A1)
µ(n1,A1)

> 0).

Proof. See Appendix A.1.

Proposition 1 formally establishes that the price of capital contains a Lagrangian mul-

tiplier component. In our setup, households are not constrained, and equity and bond

prices must satisfy the standard intertemporal Euler equation E [Mt+1Rt+1] = 1. Because
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households are not constrained, asset valuations do not directly contain the Lagrangian

multipliers of any financial constraint. However, firms are constrained, and they trade

capital goods among themselves.8 Because capital goods can be used to relax a firm’s

financial constraint, the price of capital, qt, has a Lagrangian multiplier component, as

shown in (10). Firm valuation is indirectly affected by the Lagrangian multipliers, since

the equity return is given as Rt+1 = Dt+1+Vt+1

Vt
, and the equity value Vt+1 = µt+1Nt+1 =

µt+1 {At+1Kt+1 + (1− δ) qtKt+1 − rtBt} depends on the price of capital.9

To maintain tractability, we assume that there is only one type of capital to highlight how

asset prices are affected by the Lagrangian multipliers. Our fully dynamic model features two

types of assets that differ in the collateralizability parameter ζ, which allows heterogeneity

in asset composition to affect firms’ equity returns.

To obtain closed-form solutions and provide a sharper characterization of the equilibrium,

we make several assumptions on the parameter values of the model. First, we assume β =

δ = 1 to simplify the derivations. Second, we assume that ζ is bounded from above and

below, in particular, ζ ∈
(

1
4
, 1

2

)
. In our model, the parameter ζ governs the tightness of the

firm’s collateral constraint. Assuming that ζ is bounded from above and below allows us to

focus on equilibria where the firm is constrained in both periods. A large ζ would imply that

the collateral constraint (7) will not bind in the current period. A small ζ, however, would

imply that firms borrow very little in the current period and thus carry very little debt over

to the next period. As a result, constraint (7) will not bind in the next period. In the fully

dynamic model, this constraint (7) will be binding around the steady state for a wide range

of values for ζ. However, in the simple three-period model, it is convenient to impose the

above condition on ζ to ensure that the collateral constraint is binding for all realizations of

the productivity shocks.

Finally, we assume A1 > 1−ζ
1−2ζ

. As we will show in Appendix A.2, this assumption

guarantees that in equilibrium, consumption and investment are both increasing functions

8The representative firm can be interpreted as a continuum of identical competitive firms, as in standard
neoclassical economies.

9In neoclassical models, it does not matter whether households trade capital directly or not. In our model,
this fact is important, and it leads to qt having a Lagrangian multiplier component. That households do not
trade physical capital directly is a reasonable assumption, since they are less efficient than firms in deploying
these assets.

12



of productivity. The next proposition provides a sufficient condition for the existence of

constrained equilibria and for the countercyclicality of the Lagrangian multiplier component

of asset prices.

Proposition 2. There exists n∗ and n̂ such that for all n0 ∈ (n∗, n̂), the unique equilibrium

is one in which the firm is constrained in both periods. In addition, the Lagrangian multiplier

component of asset prices is counter-cyclical; that is,

Cov

(
η (n1, A1)

µ (n1, A1)
, A1

)
< 0. (12)

Proof. See Appendix A.2.

This proposition implies that a sufficient condition for constrained equilibria to obtain is

that the firm’s net worth has to be bounded above and below by (n∗, n̂), where the expressions

for n∗ and n̂ are provided in (A33) and (A34) in Appendix A.2. Intuitively, when the initial

net worth is high enough, firms will not be constrained. In our model, because borrowing

capacity is limited by n0, when n0 is too low and productivity in period 1 is high, the firms

despite being constrained in period 0, carries very little debt over to the next period and will

not be constrained in the second period. Assuming that n0 ∈ (n∗, n̂) guarantees that the

firm is constrained in both periods. Condition (12) is a formal statement of the collateral

constraint being tighter in bad times (i.e., it tends to be high when aggregate productivity

is low), which is the key mechanism for the asset pricing implications of our model.

We plot the Lagrangian multiplier component of the price of capital as a function of pro-

ductivity A1 in Figure 1. Note that by (11), n1 depends on the realization of A1. Therefore,

for a fixed n0, the Lagrangian multipliers, η (n1, A1) and µ (n1, A1), are only functions of A1.

As A1 increases, η(n1,A1)
µ(n1,A1)

monotonically decreases to zero, which is reached at the point where

constraint (7) stops to bind. It is clear from the above discussion that the countercyclical-

ity of the Lagrangian multipliers is an endogenous equilibrium outcome, so that a general

equilibrium setup is needed to study its asset pricing implications. We now introduce a fully

dynamic general equilibrium model with heterogeneous firms.
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Figure 1: Monotonicity of the Lagrangian Multiplier

This figure shows a numerical example that η(n1,A1)
µ(n1,A1) is a monotonically decreasing function of TFP shock

A1. We assume the time discount rate β = 1, the capital depreciation rate δ = 1, and the capital adjustment

parameter τ = 1, as in the Proposition 2. We set the productivity in period zero to A0 = 3.2. The

productivity shock in period 1, A1, is assumed to follow a uniform distribution, with a mean of A0 and a

standard deviation of 0.05. The collateralizability parameter ζ is set to 0.4. Initial net worth is n0 = 1.93.
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4 The Dynamic Model with Heterogeneous Firms

In this section, we describe the ingredients of our quantitative model of the collateralizability

spread. The general spirit of the model is the same as that of the three-period model pre-

sented in the previous section. The key additional elements are i) heterogeneous firms with

idiosyncratic productivity shocks; ii) two types of capital that differ with respect to their

collateralizability; and iii) firm entry and exit. These features allow us to generate quantita-

tively plausible firm dynamics and heterogeneity in the firms’ capital stocks in order to study

the implications of collateralizability constraints for the cross-section of equity returns.

4.1 Households

Time is infinite and discrete. We assume that the representative household has a recursive

preference with risk aversion γ and intertemporal elasticity of substitution (IES) ψ, as in
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Epstein and Zin (1989):

Ut =

{
(1− β)C

1− 1
ψ

t + β(Et[U
1−γ
t+1 ])

1− 1
ψ

1−γ

} 1

1− 1
ψ

,

where Ut is time-t utility and Ct is time-t consumption. As we will show later in the paper,

the recursive preferences in our model, together with the endogenous equilibrium long run

risk, generate a volatile pricing kernel and a significant equity premium, as in Bansal and

Yaron (2004). The household receives labor and capital income and trade equities and bonds

of firms. In every period t, the household purchases Bi,t units of the risk-free bond and ωi,t

shares of equity from firm i. It receives a risk-free interest rate Rf,t on the bonds and capital

income plus a dividend payment Vi,t+1 +Di,t+1 in the next period. We assume that the labor

market is frictionless, and labor income is therefore WtLt. The household budget constraint

at time t can therefore be written as

Ct +

∫
ωi,tVi,tdi+

∫
Bi,tdi = WtLt +Rf,t−1

∫
Bi,t−1di+

∫
ωi,t−1 (Vi,t +Di,t) di.

4.2 Firms’ profit maximization

There is a continuum of firms in our economy indexed by i ∈ [0, 1]. A firm that starts at time

0 draws an idea with initial productivity z̄ and begins the operation with initial net worth

N0. Under our convention, N0 is also the total net worth of all firms at time 0 because the

total measure of all firms is normalized to one.

Let Ni,t denote firm i’s net worth at time t, and let Bi,t denote the total amount of risk-

free bonds the firm issues to households at time t. Then the time-t budget constraint for the

firm is

qK,tKi,t+1 + qH,tHi,t+1 = Ni,t +Bi,t. (13)

In (13), we assume that there are two types of capital, K and H, that differ in their collat-

eralizability, and we use qK,t and qH,t to denote their prices at time t. Let Ki,t+1 and Hi,t+1

denote the amount of capital that firm i purchases at time t, which can be used for produc-

tion over the period from t to t + 1. At time t, the firm is assumed to have an opportunity
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to default on its debt contract and abscond with all of the type-H capital and a fraction of

1− ζ of the type-K capital. Because lenders can retrieve a ζ fraction of the type-K capital

upon default, borrowing is limited by

Bi,t ≤ ζqK,tKi,t+1. (14)

Type-K capital can therefore be interpreted as collateralizable, whereas type-H capital can-

not be used as collateral.

From time t to t + 1, the productivity of entrepreneur i evolves according to the law of

motion

zi,t+1 = zi,te
εi,t+1 , (15)

where εi,t+1 is a Gaussian shock with mean µε and variance σ2
ε, assumed to be i.i.d. across

agents i and over time. We use π
(
Āt+1, zi,t+1, Ki,t+1, Hi,t+1

)
to denote firm i’s equilibrium

profit at time t + 1, where Āt+1 is aggregate productivity in period t + 1, and zi,t+1 denotes

firm i’s idiosyncratic productivity. The specification of the aggregate productivity processes

will be provided in Section 6.1.

In each period, after production, the firm experiences a liquidation shock with probability

λ, upon which it loses its idea and needs to liquidate its net worth to return it to the

household.10 If the liquidation shock happens, the firm restarts with a draw of a new idea

with initial productivity z̄ and an initial net worth of χNt in period t + 1, where Nt is the

total (average) net worth of the economy in period t, and χ ∈ (0, 1) is a parameter that

determines the ratio of the initial net worth of entrepreneurs relative to that of the economy-

wide average. Conditional on no liquidation shock, the net worth Ni,t+1 of firm i at time

t+ 1 is determined as

Ni,t+1 = π
(
Āt+1, zi,t+1, Ki,t+1, Hi,t+1

)
+ (1− δ) qK,t+1Ki,t+1

+ (1− δ) qH,t+1Hi,t+1 −Rf,tBi,t. (16)

The interpretation is that the firm receives the profit π
(
Āt+1, zi,t+1, Ki,t+1, Hi,t+1

)
from pro-

10This assumption effectively makes firms less patient than the household and prevents them from saving
their way out of the financial constraint in the long run.
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duction. Its capital holdings depreciate at rate δ, and it needs to pay back the debt borrowed

from last period plus interest, amounting to Rf,tBi,t.

We use V i
t to denote the value of firm i. Because firms submit their net worth to the

household whenever a liquidity shock occurs, firms’ profit maximization problem can be

specified recursively as

V i
t = max

{Ki,t+1,Hi,t+1,Ni,t+1,Bi,t}
Et
[
Mt+1{λNi,t+1 + (1− λ)V i

t+1}
]
, (17)

subject to the budget constraint (13), the collateral constraint (14), and the law of motion

of Ni given by (16). In the above equation, Mt+1 = β
(
Ct+1

Ct

)− 1
ψ
(

Ut+1

Et[U
1−γ
t+1 ]1/(1−γ)

) 1
ψ
−γ

is the

SDF implied by the household’s maximization problem.

We use variables without a subscript i to denote economy-wide aggregate quantities. The

aggregate net worth in the firm sector satisfies

Nt+1 = (1− λ)

 π
(
Āt+1, Kt+1, Ht+1

)
+ (1− δ) qK,t+1Kt+1

+ (1− δ) qH,t+1Ht+1 −Rf,tBt

+ λχNt, (18)

where π
(
Āt+1, Kt+1, Ht+1

)
denotes the aggregate profit of all firms.

4.3 Production decisions

Final output With zi,t denoting the idiosyncratic productivity for firm i at time t,

output yi,t of firm i at time t is assumed to be generated through the following production

technology:

yi,t = Āt
[
z1−ν
i,t (Ki,t +Hi,t)

ν]α L1−α
i,t . (19)

Here, α denotes the capital share, and ν is the span of control parameter, as in Atkeson

and Kehoe (2005). Note that collateralizable and non-collateralizable capital are perfect

substitutes in production. This assumption is made for tractability.
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Firm i’s profit at time t, π
(
Āt, zi,t, Ki,t, Hi,t

)
, is given as

π
(
Āt, zi,t, Ki,t, Hi,t

)
= max

Li,t
yi,t −WtLi,t

= max
Li,t

Āt
[
z1−ν
i,t (Ki,t +Hi,t)

ν]α L1−α
i,t −WtLi,t, (20)

where Wt is the equilibrium wage rate, and Li,t is the amount of labor hired by firm i at time

t.

It is convenient to write the profit function explicitly by maximizing out labor in equation

(20) and using the labor market clearing condition
∫
Li,tdi = 1 to get

Li,t =
z1−ν
i,t (Ki,t +Hi,t)

ν∫
z1−ν
i,t (Ki,t +Hi,t)

ν di
, (21)

so that firm i’s profit function becomes

π
(
Āt, zi,t, Ki,t, Hi,t

)
= αĀtz

1−ν
i,t (Ki,t +Hi,t)

ν

[∫
z1−ν
i,t (Ki,t +Hi,t)

ν di

]α−1

. (22)

Given the output yi,t of firm i at time t from equation (19), the total output of the economy

is given as

Yt =

∫
yi,tdi,

= Āt

[∫
z1−ν
i,t (Ki,t +Hi,t)

ν di

]α
. (23)

Capital goods We assume that capital goods are produced from a constant returns to

scale and convex adjustment cost function G (I,K +H); that is, one unit of the investment

good costs G (I,K +H) units of consumption goods. Therefore, the aggregate resource

constraint is

Ct +G (It, Kt +Ht) = Yt. (24)

We further assume that the fractions φ and 1− φ of the new investment goods can be used

for type-K and type-H capital, respectively. This is a simplifying assumption which implies

that, at the aggregate level, the ratio of type-K to type-H capital is always equal to φ/(1−φ),
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and thus the total capital stock of the economy can be summarized by a single state variable.

The aggregate stocks of type-H and type-K capital follow the law of motion11

Ht+1 = (1− δ)Ht + (1− φ) It

Kt+1 = (1− δ)Kt + φIt.
(25)

5 Equilibrium Asset Pricing

5.1 Aggregation and construction of equilibrium

Our economy is one with both aggregate and idiosyncratic productivity shocks. In general,

we would have to use the joint distribution of capital and net worth as an infinite-dimensional

state variable in order to characterize the equilibrium recursively. In this section, we present

a novel aggregation result and show that the aggregate quantities and prices of our model

can be characterized without any reference to distributions. Given aggregate quantities and

prices, quantities and shadow prices at the individual firm level can be computed using

equilibrium conditions.

Distribution of idiosyncratic productivity In our model, the law of motion of

idiosyncratic productivity shocks in (15) is time invariant, implying that the cross-sectional

distribution of zi,t will eventually converge to a stationary distribution.12 At the macro level,

the heterogeneity of idiosyncratic productivity can be conveniently summarized by the simple

statistic Zt ≡
∫
zi,t di, which is useful when computing this integral explicitly.

Given the law of motion of zi from equation (15) and the fact that entrepreneurs receive

a liquidation shock with probability λ, we have

Zt+1 = (1− λ)

∫
zi,te

εi,t+1di+ λz̄.

11For tractability, we have assumed that type-K and type-H capital are perfect substitutes in production.
Under this assumption, if investors can determine which capital to produce, they will always choose not to
produce type-H capital, as it can be perfectly substituted by type-K capital in production and is strictly
dominated by type-K capital when used as collateral. Our assumption that capital production is Leontief in
type-K and type-H ensures that both types of capital are produced in equilibrium.

12In fact, the stationary distribution of zi,t is a double-sided Pareto distribution. Our model is therefore
consistent with the empirical evidence regarding the power law distribution of firm size.
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The interpretation is that only a fraction (1− λ) of entrepreneurs will survive until the next

period, and the rest will restart with a productivity of z̄. Note that based on the assumption

that εi,t+1 is independent of zi,t, we can integrate out εi,t+1 and rewrite the above equation

as 13

Zt+1 = (1− λ)

∫
zi,tE [eεi,t+1 ] di + λz̄,

= (1− λ)Zte
µε+

1
2
σ2
ε + λz̄, (26)

where the last equality follows from the fact that εi,t+1 is normally distributed. It is straight-

forward to see that if we choose the normalization z̄ = 1
λ

[
1− (1− λ) eµε+

1
2
σ2
ε

]
and initialize

the economy by setting Z0 = 1, then Zt = 1 for all t. We will maintain this assumption

throughout the rest of the paper.

Firm profits We assume that εi,t+1 is observed at the end of period t when the en-

trepreneurs plan next period’s capital. As we show in Appendix A.3, this implies that en-

trepreneur i will choose Ki,t+t+Hi,t+1 to be proportional to zi,t+1 in equilibrium. Additionally,

since
∫
zi,t+1 di = 1, we must have

Ki,t+1 +Hi,t+1 = zi,t+1 (Kt+1 +Ht+1) , (27)

where Kt+1 and Ht+1 are the aggregate quantities of type-K and type-H capital, respectively.

The assumption that capital is chosen after zi,t+1 is observed rules out capital misallo-

cation and implies that total output does not depend on the joint distribution of idiosyn-

cratic productivity and capital. This is because, given idiosyncratic shocks, all entrepreneurs

choose the optimal level of capital such that the marginal productivity of capital is the same

across all entrepreneurs. This fact allows us to write Yt = Āt (Kt+1 +Ht+1)αν
∫
zi,tdi =

Āt (Kt+1 +Ht+1)αν . It also implies that the profit at the firm level is proportional to aggre-

13The first line requires us to define the set of firms and the notion of integration in a mathematically
careful way. Rather than going into the technical details, we refer readers to Feldman and Gilles (1985) and
Judd (1985). Constantinides and Duffie (1996) use a similar construction in the context of heterogeneous
consumers. See footnote 5 in Constantinides and Duffie (1996) for a more careful discussion on possible
constructions of an appropriate measurable space under which the integration is valid.
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gate productivity, that is,

π
(
Āt, zi,t, Ki,t, Hi,t

)
= αĀtzi,t (Kt +Ht)

αν , (28)

and the marginal product of capital are equalized across firms for the two types of capital:14

∂

∂Ki,t

π
(
Āt, zi,t, Ki,t, Hi,t

)
=

∂

∂Hi,t

π
(
Āt, zi,t, Ki,t, Hi,t

)
= ανĀt (Kt +Ht)

αν−1 . (29)

Recursive construction of the equilibrium As in the three-period model, linearity

implies that firms’ value function is linear in net worth N i
t and productivity zi,t+1, which we

denote as V i
t (Ni,t, zi,t+1) = µitNi,t + Θi

tzi,t+1. Let
ηi,t
qK,t

be the Lagrangian multiplier on the

collateral constraint (14) and µ̄i,t be the Lagrangian multiplier on the budget constraint (13).

To simplify notation, we denote M̃ i
t+1 = Mt+1

[
λ+ (1− λ)µit+1

]
and write the Lagrangian

for the firms’ optimization problem as

L = Et

[
M̃ i
t+1

{
π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
+ (1− δK) qK,t+1Ki,t+1 + (1− δH) qH,t+1Hi,t+1 −Bi,tRf,t

}]
−
ηi,t
qK,t

[Bi,t − ζqK,tKi,t+1] + µ̄it [Ni,t +Bi,t − qK,tKi,t+1 − qH,tHi,t+1] + (1− λ) zi,t+1Et
[
Mt+1Θi

t+1

]
,

where we use the fact that zi,t+2 is independent of aggregate quantities and Et [zi,t+2] = zi,t+1.

As in the three-period model, the envelope condition implies that µit = µ̄it for all i and all

t. In general, the Lagrangian multipliers µit and ηit depend on the history of firm-specific

shocks. As a result, the equilibrium would have to be constructed using the distribution

of Lagrangian multipliers as an infinite-dimensional state variable, which would make the

problem numerically difficult to solve. In our setup, thanks to the assumptions that type-K

and type-H capital are perfect substitutes in production and that the idiosyncratic shock

zi,t+1 is observed before the decisions on Ki,t+1 and Hi,t+1 are made, we can construct an

equilibrium in which µit and ηit are equalized across all firms and equilibrium prices and

quantities do not depend on distributions. This will be shown in Proposition 3.

Intuitively, because type-K and type-H capital are perfect substitutes, firms’ marginal

product of capital depends only on the sum of the two types of capital (and not on the

14To prove (29), we take derivatives of firm i’s output function (19) with respect to Ki,t and Hi,t, and then
impose the optimality conditions (21) and (27).
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explicit composition of total capital), and because the next-period productivity shock can be

perfectly observed, firms will trade both types of capital until their marginal product and the

tightness of borrowing constraints are equalized. Note that zi,t+1 can be observed one-period

ahead is a fairly weak assumption, especially when the unit of time is small.15

Finally, we assume that aggregate productivity is given by Āt = At (Kt +Ht)
1−αν , where

{At}∞t=0 is an exogenous Markov productivity process. This assumption follows Frankel (1962)

and Romer (1986) and is a parsimonious way to generate endogenous growth. Combined with

recursive preferences, however, this assumption increases the volatility of the pricing kernel,

as in the stream of the long-run risk models (see, e.g., Bansal and Yaron (2004) and Kung

and Schmid (2015)). From a technical point of view, it further simplifies the construction of

the equilibrium, as it implies that equilibrium quantities are homogeneous of degree one in

the total capital stock, Kt +Ht, and equilibrium prices do not depend on Kt +Ht.

Under the above assumptions, it is convenient to work with normalized quantities. For a

generic variable Xt, we use lowercase xt = Xt
Kt+Ht

to denote Xt normalized by the total capital

stock of the economy. To facilitate a recursive procedure in constructing the equilibrium, we

use X for current-period quantities and X ′ for next-period quantities. In the following propo-

sition, we show that a recursive equilibrium can be constructed where aggregate quantities

are functions of two Markov state variables, productivity and normalized net worth: (A, n).

Formally, an equilibrium in our model consists of a set of aggregate quantities,

{Ct, Bt,Πt, Kt, Ht, It, Nt}, individual entrepreneur choices, {Ki,t, Hi,t, Li,t, Bi,t, Ni,t}, and prices{
Mt, M̃t,Wt, qK,t, qH,t, µt, ηt, Rf,t

}
such that, given prices, quantities satisfy the household’s

and the entrepreneurs’ optimality conditions, the market clearing conditions, and the relevant

resource constraints. Below, we present a procedure for constructing a Markov equilibrium,

where all prices and quantities are functions of the state variables (A, n). For simplicity, we

assume that the initial idiosyncratic productivity across all firms satisfies
∫
zi,1di = 1, the

initial aggregate net worth is N0, aggregate capital holdings start with K1

H1
= φ

1−φ , and firms’

initial net worth satisfies ni,0 = zi,1N0 for all i.

Proposition 3. (Markov equilibrium)

Suppose there exists a set of equilibrium functionals {c (A, n) , i (A, n) , µ (A, n) , η (A, n) , qK (A, n) ,

15If we were to write a continuous-time model, this assumption would not be needed.
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qH (A, n) , Rf (A, n)} satisfying the following set of functional equations:

E [M ′|A]Rf (A, n) = 1, (30)

µ (A, n) = E
[
M̃ ′
∣∣∣A]Rf (A, n) +

η (A, n)

qK (A, n)
, (31)

µ (A, n) = E

[
M̃ ′ανA

′ + (1− δ) qK (A′, n′)

qK (A, n)

∣∣∣∣A]+ ζ
η (A, n)

qK (A, n)
, (32)

µ (A, n) = E

[
M̃ ′ανA

′ + (1− δ) qH (A′, n′)

qH (A, n)

∣∣∣∣A] , (33)

n

Γ(A, n)
= (1− ζ)φqK (A, n) + (1− φ) qH (A, n) , (34)

G′ (i (A, n)) = φqK (A, n) + (1− φ) qH (A, n) , (35)

c (A, n) + i (A, n) + g (i (A, n)) = A, (36)

where the law of motion of n is given by (A38), the stochastic discount factors M ′ and M̃ ′ are

defined in (A39) and (A40), and the function Γ(A, n) is defined in Equation (34). Then the

equilibrium prices and quantities can be constructed as follows, and they constitute a Markov

equilibrium:

1. Given the sequence of exogenous shocks {At}, the sequence of nt can be constructed

using the law of motion in (A38), firms’ value function is of the form V i
t (Ni,t, zi,t+1) =

µ (At, nt)Ni,t + θ (At, nt) (Kt +Ht) zi,t+1, and the normalized policy functions c (A, n),

i (A, n), µ (A, n), η (A, n), qK (A, n), qH (A, n), and Rf (A, n) are jointly determined

by equations (30)-(36). The normalized value function θ (At, nt) is given in equation

(A50) in Appendix A.3.

2. Given the sequence of normalized quantities, aggregate quantities are constructed as

follows

Ht+1 = Ht [1− δ + it] , Kt+1 = Kt [1− δ + it]

Xt = xt [Ht +Kt]

for x = c, i, b, n, θ, X = C, I,B,N,Θ, and all t.
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3. Given the aggregate quantities, the individual entrepreneurs’ net worth follows from

(16). Given the sequences {Ni,t}, the quantities Bi,t, Ki,t and Hi,t are jointly determined

by equations (13), (14), and (27). Finally, Li,t = zi,t for all i, t.

Proof. See Appendix A.3.

The above proposition implies that we can solve for aggregate quantities first and then

use the firm-level budget constraint and the law of motion of idiosyncratic productivity to

construct the cross-section of net worth and capital holdings. Note that our construction

of the equilibrium allows η (A, n) = 0 for some values of (A, n). That is, our general setup

allows occasionally binding constraints. Numerically, we use a local approximation method

to solve the model by assuming that the constraint is always binding.

In our model, firm value function, V (Ni,t, zi,t+1) = µ (At, nt)Ni,t+θ (At, nt) (Kt +Ht) zi,t+1

has two components: µ (At, nt)Ni,t is the present value of net worth and θ (At, nt) (Kt +Ht) zi,t+1

is the present value of profit. In the special case of constant returns to scale, θ (At, nt) = 0

because firms do not make any profit. The general expression for θ (A, n) is provided in Ap-

pendix A.3. By the above proposition, other equilibrium quantities are jointly determined by

conditions (30)-(36) independent of the functional form of θ (A, n). This is because zi,t+1 is

exogenously given and does not affect the determination of equilibrium optimality conditions.

The above conditions have intuitive interpretations. Equation (30) is the household’s

intertemporal Euler equation with respect to the choice of the risk-free asset. Equation (31)

is the firm’s optimality condition for the choice of debt. Equations (32) and (33) are the firm’s

first-order conditions with respect to the choice of type-K and type-H capital. Equation (34)

is the binding budget constraint of firms, Equation (35) is the optimality condition for capital

goods production, and Equation (36) is the aggregate resource constraint. Proposition 3

implies that conditions (30)-(36) are not only necessary but also sufficient for the construction

of the equilibrium quantities.

In our model, because type-H capital can perfectly substitute for type-K capital in pro-

duction and both types of capital are freely traded on the market, the marginal product

of type-K capital must be equalized across firms. The trading of type-K capital therefore

equalizes the Lagrangian multiplier of the financial constraints across firms. This is the key
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feature of our model that allows us to construct a Markov equilibrium without having to

include the distribution of capital as a state variable.16

5.2 The collateralizability spread

To understand the asset pricing implications of our model, note that the return on a firm’s

equity can be written as

Ri,t+1 =
λNi,t+1 + (1− λ)

[
µt+1Ni,t+1 + Θt+1zi,t+2

]
µtNi + Θtzi,t+1

,

=
µtNi

µtNi + Θtzi,t+1

[
λ+ (1− λ)µt+1

]
Ni,t+1

µtNi
+

Θtzi,t+1

µtNi + Θtzi,t+1

(1− λ) Θt+1zi,t+2

Θtzi,t+1
. (37)

Because Et [zi,t+2] = zi,t+1, the expected return can be written as:

Et [Ri,t+1] =
µtNi

µtNi + Θtzi,t+1

Et

[[
λ+ (1− λ)µt+1

]
Ni,t+1

µtNi

]
+

(1− λ) Θtzi,t+1

µtNi + Θtzi,t+1

Et

[
Θt+1

Θt

]
.

That is, the return of firms’ equity is a weighted average of the return on net worth and that

of the return on the claim to future profit. In our calibrated model, ν is close to one and the

profit component is much smaller than the net worth component.17 We therefore focus on

the return on net worth component of the return and write

Ri,t+1 ≈
λ+ (1− λ)µt+1

µt

Ni,t+1

Ni,t

, (38)

where we use the fact that µi,t is equalized across all firms. Therefore, the return on firm i’s

equity can be decomposed into two parts: changes in net worth,
Ni,t+1

Ni,t
, and changes in the

marginal value of net worth,
λ+(1−λ)µt+1

µt
. Using the law of motion of net worth (16), we can

write changes in net worth as

Ni,t+1

Ni,t

=
ανAt+1 (Ki,t+1 +Hi,t+1) + (1− δ) qK,t+1Ki,t+1 + (1− δ) qH,t+1Hi,t+1 −Rf,tBi,t

qK,tKi,t+1 + qH,tHi,t+1 −Bi,t

=
qK,tKi,t+1

Ni,t

R̄K,t+1 +
qH,tHi,t+1

Ni,t

R̄H,t+1 −
Bi,t

Ni,t

Rf,t, (39)

16Because of these simplifying assumptions, our model is silent on why some firms are constrained and
others are not.

17Recall that θt = 0 for all t if ν = 1.
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where we define R̄H,t+1 and R̄K,t+1 as the return on type-H and type-K capital, respectively,

with

R̄j,t+1 =
ανAt+1 + (1− δ) qj,t+1

qj,t
(40)

for j = H,K. In Equation (40), we use an upper bar to denote returns measured in net

worth units (and not consumption units).

Using the above notation, the return on firm i’s equity in (38) can be written as

Ri,t+1 ≈
λ+ (1− λ)µt+1

µt

[
qK,tKi,t+1

Ni,t

R̄K,t+1 +
qH,tHi,t+1

Ni,t

R̄H,t+1 −
Bi,t

Ni,t

Rf,t

]
. (41)

From the perspective of the cross-section of equity returns, the change in net worth component

(the first term on the right-hand side of (41)) is the same for all firms, and differences in

expected returns must be due to the term in square brackets, which represents the weighted

average of the returns on type-K and type-H capital, minus the return on the risk-free bond.

Because type-K and type-H capital have the same marginal product, differences between

R̄K,t+1 and R̄H,t+1 can only be due to differences in qK,t+1 and qH,t+1. We iterate equation

(32) forward to obtain

qK,t = E

[
∞∑
j=1

M̃t,t+j

{
(1− δ)j−1

[
ανAt+j + (1− δ) ζ

ηt+j
µt+j

]}]
+ ζ

ηt
µt

(42)

and do the same for equation (33) to obtain

qH,t = E

[
∞∑
j=1

M̃t,t+j

{
(1− δ)j−1 ανAt+j

}]
. (43)

Here M̃t,t+j ≡
∏j−1

k=0

Mt+k+1[λ+(1−λ)µt+k+1]
µt+k

can be interpreted as firms’ stochastic discount

factor.

Equations (42) and (43) are different from what one would see in standard consumption-

based asset pricing models, since type-K capital and type-H capital have identical cash flows

but different prices because of the Lagrangian multiplier component of asset prices. Note

that qK,t, qH,t, R̄K,t, and R̄H,t are all measured in net worth units and not consumption

units. They are prices and returns received by firms and not households. Because firms are
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constrained, asset prices contain a Lagrangian multiplier component. Type-K and type-H

capital, from the firms’ perspective, have different prices and expected returns even though

they generate identical cash flows.18

Clearly, the key to understanding the difference in the expected returns of type-K capital

and type-H capital is the Lagrangian multiplier component of the asset prices. As we illus-

trated in the three-period model, the Lagrangian multipliers are countercyclical and act as

a hedge against aggregate shocks. As a result, qK,t will be less sensitive to aggregate shocks

and less cyclical.

These asset pricing implications of our infinite-horizon model are best illustrated with

impulse-response functions. In Figure 2, we plot the responses of quantities and prices to

a one-standard-deviation negative productivity shock. We make two observations. First, a

negative productivity shock lowers output and investment (second and third graph on the

left side) as in standard macro models. In addition, as shown in the bottom graph on the

left, entrepreneur net worth drops sharply (third graph on the right side).

Second, because entrepreneur net worth drops sharply, the price of type-H capital also

goes down substantially. The decrease in the price of collateralizable type-K capital, on the

other hand, is much smaller. This is because the Lagrangian multiplier η on the collateral

constraint (first graph on the right side) increases on impact and offsets the effect of a

negative productivity shock on the price of this type of capital. As a result, the return

of type-K capital responds much less to negative productivity shocks than that of type-H

capital (bottom graph on the right side), as can be seen from a comparison between the solid

black and the dashed lines. This finding implies that collateralizable capital is indeed less

risky than non-collateralizable capital in our model.

18It is important to note, however, that households are not constrained, and they hold the firms’ equity
and debt. As a result, from the household’s perspective, differences in the expected returns on stocks and
bonds must be reflected in differences in the cash flow properties of these assets. We thank an anonymous
referee for pointing this out to us.
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Figure 2: Impulse-response functions for a negative aggregate productivity shock

The graphs in this figure represent log-deviations from the steady state for quantities (left side) and prices

(right side) induced by a one-standard-deviation negative shock to aggregate productivity. The parameters

are shown in Table 3. The horizontal axis represents time in months.
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6 Quantitative Model Predictions

In this section, we calibrate our model and evaluate its ability to replicate key moments of

both macroeconomic quantities and asset prices at the aggregate level. More importantly,

we investigate its performance in terms of quantitatively accounting for key features of firm

characteristics and producing a collateralizability premium in the cross-section. For macroe-

conomic quantities, we focus on a long sample of U.S. annual data from 1930 to 2016. All

macroeconomic variables are real and per capita. Consumption, output, and physical invest-

ment data are from the Bureau of Economic Analysis (BEA).

To obtain the time series for the total amount of tangible and intangible assets, we

firstly aggregate the respective total amount of intangible and tangible capital across all U.S.

Compustat firms in a given year. The time series of the aggregate intangible-to-tangible asset

ratio is then obtained by dividing the first by the second series element wise.

For the purpose of cross-sectional analyses, we make use of several data sources at the

micro level, including (1) firm-level balance sheet data from the CRSP/Compustat Merged
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Fundamentals Annual Files, (2) monthly stock returns from CRSP, and (3) industry level

non-residential capital stock data from the BEA table “Fixed Assets by Industry.”Appendix

D.3 provides more details concerning our data sources at the firm and industry level.

6.1 Specification of aggregate shocks

We first formalize the specification of the exogenous aggregate shocks in this economy. First,

log aggregate productivity a ≡ log(A) follows the process

at+1 = ass (1− ρA) + ρAat + σAεA,t+1, (44)

where ass denotes the steady-state value of a. Second, we also introduce the shocks to en-

trepreneurs’ liquidation probability λ. As is well known in the literature of macroeconomic

models with financial frictions, the aggregate productivity shock alone does not create quan-

titatively enough volatility in capital prices and entrepreneurs’ net worth. Additional source

of shocks, for example, a capital quality shock as in Gertler and Kiyotaki (2010) and Elenev,

Landvoigt, and Van Nieuwerburgh (2018), is needed to generate a higher volatility in net

worth. In our model, because a shock to λ affects the entrepreneurs’ discount rate and

therefore their net worth, without directly affecting the real production, we interpret it as a

financial shock, in a spirit similar to Jermann and Quadrini (2012). Importantly, our general

model intuition that collateralizable assets provide a hedge against aggregate shocks holds

for both productivity and financial shocks.

To technically maintain λ ∈ (0, 1) in a parsimonious way, we set

λt =
exp (xt)

exp (xt) + exp (−xt)
,

where xt follows the process

xt+1 = xss(1− ρx) + ρxxt + σxεx,t+1,

with xss again denoting the steady-state value. We assume the innovations to a and x have
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the following structure: εA,t+1

εx,t+1

 ∼ Normal

 0

0

 ,
 1 ρA,x

ρA,x 1

 ,

in which the parameter ρA,x captures the correlation between the two shocks. In the bench-

mark calibration, we assume ρA,x = −1. First, a negative correlation indicates that a neg-

ative productivity shock is associated with a positive discount rate shock. This assumption

is necessary to generate a positive correlation between consumption and investment growth,

consistent with the data. When only the financial shock εx is present, contemporaneous

consumption and investment will be affected, but not output. In this case, the resource

constraint (24) implies a counterfactually negative correlation between consumption and in-

vestment growth. Second, the assumption of a perfectly negative correlation is for parsimony,

and it effectively implies that there is only one aggregate shock in this economy. We relax

this assumption and provide sensitivity analyses by varying the shock correlation parameter

ρA,x to be different from −1 in Appendix C.

6.2 Calibration

We calibrate our model at the monthly frequency and present the parameters in Table 3.

The first group of parameters are those that can be determined based on the literature.

In particular, we set the relative risk aversion γ to 20 and the intertemporal elasticity of

substitution ψ to 2.3. These parameter values are in line with papers in the long-run risks

literature, most notably Bansal and Yaron (2004). The capital share parameter α is set to

0.33, as in the standard real business cycles literature (Kydland and Prescott (1982)). The

span of control parameter ν is set to 0.85, consistent with Atkeson and Kehoe (2005).

The parameters in the second group are determined by matching a set of first moments

of quantities and prices. We set the long-term average economy-wide productivity growth

rate eass to match a value for the U.S. economy of 2% per year. The time discount factor

β is set to match the average real risk-free rate of 1.10% per year. The share of type-K

capital investment φ is set to 0.54 to match an intangible-to-tangible-asset ratio of 53% for
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the average U.S. Compustat firm.19 The capital depreciation rate is set to be 11% per year,

consistent with the RBC literature (Kydland and Prescott (1982)). For parsimony, we assume

the same depreciation rate for both types of capital. The parameter xss is set to match an

average exit probability λ of 0.01, targeting an average corporate duration of 10 years of U.S.

Compustat firms. We calibrate the remaining two parameters related to financial frictions,

the collateralizability parameter ζ and the transfer to entering entrepreneurs χ, to generate an

average non-financial corporate sector leverage ratio equal to 0.32 and an average investment-

to-output ratio of 17%. These values are broadly in line with the data, where leverage is

measured by the median lease capital adjusted leverage ratio of U.S. non-financial firms in

Compustat.

The parameters in the third group are determined by second moments in the data. The

persistence parameter of the TFP shocks ρA is set to 0.999 to roughly match the autocorre-

lation of output growth. We set the persistence parameter of the financial shock ρx equal to

0.961 to reproduce the persistence of the corporate leverage ratio that we find in the data.

As discussed above, we impose a perfectly negative correlation between productivity and

financial shocks; that is, we set ρA,x = −1. The standard deviations of the shock to the exit

probability λ, σx, and to productivity, σA, are jointly calibrated to match the volatilities of

consumption growth and the correlation between consumption and investment growth. For

the capital adjustment cost function we choose a standard quadratic form, that is,

g

(
It

Kt +Ht

)
=

It
Kt +Ht

+
τ

2

(
It

Kt +Ht

− Iss
Kss +Hss

)2

,

where Xss denotes the steady-state values for X ∈ {I,K,H}. The elasticity parameter of

the adjustment cost function, τ , is set to 25 to allow our model to achieve a sufficiently high

volatility of investment, broadly in line with the data.

The last group contains the parameters related to the idiosyncratic productivity shocks, µz

and σz. We calibrate them to match the annualized mean (10%) and the annualized volatility

(25%) of idiosyncratic productivity growth in the cross-section of U.S. non-financial firms in

Compustat. In Appendix C, we present sensitivity analyses to assess the robustness of the

quantitative implications of our model with respect to variations in parameter values.

19The construction of intangible capital is explained in detail in Appendix D.3.
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6.3 Aggregate moments

We now turn to the quantitative performance of the model at the aggregate level. We solve

and simulate our model at the monthly frequency and aggregate the model-generated data to

compute annual moments.20 We show that our model is broadly consistent with the key em-

pirical features of macroeconomic quantities and asset prices. More importantly, it produces

a sizable negative collateralizability spread at the aggregate level, i.e., the expected return

on collateralizable capital is substantially lower than that on non-collateralizable capital.

Table 4 reports the model-simulated moments of macroeconomic quantities and asset

returns and compares them to their counterparts in the data.

In terms of aggregate moments for macro quantities (top panel), our calibration features

a low volatility of consumption growth (2.9%) and a relatively high volatility of investment

(9.75%). Thanks to the negative correlation between productivity and financial shocks, our

model can reproduce a positive consumption-investment correlation (51%), consistent with

the data. The model also generates a persistence of output growth in line with aggregate

data and an average intangible-to-tangible-capital ratio of 54%, a value broadly consistent

with the average ratio across U.S. Compustat firms. The investment-to-output ratio is 17%,

which is close to the value of 20% in the data. In summary, our model inherits the success

of real business cycle models with respect to the quantity side of the economy.

Turning the attention to the asset pricing moments (bottom panel), our model produces

a low average risk-free rate (0.9%) and a high equity premium (5.7%), comparable to key

empirical moments for aggregate asset markets. Because of the endogenous leverage implied

by the model, our setup is able to generate a high market equity premium compared with

standard general equilibrium asset pricing models with production, such as, e.g., Croce (2014)

and Ai et al. (2012). Overall, our model performs quite well in terms of standard macro and

asset pricing moments at the aggregate level.

Moreover, in our model, the difference in average returns between type-K and type-H

20Because the limited commitment constraint is binding in the steady state, we solve the model using a
second-order local approximation around the steady state using the Dynare package. We have also solved
versions of our model using the global method developed in Ai et al. (2016) and verified the accuracy of the
local approximation.
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capital, or, equivalently, the difference between their risk premia is negative and large (−7.5%

annually).

6.4 The cross section of collateralizability and equity returns

Equation (41) makes it clear that the cross-section of expected returns in our model is driven

by the difference in the expected returns on type-K and type-H capital. To understand the

implications of this difference, it is convenient to write equation (41) as

Ri,t+1 ≈
λ+ (1− λ)µt+1

µt

[
(1− ωi,t) R̄Lev

K,t+1 + ωi,tR̄H,t+1

]
, (45)

where ωi,t =
qH,tHi,t+1

Ni,t
is the fraction of the firm’s net worth invested in type-H capital, and

R̄Lev
K,t+1 is the levered return on type-K capital, defined as

R̄Lev
K,t+1 =

qK,tKi,t+1

Ni,t

R̄K,t+1 −
Bi,t

Ni,t

Rf,t.

The interpretation of Equation (45) is that the return on a firm’s equity can be written as

a weighted average of the levered return on type-K capital and the (unlevered) return on

type-H capital. Thanks to the simplifying assumption of perfect substitutability between

type-K and type-H capital, firms’ asset collateralizability can be summarized by a single

state variable, ωi,t. The expected return on equity depends in its loadings on type-H and

type-K capital. The firm-level state variable ωi,t is a sufficient statistic summarizing all

information relevant for expected returns. In our model, firms with high productivity and

low net worth have a higher demand for external financing. They optimally choose to acquire

more type-K capital because it can be used to increase leverage and acquire more capital.

From equation (45), we see that high asset collateralizability has two offsetting effects.

First, it allows the firm to borrow more debt and raise leverage, which tends to increase

the expected return on equity. Note that whenever the collateral constraint (14) is binding,

Bi,t = ζqK,tKi,t+1. The levered return on type-K can therefore be written as

R̄Lev
K,t+1 =

1

1− ζ
(R̄K,t+1 −Rf,t) +Rf,t. (46)
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As long as Et
[
R̄K,t+1

]
> Rf,t, higher asset collateralizability tends to increase the expected

return on firm equity due to the leverage effect captured by the coefficient 1
1−ζ in the above

equation.

Second, the collateralizable asset itself has a lower expected return because of the La-

grangian multiplier component of asset price. Equation (45) implies that in the cross section,

high asset collateralizability is associated with lower expected returns if the collateralizability

effect dominates the leverage effect. The relative riskiness of type-K versus type-H capital

thus depends on the relative contributions of the collateral and the offsetting leverage ef-

fect. As shown in Table 4, our model produces a sizable negative average return spread

of −7.5% between levered collateralizable capital and unlevered non-collateralizable capital.

Therefore, in our calibration, quantitatively, the leverage effect is relatively small, and the

collateralizability premium is negative.

We now turn to the implications of our model on the cross-section of collateralizability-

sorted portfolios. We simulate firms from the model, measure the collateralizability of firm

assets, and conduct the same collateralizability-based portfolio-sorting procedure as in the

data. In Table 5, we report the average returns of the sorted portfolios along with several

other characteristics from the data and those from the simulated model.

As in the data, firms with high asset collateralizability have a significantly lower average

return than those with low asset collateralizability in our model. Quantitatively, our model

produces a sizable collateralizability spread of around 4%, accounting for more than 50% of

the spread in the data.

Table 5 also reports several other characteristics of the collateralizability-sorted portfolios

that are informative about the economic mechanism we emphasize in our model. First, not

surprisingly, the collateralizability measure is monotonically increasing for collateralizability-

sorted portfolios. In fact, asset collateralizability in our model is similar in magnitude to

that in the data.

Second, as in the data, leverage is increasing in asset collateralizability. This implication

of our model is consistent with the data and the broader corporate finance literature that

emphasizes the importance of collateral in firms’ capital structure decisions (e.g., Rampini
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and Viswanathan (2013)). The dispersion in leverage in our model is somewhat higher than

in the data. This finding is not surprising, as in our model, asset collateralizability is the only

factor determining leverage, whereas in the data there are many other determinants of the

capital structure. Note that despite the higher leverage, high collateralizability portfolios have

a lower average return. As we explained earlier, this is because in our model, E
[
R̄Lev
K,t+1

]
<

E
[
R̄H,t+1

]
. This feature of our model also helps to reconcile the mixed evidence on the

relationship between leverage and expected stock returns, as discussed in Gomes and Schmid

(2008).

Third, as in the data, high collateralizability firms also tend to have higher asset growth

rates and higher return on equity (ROE). In our model, other things being equal, firms

that experienced a history of positive productivity shocks have a higher financial need and

optimally chose to obtain higher asset collateralizability. In the model, a history of higher

productivity shocks is also associated with higher asset growth rates and higher ROE. As we

show in Table 5, this feature of our model is also consistent with the pattern in the data.

As a result, our model also provides an explanation for the empirical fact that firms with

high asset growth have lower average returns, as documented in the literature, for example,

Cooper, Gulen, and Schill (2008).

6.5 Testable implications of the Lagrangian multiplier effect

In Appendix B, we provide additional empirical evidence on the relation between collater-

alizability and the cross section of stock returns. In particular, we consider two alternative

proxies for financial shocks: (∆EM), the change in the general cost of external finance

(debt and equity), as suggested by Eisfeldt and Muir (2016), and (∆σCS), the log change

in the cross-sectional dispersion of firm-level cash flow growth, in a spirit similar to Elenev,

Landvoigt, and Van Nieuwerburgh (2018).

First and most importantly, in Section B.1, we show that the cash flows of high asset

collateralizability firms exhibit less negative sensitivity to financial shocks than those of

firms with low collateralizability. Second, In Section B.2, we conduct a standard Fama

and MacBeth (1973) two-pass regression and show that the proxies for financial shocks are
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significantly negatively priced.

Taken together, high collateralizability firms are less negatively exposed to shocks with

a negative market price of risk, so that ceteris paribus their expected returns are lower.

This finding strongly corroborates the model mechanism that collateralizable assets provide

insurance against aggregate shocks through the Lagrangian multiplier effect in asset prices.

7 Conclusion

In this paper, we present a general equilibrium asset pricing model with heterogeneous firms

and collateral constraints. Our model predicts that collateralizable assets provide insurance

against aggregate shocks and should therefore earn a lower expected return. They relax the

collateral constraint, which is more binding in recessions.

We develop an empirical collateralizability measure for a firm’s assets and provide em-

pirical evidence consistent with the predictions of our model. In particular, we find in the

data that the difference in average equity returns between firms with a low and a high degree

of asset collateralizability amounts to almost 8% per year. When we calibrate our model

to the dynamics of macroeconomic quantities, we show that this credit market friction is a

quantitatively important determinant for the cross-section of asset returns.
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Table 1: Capital Structure Regressions

This table reports the results for the regression

Bi,t
ATi,t

= ζSStructSharel(i),t + ζEEquipSharel(i),t + γXi,t + εi,t,

where, for a given firm i, l(i) denotes the industry l that firm i belongs to in year t. The sample starts in 1978

and ends at 2016, at annual frequency. StructShare and EquipShare are the respective shares of structure

and equipment capital in a given industry, computed according to Table D.11 in the appendix. We assume

all firms within the same industry have the same structure and equipment shares. Xi,t represents a vector

of controls typically used in capital structure regressions, including size, book-to-market ratio, profitability,

marginal tax rate, earnings volatility, and bond ratings. Bi,t is total debt, defined as the sum of long-term

and short-term financial debt (DLTT + DLC). Additionally, to capture non-financial debt, we adjust debt

by adding the capitalized value of operating leases to the financial debt, following Li, Whited, and Wu (2016).

The column labeled “Full” corresponds to the regression performed on all firms. The columns labeled “Non-

Dividend,” “SA cons.,” and “WW cons.” show the results for the samples of firms classified as constrained

based on thir not having paid dividends, their SA index (Hadlock and Pierce (2010)) being above the median,

or their WW index (Whited and Wu (2006)) being above the median in year t− 1, respectively. The column

labeled “All Cons.” refers to the regression for the sample of firms that are classified as constrained with

respect to all three measures. All right-hand side variables, except Struct Share and Equip Share, are

demeaned. Standard errors are clustered at the firm-year level.

(1) (2) (3) (4) (5)
Full Non-Dividend SA cons. WW cons. All cons.

Struct Share 0.624*** 0.714*** 0.648*** 0.677*** 0.686***
(33.96) (23.62) (12.41) (18.79) (10.65)

Equip Share 0.412*** 0.501*** 0.406*** 0.455*** 0.436***
(27.56) (19.85) (13.01) (18.58) (11.96)

Observations 63,691 31,461 21,808 27,122 15,944
R2 0.644 0.620 0.553 0.599 0.572

t-statistics in parentheses
***: p < 0.01, **: p < 0.05, *: p < 0.1
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Table 2: Portfolios Sorted on Collateralizability

This table reports average value-weighted excess returns for portfolios sorted on collateralizability. The

sample period is from July 1979 to December 2016. At the end of June of each year t, we sort the constrained

firms into quintiles based on their collateralizability measures available at the end of year t−1, where quintile 1

(quintile 5) contains the firms with the lowest (highest) share of collateralizable assets. We hold the portfolios

for one year, from July of year t until June of year t + 1. A firm is classified as financially constrained in

year t if its WW (Whited and Wu (2006)) index is greater than the corresponding cross-sectional median

in year-end t − 1, and the same for the SA index (Hadlock and Pierce (2010)). “Non-Dividend” means

that a firm has not paid any dividends in year t − 1. The t-statistics are computed based on Newey-West

adjusted standard errors. For each portfolio, as well as for the long-short portfolio denoted by “1-5”, the

table reports its average excess return E[R]−Rf (in annualized percentage term), the associated t-statistic,

its return volatility σ (in annualized percentage terms), the Sharpe ratio (SR), the market beta βMkt, and

the associated t-statistic. We annualize returns by multiplying by 12.

1 2 3 4 5 1-5

Financially constrained firms - WW index
E[R]−Rf 13.27 10.76 10.90 7.74 5.41 7.86
tE[R]−Rf 2.75 2.36 2.54 1.94 1.29 2.53
σ 29.26 26.26 24.31 23.72 22.87 18.05
SR 0.45 0.41 0.45 0.33 0.24 0.44
βMkt 1.27 1.24 1.19 1.22 1.18 0.09
tβ 16.68 19.50 20.80 23.47 21.45 1.25

Financially constrained firms - SA index
E[R]−Rf (%) 12.03 11.97 11.39 6.57 4.52 7.51
tE[R]−Rf 2.38 2.48 2.70 1.53 1.02 2.48
σ(%) 30.23 27.22 24.42 24.81 23.99 17.67
SR 0.40 0.44 0.47 0.26 0.19 0.42
βMkt 1.34 1.25 1.16 1.28 1.25 0.08
tβ 16.47 17.07 19.39 23.39 23.92 1.16

Financially constrained firms - Non-Dividend
E[R]−Rf (%) 16.12 10.12 7.50 8.45 8.14 7.98
tE[R]−Rf 3.72 2.20 1.72 1.88 2.01 2.85
σ(%) 27.13 26.05 25.56 25.67 24.17 16.73
SR 0.59 0.39 0.29 0.33 0.34 0.48
βMkt 1.34 1.35 1.37 1.41 1.32 0.02
tβ 20.67 21.41 26.96 27.65 25.65 0.22
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Table 3: Calibrated Parameter Values

This table reports the parameter values used for our monthly calibrations.

Parameter Symbol Value

Relative risk aversion γ 20
IES ψ 2.3
Capital share in production α 0.33
Span of control parameter ν 0.85

Mean productivity growth rate eass 0.067
Time discount rate β 0.996
Share of type-K investment φ 0.543
Capital depreciation rate δ 0.11/12
Average death rate of entrepreneurs λ̄ 0.01
Collateralizability parameter ζ 0.513
Transfer to entering entrepreneurs χ 0.994

Persistence of TFP shocks ρA 0.999
Vol. of TFP shock σA 0.009
Persistence of financial shocks ρx 0.961
Vol. of financial shocks σx 0.035
Corr. between TFP and financial shocks corr(εA, εx) = −0.8 -1
Capital adj. cost parameter τ 25

Mean idio. productivity growth µε 0.0083
Vol. of idio. productivity growth σε 0.072
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Table 4: Aggregate Moments: Model and Data

This table presents annualized moments from the model simulations and the data. The moments for the

model are obtained from repetitions of small samples. We simulate the model at the monthly frequency

based on the calibration in Table 3 and then time-aggregate the monthly observations to annual frequency.

Data refer to the U.S. and span the period 1930-2016, unless otherwise stated. Numbers in parentheses are

Newey-West adjusted standard errors. Inside our model, B
K+H captures the book leverage ratio. The market

return RM corresponds to the aggregate return on entrepreneurs’ net worth at the aggregate level. R̄H

denotes the return on type-H capital. R̄LevK is the levered return on type-K capital. Volatility, correlations,

and first-order autocorrelation are denoted as σ(·), corr(·, ·) and AC1(·), respectively. As the empirical

counterparts, we report the lease-adjusted leverage ratio. We use physical assets (PPEGT), which consist of

both structure and equipment capital, to proxy for type-K capital. Intangible capital is used to proxy for

type-H. The construction of firm-level intangible capital is detailed in Appendix D.3.

Data Benchmark

σ(∆y) 3.05 (0.60) 3.50
σ(∆c) 2.53 (0.56) 2.92
σ(∆i) 10.30 (2.36) 9.75
corr(∆c,∆i) 0.40 (0.28) 0.51
corr(∆c,∆y) 0.82(0.07) 0.93
AC1(∆y) 0.49 (0.15) 0.51
AC1( Bt

Kt+Ht
) 0.86 (0.33) 0.81

E[ Bt
Kt+Ht

] 0.32(0.01) 0.33

E[K/(H +K)] 0.53(0.01) 0.54

E[It/Yt] 0.17(0.01) 0.17

E[RM −Rf ] 5.71 (2.25) 5.71

σ(RM −Rf ) 20.89 (2.21) 7.85
E[Rf ] 1.10 (0.16) 0.90
σ(Rf ) 0.97 (0.31) 0.89
E[R̄Lev

K − R̄H ] -7.50
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Table 5: Firm Characteristics and Expected Returns: Data and Model

This table compares the moments in the empirical data (Panel A) and the model simulated data (Panel B) at
the portfolio level. Panel A reports the statistics computed from the sample of financially constrained firms
in the empirical data, from July 1979 to December 2016. In each year t, a firm is classified as financially
constrained if its WW index is higher than the cross-sectional median in year t− 1. We sort the constrained
firms into quintiles at the end of June of each year t, based on the collateralizability measure at the end of year
t−1. The portfolios are held for a year and then rebalanced every year in July. We perform model simulation
at the monthly frequency and then perform the same portfolio sorts as in the data. The table shows the
median of firm characteristics using the value from the year end, such as the collateralizability measure,
book leverage (lease adjusted), and growth rate of physical capital. We also report the value-weighted excess
returns, E[Re](%) (annualized by multiplying by 12, in percentage terms), for quintile portfolios sorted on
collateralizability. In Panel A, collateralizability is constructed as in Appendix D.2 Type-K asset growth is
defined as the growth rate of physical capital (PPEGT). Book leverage is adjusted for leased capital following
Li, Whited, and Wu (2016). Return on equity (ROE) is defined as operating income (OIBDP) over book
equity, where book equity is defined following Fama and French (1992). For the model moments in Panel B,
collateralizability is computed as ζK

K+H , book leverage is B
K+H , and type-K asset growth is ∆K

K . ROE in the
model is defined as the firm’s profit over the book equity ratio, where book equity is total assets minus total
debt.

Panel A: Data

1 2 3 4 5 1-5

Collateralizability 0.08 0.17 0.26 0.38 0.62
Book leverage 0.10 0.16 0.23 0.34 0.46
Type-K asset growth 0.08 0.09 0.10 0.11 0.13
ROE 0.06 0.16 0.20 0.23 0.22
E[Re] (%) 13.27 10.76 10.90 7.74 5.41 7.86

Panel B: Model

1 2 3 4 5 1-5

Collateralizability 0.19 0.31 0.35 0.40 0.51
Book leverage 0.19 0.31 0.35 0.40 0.51
Type-K asset growth -0.06 0.05 0.12 0.17 0.20
ROE 0.06 0.08 0.08 0.09 0.11
E[Re] (%) 7.96 6.60 5.96 5.24 3.82 4.14
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Internet Appendix for “The Collateralizability Premium”

A Proof of propositions

A.1 Proof of Proposition 1

It is convenient to derive the optimality conditions for firms’ profit maximization using the dynamic

programming formulation. Define Vt (Nt) as firms’ value function at time t. We have, for t = 0, 1,

Vt (Nt) = max {Dt + E [Mt+1Nt+1]} (A1)

Dt + qtKt+1 = Nt +Bt (A2)

Nt+1 = At+1Kt+1 (1− δ) qt+1Kt+1 − rtBt (A3)

Bt ≤ ζqtKt+1 (A4)

Dt ≥ 0. (A5)

We first derive a set of optimality conditions that characterize the equilibrium. Taking first

order conditions of (9) w.r.t. Kt+1 and Bt, we have:

(1 + φt) qt = E
[
Mt+1µt+1 {At+1 + pt+1}

]
+ ζηt,

µ̄t = E
[
Mt+1µt+1rt

]
+
ηt
qt
.

The envelope condition implies µt = µ̄t, which we can use to simplify the above equations to write:

qt = E

[
Mt+1

µt+1

µt
{At+1 + pt+1}

]
+ ζ

ηt
µt
, (A6)

1 = E

[
Mt+1

µt+1

µt
rt

]
+
ηt
µt

1

qt
. (A7)

Also, note that whenever the collateral constraint is binding, equations (A2) and (A4) can be

combined to write:

(1− ζ) qt [(1− δ)Kt + It] = Nt.

Using the capital producer’s optimality condition, and the functional form of the adjustment cost,
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we have qt = 1 + τ (it − δ). The above equation can be written as:

nt = (1− ζ) [1 + τ (it − δ)] [1 + it − δ] . (A8)

Note that equation (A8) implicitly define i as a function of n, which we denote as i (n). Given the

definition of i (n), we can write Tobin’s q as qt = 1 + τ [i (nt)− δ], and normalized consumption as

ct = c (At, nt), where

c (A,n) ≡ A− i (n)− 1

2
τ [i (n)− δ]2 . (A9)

Using the above results, we can solve for the prices and quantities in period 1. In period 2,

all of firms’ cash flow are paid back to household as consumption goods. Therefore µ2 = 1. In

addition, capital is valueless at the end of period 2 and q2 = 0. Therefore equations (A6) can

be written as µ1q1 = E [M2A2] + ζη1, and equation (A7) can be written as µ1 = E [M2] r1 + η1
q1

.

Under the assumption of log preference, M2 = C1
C2

= A1K1−H(I1,K1)
A2K2

= c(A1,n1)
A2[(1−δ)+i(n1)] , and therefore,

M2A2 = c(A1,n1)
(1−δ)+i(n1) . Also, the household’s intertemporal Euler equation implies E [M2r1] = 1.

Equations (A6) and (A7) can be further simplified as:

q1 =
1

µ1

c (A1, n1)

(1− δ) + i (n1)
+ ζ

η1

µ1

, (A10)

µ1 = 1 +
η1

q1
. (A11)

Combining equations (A10) and (A11), and using the fact that q1 = 1 + τ [i (n1)− δ], we can

determine η1 and µ1 as functions of (n1, A1):

η1 (A1, n1) =
1

1− ζ

{
A1 − i (n1)− 1

2τ [i (n1)− δ]2

1− δ + i (n1)
− [1 + τ (i (n1)− δ)]

}
, (A12)

and

µ1 (A,n) = 1 +
η1 (A,n1)

1 + τ (i (n1)− δ)
. (A13)

Equation (10) then follows directly from (A10), (A12), and (A13).

To derive the law of motion of n1, note that the binding collateral constraint in period 0 implies

B0 = ζq0K1. Equation N1 = A1K1 + p1K1 − r0B0 therefore implies

n1 = A1 − (1− δ) q1 − r0ζq0. (A14)
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Using the households’ consumption Euler equation, we express the interest r0 as a function of

consumption:

r0 =
1

βE
[
C0
C1

] =
1

βc (A0, n0)

1

E
[

1
c(A1,n1)

] . (A15)

Equation (11) then follows from (A14) and (A15) by noting qt = 1 + τ [i (nt)− δ].

A.2 Proof of Proposition 2

We prove Proposition 2 in two steps. First, we construct an equilibrium and show that under the

assumptions of parameter values, the collateral constraint (A4) for both period 0 and period 1 binds.

Second, we explicitly solve for the expression of the Lagrangian multipliers η1 and µ1 to verify the

counter-cyclicality of η1
µ1

, i.e., inequality (12).

Proposed equilibrium prices and quantities Note that under the assumption of β =

τ = δ = 1, the i (n) function in (A8) and c (A,n) function in (A9) take simple forms:

i (n) =

√
n

1− ζ
, c (A,n) = A− 1

2
− 1

2

n

1− ζ
. (A16)

We propose the following equilibrium prices and quantities and verify that they indeed satisfy the

above listed equilibrium conditions:21

ct = c (At, nt) ; it = i (nt) ; qt = 1 + τ [i (nt)− δ] , t = 0, 1 (A17)

η1 = η1 (A,n) , µ1 = µ1 (A,n) , (A18)

where

η1 (A,n) =
1√

1− ζ
√
n

{
A− 1

2
− 3

2

n

1− ζ

}
, (A19)

µ1 (A,n) = 1 +
1

n

{
A− 1

2
− 3

2

n

1− ζ

}
. (A20)

and the first period net worth is given by:

n1 = n (A1|n0) = A1 − x (n0) , (A21)

21Because all optimization problems are convexity programming problems, the first order conditions are
both necessary and sufficient.
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where x (n0) is given by equation (A23) below.

It is straight forward to show that the proposed prices and quantities satisfy the first order

conditions (A6) and (A7). Below we verify that under our assumptions, the constructed Lagrangian

multipliers are strictly positive, and therefore, the proposed allocation is indeed an equilibrium in

which the collateral constraints are binding in both periods.

Verifying equilibrium conditions We verify that the collateral constraint must be bind-

ing under the proposed prices and quantities through a sequence of lemmas.

Lemma 1. (Law of motion of net worth)

The law of motion of net worth can be written as

n (A|n0) = A− x (n0) .

Given A1 >
1−ζ
1−2ζ , x (n0) is strictly increasing with x (0) = 0 and lim

n0→2(1−ζ)2(A0− 1
2)
x (n0) =∞.

Proof. Because β = 1, δ = 1, we can write equation (11) as n (A|n0) = A− ζ i2(n0)
c(A0,n0)

1

E
[

1
c(A,n(A|n0))

] .

Using the definition of i (n) and c (A,n), n (A|n0) = A − x, where x is implicitly defined as x =

ζ
1−ζ

n0

A0− 1
2
− n0

2(1−ζ)

1

E
[

1
c(A,n(A|n0))

] . Note that by the definition of c (A,n) (equation (A16)), with n1 =

A1 − x, we have

c (A1, n1) = A1 −
1

2
− 1

2

A1 − x
1− ζ

=
x

2 (1− ζ)
+

[
1− 1

2 (1− ζ)

]
A1 −

1

2
. (A22)

Therefore, x (n0) as a function of n0 is defined by the solution to the following equation:

E

 x

x
2(1−ζ) +

[
1−2ζ

2(1−ζ)A1 − 1
2

]
 =

ζ

1− ζ
n0

A0 − 1
2 −

n0
2(1−ζ)

. (A23)

Under the condition that A1 > 1−ζ
1−2ζ , the left-hand side is an increasing function of x, and as

x increases from 0 to ∞, E

[
x

x
2(1−ζ)+

[
1−2ζ
2(1−ζ)A1− 1

2

]
]

increases from 0 to 2 (1− ζ). In addition, the

right-hand side of equation (A23) is a strictly increasing function of n0, and as n0 increases from

0 to 2 (1− ζ)2 (A0 − 1
2

)
, the right-hand side increases from 0 to 2 (1− ζ). As a result, equation
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(A23) defines x (n0) as a strictly increasing function that maps n0 ∈
(

0, 2 (1− ζ)2 (A0 − 1
2

))
to

x ∈ (0,∞).

The next lemma provide conditions under which the collateral constraint must be binding in

period 1.

Lemma 2. (Binding constraint for period 1)

Assume

x (n0) >
2

3
A1, (A24)

then the collateral constraint in period 1 is binding for all realizations of A1, that is, η1 (A1, n1) > 0.

Proof. By equation (A19), the borrowing constraint binds, that is, η1 (A1, n1) > 0 if and only if

A1 −
1

2
>

3

2

n1

1− ζ
. (A25)

Using n1 = A1 − x (n0), the above condition can be written as

3

2 (1− ζ)
x (n0) >

(
3

2 (1− ζ)
− 1

)
A1 +

1

2
. (A26)

Note that under condition A1 >
1−ζ
1−2ζ , 1−2ζ

2(1−ζ)A1 >
1
2 . Therefore, a sufficient condition for (A25) is

3

2 (1− ζ)
x (n0) >

(
3

2 (1− ζ)
− 1 +

1− 2ζ

2 (1− ζ)

)
A1 =

2

2 (1− ζ)
A1,

which is equivalent to (A19).

Our next lemma provides conditions under which the collateral constraint is binding in period

0.

Lemma 3. Suppose

n0 <
1

2
(1− ζ)

(
A0 −

1

2

)
(A27)

and

x (n0) <
1

2 + ζ

[
(1 + 2ζ)A1 +

1

2
(1− ζ)

]
, (A28)

then the collateral constraint in period 0 must be binding, that is, η0 > 0.
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Proof. Combining equations (A6) and (A7), η0 > 0 if and only if

E [M1µ1 (A1 + (1− δ) q1)] > E [M1µ1] r0q0.

Using the fact that M1 = c(A0,n0)
c(A1,n1)i(n0) and r0 = 1

E[M1] , the above condition can be written as:

E
[

µ1A1

c(A1,n1)

]
E
[

1
c(A1,n1)

]
E
[

µ1
c(A1,n1)

] (
A0 −

1

2
− 1

2 (1− ζ)
n0

)
>

n0

1− ζ
. (A29)

We first show that
E
[

µ1A1

c(A1,n1)

]
E
[

1
c(A1,n1)

]
E
[

µ1
c(A1,n1)

] >
2 (2 + ζ)

2ζ + 3
. (A30)

To see this, using (A22), we have

c (A1, n1)

A1
=

x
2(1−ζ) +

[
1− 1

2(1−ζ)

]
A1 − 1

2

A1

<

x
2(1−ζ) +

[
1− 1

2(1−ζ)

]
A1

A1

Under assumption (A28), x (n0) < 1+2ζ
2+ζ A1 and therefore,

c (A1, n1)

A1
<

1

2 (1− ζ)

1 + 2ζ

2 + ζ
+

[
1− 1

2 (1− ζ)

]
=

2ζ + 3

2 (2 + ζ)
. (A31)

As a result,

E

[
µ1A1

c (A1, n1)

]
E

[
1

c (A1, n1)

]
= E

[
µ1A1

c (A1, n1)

]
E

[
A1

c (A1, n1)

1

A1

]
>

2 (2 + ζ)

2ζ + 3
E

[
µ1A1

c (A1, n1)

]
E

[
1

A1

]
>

2 (2 + ζ)

2ζ + 3
E

[
µ1

c (A1, n1)

]
,

where the first inequality uses (A31) and the second inequality above uses the fact that µ1A1

c(A1,n1) is

increasing in A1 and therefore negatively correlated with 1
A1

. This establishes (A30).

Given (A30), a sufficient condition for (A29) is

2ζ + 3

2 (2 + ζ)

(
A0 −

1

2
− 1

2 (1− ζ)
n0

)
>

n0

1− ζ
. (A32)
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To see the above inequality holds, note that assumption (A27) implies

A0 −
1

2
>

2

1− ζ
n0.

Therefore,

A0 −
1

2
− 1

2 (1− ζ)
n0 >

3

2 (1− ζ)
n0 >

2 (2 + ζ)

2ζ + 3
n0,

which proves (A31).

To summarize the above results, we define n∗ and n̂ as follows. We denote x−1 to be the inverse

function of x (n0) defined in (A23), which is a strictly increasing function due to our previous

discussion. We denote Amin to be the lowest possible realization of A1 and Amax to be the highest

possible realization of A1. We set

n∗ = min

{
x−1

(
2

3
Amax

)
,

1

2
(1− ζ)

(
A0 −

1

2

)}
; (A33)

n̂ = x−1

(
1

2 + ζ

[
(1 + 2ζ)Amin +

1

2
(1− ζ)

])
. (A34)

By the above lemmas, if n0 ∈ (n∗, n̂), the collateral constraints in both periods are binding.

Monotonicity of the Lagrangian multiplier In this section, we prove that under the

conditions outlined in the previous section, (12) holds by establishing that η(n1,A1)
µ(n1,A1) is a strictly

decreasing function of A1.

Lemma 4. (Monotonicity of the Lagrangian multiplier)

Under the assumption of n0 ∈ (n∗, n̂),

d

dA1

[
η (n1, A1)

µ (n1, A1)

]
< 0,

that is, the Lagrangian multiplier component of asset price (10) is counter-cyclical.

Proof. Using equations (A19) and (A20), we have

η (n1, A1)

µ (n1, A1)
=

√
n1

1− ζ
A1 − 1

2 −
3
2
n1

1−ζ

A1 − 1
2 −

(
3
2

1
1−ζ − 1

)
n1

.

54



Using the law of motion of net worth, n1 = A1 − x, we have:

η (n1, A1)

µ (n1, A1)
=

√
A1 − x
1− ζ

3
2(1−ζ)x−

1
2 −

(
3

2(1−ζ) − 1
)
A1(

3
2(1−ζ) − 1

)
x− 1

2 −
(

3
2(1−ζ) − 2

)
A1

.

Therefore,

d

dA1
ln

[
η (n1, A1)

µ (n1, A1)

]
=

1

2

1

A1 − x
−

3
2(1−ζ) − 1

3
2(1−ζ)x−

1
2 −

(
3

2(1−ζ) − 1
)
A1

+

3
2(1−ζ) − 2(

3
2(1−ζ) − 1

)
x− 1

2 −
(

3
2(1−ζ) − 2

)
A1

To save notation, we denote a = 3
2(1−ζ) − 1. We have:

d

dA1
ln

[
η (n1, A1)

µ (n1, A1)

]
=

1

2

1

n1
− a

x− 1
2 − an1

+
a− 1

x− 1
2 − (a− 1)n1

=

(
x− 1

2

) [
x− 1

2 − 2an1

]
− n1

[
x− 1

2 − a (a− 1)n1

]
.

2n1

[
x− 1

2 − an1

] [
x− 1

2 − (a− 1)n1

]
It is straightforward to show that condition (A25) implies x − 1

2 − (a− 1)n1 > x − 1
2 − an1 > 0.

We only need to show that the denominator is negative. Since ζ < 1
2 , (a− 1) < 1 and

(
x− 1

2

)[
x− 1

2
− 2an1

]
− n1

[
x− 1

2
− a (a− 1)n1

]
<

(
x− 1

2

)[
x− 1

2
− 2an1

]
− n1

[
x− 1

2
− 2an1

]
=

(
x− 1

2
− n1

)[
x− 1

2
− 2an1

]
.

Also, ζ > 1
4 implies a > 1. Therefore, x − 1

2 − an1 > 0 implies x − 1
2 > n1. It remains to show

x− 1
2 − 2an1 < 0. Using the definition a = 3

2(1−ζ) − 1, under assumption (A28),

x− 1

2
− 2an1 = x− 1

2
− 2a (A1 − x)

=

(
3

(1− ζ)
− 1

)
x− 1

2
−
(

3

(1− ζ)
− 2

)
A1

< 0,

which completes the proof.
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A.3 Proof of Proposition 3

We prove Proposition 3 in two steps: first, given prices, the quantities satisfy the household’s and the

entrepreneurs’ optimality conditions; second, the quantities satisfy the market clearing conditions.

To verify the optimality conditions, note that the optimization problems of households and

firms are all standard convex programming problems; therefore, we only need to verify first order

conditions. Equation (30) is the household’s first-order condition. Equation (36) is a normalized

version of resource constraint (24). Both of them are satisfied as listed in Proposition 3.

To verify that the entrepreneur i’s allocations {Ni,t, Bi,t,Ki,t, Hi,t, Li,t} as constructed in Propo-

sition 3 satisfy the first order conditions for the optimization problem (17), note that the first order

condition with respect to Bi,t implies

µit = Et

[
M̃t+1

]
Rft +

ηit
qK,t

. (A35)

Similarly, the first order condition for Ki,t+1 is

µit = Et

[
M̃ i
t+1

∂
∂Ki,t+1

π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
+ (1− δ) qK,t+1

qK,t

]
+ ζ

ηit
qK,t

. (A36)

Finally, optimality with respect to the choice of type-H capital implies

µit = Et

[
M̃ i
t+1

∂
∂Hi,t+1

π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
+ (1− δ) qH,t+1

qH,t

]
. (A37)

Next, the law of motion of the endogenous state variable n can be constructed from equation

(18):22

n′ = (1− λ)
[
ανA′ + φ (1− δ) qK

(
A′, n′

)
+ (1− φ) (1− δ) qH

(
A′, n′

)
− ζφqK (A,n)Rf (A,n)

]
+λχ

n

Γ (A,n)
. (A38)

With the law of motion of the state variables, we can construct the normalized utility of the

22We make use of the property that the ratio of K over H is always equal to φ/(1− φ), as implied by the
law of motion of the capital stock in (25).
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household as the fixed point of

u (A,n) =

{
(1− β)c (A,n)

1− 1
ψ + βΓ (A,n)

1− 1
ψ (E[u

(
A′, n′

)1−γ
])

1− 1
ψ

1−γ

} 1

1− 1
ψ

.

The stochastic discount factors must be consistent with household utility maximization:

M ′ = β

[
c (A′, n′) Γ (A,n)

c (A,n)

]− 1
ψ

 u (A′, n′)

E
[
u (A′, n′)1−γ

] 1
1−γ


1
ψ
−γ

(A39)

M̃ ′ = M ′[(1− λ)µ
(
A′, n′

)
+ λ]. (A40)

In our setup, thanks to the assumptions that the idiosyncratic shock zi,t+1 is observed before

the decisions on Ki,t+1 and Hi,t+1 are made, we can construct an equilibrium in which µit and ηit are

equalized across all the firms because ∂
∂Hi,t+1

π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
= ∂

∂Ki,t+1
π
(
Āt+1, zi,t+1,Ki,t+1, Hi,t+1

)
are the same for all i.

Our next step is to verify the market clearing conditions. Given the initial conditions (initial

net worth N0, K1
H1

= φ
1−φ , Ni,0 = zi,1N0) and the net worth injection rule for the new entrant firms

(N entrant
t+1 = χNt for all t), we establish the market clearing conditions through the following lemma.

For simplicity, we assume the collateral constraint to be binding. The case in which this constraint

is not binding can be dealt with in a similar way.

Lemma 5. The optimal allocations {Ni,t, Bi,t,Ki,t+1, Hi,t+1} constructed as in Proposition 3 satisfy

the market clearing conditions, i.e.,

Kt+1 =

∫
Ki,t+1 di, Ht+1 =

∫
Hi,t+1 di, Nt =

∫
Ni,t di (A41)

for all t ≥ 0.

First, in each period t, given prices and Ni,t, the individual entrepreneur i’s capital decisions

{Ki,t+1, Hi,t+1} must satisfy the condition

Ni,t = (1− ζ) qK,tKi,t+1 + qH,tHi,t+1 (A42)

and the optimal decision rule (27). Equation (A42) is obtained by combining the entrepreneur’s

budget constraint (13) with a binding collateral constraint (14).
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Next, we show by induction, that, given the initial conditions, market clearing conditions (A41)

hold for all t ≥ 0. In period 0, we start from the initial conditions. First, Ni,0 = zi,1N0, where zi,1

is chosen from the stationary distribution of z. Then, given zi,1 for each firm i, we use equations

(A42) and (27) to solve for Ki,1 and Hi,1. Clearly, Ki,1 = zi,1K1 and Hi,1 = zi,1H1. Therefore, the

market clearing conditions (A41) hold for t = 0, i.e.,

∫
Ki,1 di = K1,

∫
Hi,1 di = H1,

∫
Ni,0 di = N0. (A43)

To complete the induction argument, we need to show that if market clearing holds for t + 1, it

must hold for t+ 2 for all t, which is the following claim:

Claim 1. Suppose
∫
Ki,t+1 di = Kt+1,

∫
Hi,t+1 di = Ht+1 ,

∫
Ni,t di = Nt, and N entrant

t+1 = χNt,

then ∫
Ki,t+2di = Kt+2

∫
Hi,t+2di = Ht+2

∫
Ni,t+1di = Nt+1 (A44)

for all t ≥ 0.

1. Using the law of motion for the net worth of existing firms, one can show that the total net

worth of all surviving firms can be rewritten as follows:

(1− λ)

∫
Ni,t+1di

= (1− λ)

∫
[At+1 (Ki,t+1 +Hi,t+1) + (1− δ) qK,t+1Ki,t+1 + (1− δ) qH,t+1Hi,t+1 −Rf,tBi,t] di,

= (1− λ) [At+1 (Kt+1 +Ht+1) + (1− δ) qK,tKt+1 + (1− δ) qH,tHt+1 −Rf,tBt] ,

since by assumption
∫
Ki,t+1 di = Kt+1,

∫
Hi,t+1 di = Ht+1 , and

∫
Bi,t di = Bt = ζqK,tKt+1.

Using the assignment rule for the net worth of new entrants, N entrant
t+1 = χNt, we can show

that the total net worth at the end of period t+ 1 across survivors and new entrants together

satisfies
∫
Ni,t+1 di = Nt+1, where aggregate net worth Nt+1 is given by equation (18).

2. At the end of period t+ 1, we have a pool of firms consisting of old ones with net worth given

by (16) and new entrants. All of them will observe zi,t+2 (for the new entrants zi,t+2 = z̄)

and produce at the beginning of the period t+ 1.

We compute the capital holdings for period t + 2 for each firm i using (A42) and (27). At

this point, the capital holdings and the net worth of all existing firms will not be proportional

to zi,t+2 due to heterogeneity in the shocks. However, we know that
∫
Ni,t+1 di = Nt+1, and
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∫
zi,t+2 di = 1. Integrating (A42) and (27) across all i yields the two equations

(1− ζ) qK,t+1

∫
Ki,t+2 di+ qH,t+1

∫
Hi,t+2 di = Nt+1 (A45)∫

Ki,t+2 di+

∫
Hi,t+2 di = Kt+2 +Ht+2, (A46)

where we have used
∫
Ni,t+1 di = Nt+1 and

∫
zi,t+2 di = 1. Given that the constraints of all

entrepreneurs are binding, the budget constraint (A42) also holds at the aggregate level, i.e.,

Nt+1 = (1− ζ) qK,t+1Kt+2 + qH,t+1Ht+2.

Together with the above system, this implies
∫
Ki,t+2di = Kt+2 and

∫
Hi,t+2di = Ht+2.

Therefore, the claim is proved.

In summary, we have proved that the equilibrium prices and quantities constructed in Propo-

sition 3 satisfy the household’s and entrepreneur’s optimality conditions, and that the quantities

satisfy market clearing conditions.

Finally, we provide a recursive relationship that can be used to solve for θ (A,n) given the

equilibrium constructed in Proposition 3. The recursion (17) implies

µtNi,t + θtzi,t+1 (Kt +Ht) =EtMt+1

[
(1− λ)

(
µt+1Ni,t+1 + θt+1 (Kt+1 +Ht+1) zi,t+2

)
+ λNi,t+1

]
=EtMt+1

[{
(1− λ)µt+1 + λ

}
Ni,t+1

]
+ (1− λ) zi,t+1Et [Mt+1θt+1 (Kt+1 +Ht+1)] .

(A47)

Below, we first focus on simplifying the term EtMt+1

[{
(1− λ)µt+1 + λ

}
Ni,t+1

]
. Note that a

binding collateral constraint together with the entrepreneur’s budget constraint (13) implies

(1− ζ) qK,tKi,t+1 + qH,tHi,t+1 = Ni,t. (A48)

Equation (A48) together with the optimality condition (27) determine Ki,t+1 and Hi,t+1 as functions

of Ni,t and zi,t+1:

Ki,t+1 =
qH,tzi,t+1 (Kt+1 +Ht+1)−Ni,t

qH,t − (1− ζ) qK,t
; Hi,t+1 =

Ni,t − (1− ζ) qK,tzi,t+1 (Kt+1 +Ht+1)

qH,t − (1− ζ) qK,t
. (A49)

Using Equation (A49) and the law of motion of net worth (16), we can represent Ni,t+1 as a linear
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function of Ni,t and zi,t+1:

Ni,t+1 = zi,t+1αAt+1 (Kt+1 +Ht+1) + (1− δ) qK,t+1
qH,tzi,t+1 (Kt+1 +Ht+1)−Ni,t

qH,t − (1− ζ) qK,t

+ (1− δ) qH,t+1
Ni,t − (1− ζ) qK,tzi,t+1 (Kt+1 +Ht+1)

qH,t − (1− ζ) qK,t
−Rf,tζqK,t

qH,tzi,t+1 (Kt+1 +Ht+1)−Ni,t

qH,t − (1− ζ) qK,t
.

Because we are only interested in the coefficients on zi,t+1, collecting the terms that involves zi,t+1

on both sides of (A47), we have:

θtzi,t+1 (Kt +Ht) = zi,t+1 (Kt+1 +Ht+1)× Term,

where

Term = Et

M̃t+1

 αAt+1 + (1− δ) qK,t+1
qH,t

qH,t−(1−ζ)qK,t

− (1− δ) qH,t+1
(1−ζ)qK,t

qH,t−(1−ζ)qK,t −Rf,tζqK,t
qH,t

qH,t−(1−ζ)qK,t


+(1− λ)Et [Mt+1θt+1] .

We can simplify the first term using the first order conditions (31)-(33) to get

Et

[
M̃t+1 {α (1− ν)At+1}

]
.

Therefore, we have the following recursive relationship for θ (A,n):

θ (A,n) = [1− δ + i (A,n)]
{
α (1− ν)E

[
M ′
{
λ+ (1− λ)µ

(
A′, n′

)}
A′
]

+ (1− λ)E
[
M ′θ

(
A′, n′

)]}
.

(A50)

The term α (1− ν)A′ is the profit for the firm due to decreasing return to scale. Clearly, θ (A,n) has

the interpretation of the present value of profit. In the case of constant returns to scale, θ (A,n) = 0.

B Empirical Analysis

In this section, we provide empirical evidence on the relation between collateralizability and the

cross-section of stock returns. First and most importantly, we show that high asset collateralizability

firms have lower cash flow betas with respect two alternative proxies for financial shocks. Second, we

conduct standard Fama and MacBeth (1973) two-pass regression and show the proxies of financial

shocks are significantly negatively priced. High collateralizability firms are less negatively exposed to

these shocks. These two pieces of evidence taken together strongly corroborate the model mechanism
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that collateralizable assets provide an insurance against aggregate shocks. We then perform other

standard multi-factor asset prcing tests, and investigate the joint link between collateralizability

and other firm characteristics on one hand and future stock returns on the other using multivariate

regressions.

B.1 Cash flow risks of collateralizability-sorted portfolios

Our theory suggests that the collateralizability premium comes from the countercyclicality of the

marginal value of collateralizable capital. In our model, firms, rather than households, directly

trade physical assets directly, because they are more efficient than households in deploying these

assets. Since firms are constrained, type-K and type-H capital, whose prices contain a Lagrangian

multiplier component, can have different prices and expected returns even though they generate

identical cash flows from the firm’s perspective (measured in net worth units). The counter-cyclical

nature of the Lagrangian multiplier provides a hedge against aggregate shocks and makes the price of

collateralizable capital less sensitive to aggregate shocks and less cyclical. However, it is important

to note, in our model, households are not constrained and free to trade the firms’ equity and debt,

so that differences in expected returns on the firms’ equity must be due to differences in the cash

flows accruing to equity holders (measured in consumption units). Put differently, the Lagrangian

multiplier component of asset prices affects the risk exposure of cash flows to the equity holders, i.e.,

to households. We measure the cash flow to equity holders and show empirically at the portfolio

level that the equity cash flows of firms with high asset collateralizability exhibit a lower, i.e., less

negative, sensitivity respect to financial shocks, consistent with the model simulation.

We consider two alternative proxies for financial shocks: the change in the general cost of

external finance (debt and equity) as suggested by Eisfeldt and Muir (2016) (∆EM), and the log

change in the cross-sectional dispersion of firm-level cash flow growth (∆σCS), similar in spirit to

Elenev et al. (2018).

When we measure the cash flow accruing to equity holders at the portfolio level, we follow

Belo et al. (2017a) and first aggregate cash flow (represented by EBIT) across the firms in a given

portfolio and then normalize this sum by the total lagged sales (SALE) of that portfolio. We then

compute the sensitivity, i.e., the beta, of the portfolio cash flow growth with respect to the two

proxies of financial shocks. The results are reported in Table B.1.

We make several observations. First and importantly, one can see from Panel A, the cash flow
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betas with respective the equity finance cost shock (∆EM)) display a monotonically increasing

pattern from low to high collateralizability portfolios, and cash flow beta of low collateralizability

portfolio is statistically significantly more negative that that of high collateralizability portfolio. In

particular, the high collateralizability quintiles 4 and 5 exhibit insignificantly negative betas. This

again highlights the main economic mechanism of our model that collateralizable assets provide an

insurance against aggregate shocks. We also find this increasing pattern of cash flow betas across

collateralizabilty portfolios with respect to ∆σCS , although the cash flow beta difference is less

significant.

Finally, to precisely connect the empirical evidence to our model, we run the same test based

on data from a simulation of our model. As we show in Panel B, our model produces the same

increasing pattern of cash flow betas with respective to the financial shock εx across collateralizability

portfolios. Furthermore, the cash flow of the high asset collateralizability portfolio 5 even exhibits

a positive sensitivity to financial shocks. This strongly confirms our key model mechanism and is

consistent with the data.

B.2 Collateralizability spreads and financial shocks

In this section, we provide empirical evidence for the link between the collateralizability spread and

financial shocks consistent with our model interpretation.

Empirically, we consider a two-factor asset pricing model with the market (Mkt) and one of the

two financial shock proxies (∆EM or ∆σCS) as factors. Following the standard approach developed

by Fama and MacBeth (1973), we first estimate the exposures (betas) of excess returns of five

collateralizability-sorted portfolios with respect to the market and the financial shock factor using

the whole sample. Next, we run period-by-period cross-sectional regressions of realized portfolio

returns on betas to estimate the market prices of risks, which are calculated as the average slopes

from the period-by-period cross-sectional regressions.

We also conduct the Fama and MacBeth (1973) two-pass regression based on data from a

simulation of our model. The only difference is that, rather than running a two-factor model, we

run a one-factor regression with just the financial shock εx, since our model, by design, features a

one-factor structure due to the perfect correlation between TFP and financial shocks.

The results are presented in Table B.2, respectively, where Panel A and Panel B present the

exposures of the five portfolios to factors, while the estimated market prices of risk are shown in
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Table B.1: Cash Flow Exposure to the Financial Shock

This table shows the sensitivity of cash flows of collateralizability-sorted portfolios to the financial shock.

Panel A and B report exposure coefficients from empirical data and model simulated data, respectively.

The portfolio-level normalized cash flow is constructed by aggregating cash flow (EBIT) within each quintile

portfolio, and then dividing it by the lagged aggregate sales (SALE) of the same portfolio. In Panel A (data),

we report the regression coefficients from regressing portfolio-level normalized cash flow on two alternative

empirical proxies of the financial shocks: ∆EM and ∆σCS . ∆EM is the first difference of average external

finance cost from Eisfeldt and Muir (2016). ∆σCS is the log change of the cross-section standard deviation

of firm-level cash flow growth. In the model (Panel B), we construct the portfolio-level normalized cash

flow in the same way as in the data from model simulations. The financial shock series εx in the model is

the innovation to the liquidation probability λ. Every year, we winsorize firm-level variables within each

quintile at the top and bottom 1%, respectively. All shocks are normalized to have zero mean and unit

standard deviation. All regressions are conducted at the annual frequency. The t-statistics (in parentheses)

are adjusted following Newey and West (1987). All regression coefficients are multiplied by 100.

Panel A: Data

Financial Shocks 1 2 3 4 5 1-5

∆EM -1.94 -1.95 -1.41 -0.34 -0.14 -2.13
(-1.83) (-1.36) (-1.81) (-0.67) (-0.63) (-2.08)

∆σCS -0.40 0.08 0.28 0.31 0.17 -0.55
(-0.88) (-0.30) (1.51) (1.47) (1.12) (-1.10)

Panel B: Model

Financial Shocks 1 2 3 4 5 1-5

εx -0.46 0.27 0.66 1.47 2.91 -3.37
(-0.44) (0.32) (0.83) (1.36) (2.25) (-1.85)
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Panel C.

We make several observations. First, the betas with respect to ∆EM display a monotonically

increasing pattern from low to high collateralizability portfolios. In particular, the high collateraliz-

ability quintile exhibits a (marginally) significantly less negative beta than the low collateralizability

quintile. This pattern is confirmed in an even stronger fashion when we use ∆σCS as a proxy for

financial shocks. The betas with respect to this factor also display a monotonically increasing

pattern from low to high collateralizability portfolios. It is worth noting that, with respect to

this proxy of financial shocks, the difference in return beta between portfolio 1 and 5 is statisti-

cally significant. When we run the test using simulated data from the model, the return betas of

collateralizability-sorted portfolios display a pattern consistent with the data.

Furthermore, in the second stage cross-sectional regressions, we use five collateralizability-sorted

portfolios as the test assets, we compare the two-factor model (Mkt+ ∆EM or Mkt+ ∆σCS) with

the standard CAPM with only the market factor. We observe that the CAPM fails. When we add

the financial shock factor, the estimated market price of risk for this new factor is negative and

significant. The average pricing error (i.e., the intercept) becomes smaller and even statistically

insignificant. The second stage empirical results are again confirmed by the model simulation.

B.3 Asset pricing tests

We now perform a number of standard asset pricing tests to show that the collateralizability pre-

mium cannot be explained by standard risk factors, as represented by the Carhart (1997) four

factor model, the Fama and French (2015) five factor model, or the organizational capital factor

proposed by Eisfeldt and Papanikolaou (2013). We also investigate the incremental predictive power

of current asset collateralizability for future stock returns at the firm-level.

First, we investigate to what extent the variation in the returns of the collateralizability-sorted

portfolios can be explained by standard risk factors suggested by Carhart (1997) and Fama and

French (2015). In particular, we run monthly time-series regressions of the (annualized) excess

returns of each portfolio on a constant and the risk factors included in the above models. Table B.3

reports the intercepts (i.e., alphas) and exposures (i.e., betas). The intercepts can be interpreted

as pricing errors (abnormal returns), which remain unexplained by the given set of factors.

We make two key observations. First, the pricing errors of the collateralizablity-sorted portfolios

with respect to the given sets of factors are large and statistically significant. The estimated alphas
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Table B.2: Betas and Price of Risks of the Financial Shock

This table presents the risk price estimates for the financial shock. The factors considered in the empirical

data are the market return and one of the two alternative empirical proxies for the financial shock, that is,

external finance shock (∆EM) and cross-sectional dispersion shock of firm-level cash flow growth (∆σCS).

We construct the external finance shock by taking the first difference of the average costs of external finance

from Eisfeldt and Muir (2016). To calculate the cross-sectional dispersion shock of firm-level cash flow

growth, we first calculate the cross-sectional dispersion of cash flow growth of across all firms each year,

and then we compute its log change. Panels A and B present the first-stage estimates of factor exposures

of collateralizability-sorted portfolios in the data and in the model, respectively. Panel C reports the risk

prices (λFin) of the financial shock estimated from the second-stage regressions. The risk prices reported

in Panel C are the mean slopes of period-by-period cross-sectional regressions of portfolio excess returns

on risk exposures (betas). All shocks are normalized to have zero mean and unit standard deviation. The

regressions are conducted at the annual frequency. R2 is calculated as the mean across R2 of the period-by-

period regressions. The mean absolute pricing errors (MAE) across the test assets in Panel C are expressed

in percentage terms. The t-statistics (in parentheses) are adjusted following Newey and West (1987).

Panel A: Portfolio Factor Exposures - Data

1 2 3 4 5 1-5

∆EM -0.142 -0.128 -0.113 -0.091 -0.084 -0.058
(-2.580) (-2.804) (-2.135) (-2.126) (-1.723) (-1.598)

∆σCS -0.029 -0.007 -0.003 0.007 0.016 -0.045
(-0.990) (-0.251) (-0.113) (0.260) (0.592) (-2.074)

Panel B: Portfolio Factor Exposures - Model

1 2 3 4 5 1-5

εx -0.050 -0.042 -0.038 -0.033 -0.023 -0.027
(-15.904) (-9.908) (-11.005) (-9.182) (-6.687) (-14.961)

Panel C: Price of Risks

Data Model

CAPM ∆EM Mkt+∆EM ∆σCS Mkt+∆σCS εx

λMkt 0.70 -0.005 0.072
(t) (2.227) (-0.011) (0.338)
λFin -1.230 -1.094 -1.435 -1.272 -1.344
(t) (-2.478) (-1.729) (-2.442) (-1.876) (-6.830)

Intercept -0.441 -0.045 0.103 0.091 0.009 0.005
(t) (-1.888) (-0.777) (0.214) (2.386) (0.041) (1.035)

MAE 4.612 3.947 3.266 4.033 3.149 0.515
R2 0.387 0.445 0.624 0.451 0.633 0.676
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of the low-minus-high portfolio are 9.34% for the Carhart (1997) model and 5.80% for the Fama

and French (2015) five-factor model, respectively, with associated t-statistics of around 3.5 and 2.1.

Second, in order to distinguish our collateralizability measure from organizational capital, we

also control for this factor constructed by Eisfeldt and Papanikolaou (2013),23 together with the

three Fama-French factors.

The results are shown in Panel C of Table B.3. The pricing error of the low-minus-high portfolio

is still significant in the presence of the organizational capital factor (OMK) and amounts almost

9% per year with a t-statistic of greater than 2.6. In particular, the five portfolios sorted on

collateralizability are not strongly exposed to this factor, indicated by economically small and

statistically insignificant coefficients, except for Quintile 5.

Taken together, the cross-sectional return spread across collateralizability sorted portfolios can-

not be explained by either the Carhart (1997) four-factor model, the Fama and French (2015)

five-factor model, or the organizational capital factor proposed by Eisfeldt and Papanikolaou (2013).

Second, we extend the previous analysis to the investigation of the link between collateraliz-

ability and future stock returns using firm-level multivariate regressions that include firm’s collat-

eralizability and other controls as return predictors. In particular, we perform standard firm-level

cross-sectional regressions (Fama and MacBeth (1973)) to predict future stock returns:

Ri,t+1 = αi + β · Collateralizability i,t + γ · Controlsi,t + εi,t+1,

where Ri,t+1 is stock i’s cumulative (raw) return over the respective next year, i.e., from July of

year t to June of each year t+1. The control variables include current collateralizability, size, book-

to-market (BM), profitability (ROA), and book leverage. To avoid using future information, all the

balance sheet variables are based on the values available before the end of year t. Table B.4 reports

the results. The regressions exhibit a significantly negative slope coefficient for collateralizability

across all specifications, which supports our theory, since a higher current degree of collateralizability

implies lower overall risk exposure, so that expected future returns should indeed be smaller with

higher collateralizability.

In our empirical measure, only structure and equipment capital contribute to firms’ collater-

alizability, but not intangible capital. Therefore, by construction, our collateralizability measure

weakly negatively correlates with measures of intangible capital. In order to empirically distinguish

23We would like to thank Dimitris Papanikolaou for sharing this time series of the organizational factor.
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our theoretical channel from the ones focusing on organizational capital (Eisfeldt and Papanikolaou

(2013)) and R&D capital (Chan et al. (2001), Croce et al. (2017)), we also control for OG/AT ,

the ratio of organizational capital to total assets, and XRD/AT , the ratio of R&D expenses to

total assets, as suggested in the literature. The results in Table B.4 show that the negative slope

coefficients for collateralizability remain significant, although they become smaller in magnitude,

after controlling for these two firm characteristics. Instead of using the ratio of R&D expenditure to

total assets, we also used the ratio of R&D capital to total assets as a control. The results remain

very similar.

B.4 Additional empirical evidence

In this section, we provide additional empirical evidence regarding the collateralizability premium.

First, we demonstrate the robustness of our findings by forming collateralizability portfolios within

industries to make sure that our baseline result is not driven by industry-specific effects, and by

performing a rolling-window estimation of the collateralizability parameters. Second, we present

correlations between collateralizability and firm characteristics. Finally, we perform double sorts

with respect to collateralizability and financial leverage.

B.4.1 Alternative portfolio sorts

To implement the first robustness check, we consider the Fama-French industry classification with

17 sectors. We sort firms into collateralizability quintiles according to their collateralizability score

within their respective industry. Portfolio 1 will thus contain all firms which are in the lowest

quintile relative to their industry peers, and so on for portfolios 2 to 5. By doing so, we essentially

control for industry fixed effects. Table B.5 reports the results of this exercise, and one can see that

the results are very close to the findings of our benchmark analysis presented in Table 2.

In our benchmark analysis, we estimate the collateralizability coefficients for structure and

equipment capital, ζS and ζE , using the whole sample. One might argue that this introduces a

look-ahead bias, since the estimation is based on data not observable at the time when decisions

are made. To see whether a potential look-ahead bias indeed has an effect on our results, we now

perform the portfolio sort in year t exclusively on information up to t − 1. In more detail, we

use estimates denoted by ζ̂S,t−1 and ζ̂E,t−1 derived from expanding window regressions using data

available up to the end of year t− 1. The first window consists of data for the period from 1975 to
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Table B.3: Asset Pricing Tests of Collateralizability-sorted Portfolios

This table shows the coefficients of regressions of excess returns of collateralizability-sorted portfolios on the factors from the

Carhart (1997) four-factor model (Panel A), the Fama and French (2015) five-factor model (Panel B), and a model featuring the

Fama-Franch three-factor model augmented by the organizational capital factor from Eisfeldt and Papanikolaou (2013) (Panel

C). The t-statistics are computed based on Newey and West (1987) adjusted standard errors. The analysis is performed for

financially constrained firms. Firms are classified as constrained in year t, if their year end WW or SA index are higher than the

corresponding median in year t− 1, or if the firms do not pay dividends in year t− 1. The sample period is from July 1979 to

December 2016, with the exception of Panel C, where the sample ends in December 2008 due to the length of the organizational

capital factor. We annualize returns by multiplying by 12.

Panel A: Carhart Four-Factor Model

1 2 3 4 5 1-5
α 5.43 2.94 2.04 -1.87 -3.91 9.34
(t) 2.80 1.76 1.35 -1.45 -2.44 3.47
βMKT 1.07 1.07 1.07 1.12 1.10 -0.03
(t) 25.25 27.91 32.58 35.68 26.93 -0.48
βHML -0.62 -0.49 -0.21 -0.12 0.01 -0.63
(t) -9.72 -8.60 -3.87 -2.31 0.16 -6.03
βSMB 1.34 1.11 1.06 0.97 0.84 0.50
(t) 15.66 15.77 22.71 15.28 8.72 3.27
βMOM -0.04 -0.06 -0.05 -0.02 -0.07 0.03
(t) -0.73 -1.74 -1.27 -0.56 -1.31 0.33
R2 0.85 0.87 0.88 0.90 0.84 0.27

Panel B: Fama-French Five-Factor Model

1 2 3 4 5 1-5
α 13.02 12.45 12.87 9.22 7.22 5.80
(t) 2.84 2.75 3.07 2.16 1.67 2.06
βMKT 0.49 0.07 0.08 0.20 0.07 0.42
(t) 0.75 0.13 0.15 0.37 0.12 1.01
βSMB 2.03 1.24 1.17 1.28 1.38 0.65
(t) 2.00 1.55 1.43 1.62 1.79 1.08
βHML -3.84 -4.34 -3.67 -3.15 -2.49 -1.35
(t) -2.55 -3.21 -2.99 -2.65 -1.92 -1.12
βRMW -2.77 -3.12 -2.32 -1.90 -1.34 -1.43
(t) -1.47 -2.11 -1.48 -1.33 -0.97 -1.11
βCMA 2.10 1.00 1.74 0.92 0.94 1.17
(t) 0.83 0.46 1.02 0.53 0.62 0.58
R2 0.09 0.10 0.08 0.07 0.06 0.04

Panel C: Control for Organizational Capital Factor

1 2 3 4 5 1-5
α 5.06 3.42 1.56 -0.95 -3.90 8.96
(t) 2.30 1.67 0.85 -0.61 -1.74 2.66
βMKT 1.10 1.07 1.10 1.11 1.08 0.03
(t) 19.82 21.75 24.43 30.89 23.11 0.35
βHML -0.56 -0.50 -0.19 -0.14 -0.00 -0.55
(t) -7.23 -7.46 -2.71 -1.85 -0.04 -3.68
βSMB 1.40 1.12 1.05 0.97 0.81 0.59
(t) 14.95 16.91 18.30 14.51 6.09 3.07
βOMK -0.02 0.01 0.01 -0.04 -0.14 0.13
(t) -0.31 0.23 0.14 -0.99 -2.33 1.29
R2 0.86 0.87 0.88 0.89 0.83 0.29
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Table B.5: Portfolios Sorted on Collateralizability within Industries

This table reports annualized average monthly value-weighted excess returns (E[R] − Rf ) for

collateralizability-sorted portfolios, and their alphas with respect to different factor models. The sample

period is from July 1979 to December 2016. αFF3+MOM and αFF5 are the alphas with respect to the

Carhart (1997) four-factor model and the Fama and French (2015) five-factor model, respectively. At the

end of June each year t, we consider each of the 17 Fama-French industries and sort the constrained firms

in a given industry into quintiles based on their collateralizability scores at the end of year t − 1. We hold

the portfolios for a year, from July of year t until the June of year t + 1. Portfolios are rebalanced in July

every year. Firms are classified as constrained in year t, if their year end WW or SA index are higher than

the corresponding median in year t− 1, or if the firms do not pay dividends in year t− 1. The WW and the

SA index are constructed according to Whited and Wu (2006) and Hadlock and Pierce (2010), respectively.

Additionally, we consider a subsample where the firms are classified as constrained by all three measures

jointly. We annualize returns by multiplying by 12. The t-statistics are estimated following Newey and West

(1987).

1 2 3 4 5 1-5

Financially constrained firms - All measures
E[R]−Rf (%) 13.14 10.46 11.67 7.97 6.86 6.28
(t) 2.63 2.22 2.41 1.79 1.46 2.60
αFF3+MOM 4.59 2.06 2.64 -1.31 -2.74 7.33
(t) 2.48 0.98 1.35 -0.68 -1.47 3.21
αFF5 13.87 10.94 13.01 10.97 7.04 6.83
(t) 2.75 2.31 2.52 2.36 1.38 2.85

Financially constrained firms - WW index
E[R]−Rf (%) 12.53 11.77 9.83 8.36 6.02 6.51
(t) 2.68 2.71 2.22 1.99 1.41 3.07
αFF3+MOM 4.23 2.83 1.62 -0.76 -3.05 7.28
(t) 2.51 1.78 0.97 -0.50 -2.37 3.57
αFF5 14.25 12.26 11.76 10.28 6.37 7.88
(t) 2.97 2.75 2.56 2.35 1.33 3.58

Financially constrained firms, SA index
E[R]−Rf (%) 11.28 11.51 8.08 8.32 6.02 5.26
(t) 2.35 2.41 1.77 1.94 1.35 2.54
αFF3+MOM 3.58 4.65 -0.62 -0.49 -2.50 6.08
(t) 1.99 2.25 -0.41 -0.33 -1.50 2.99
αFF5 12.20 13.36 10.07 9.54 7.37 4.83
(t) 2.60 2.57 2.08 2.09 1.58 2.22

Financially constrained firms, Non-Dividend
E[R]−Rf (%) 14.99 12.98 6.99 7.92 9.69 5.30
(t) 3.50 2.83 1.70 1.98 2.12 2.27
αFF3+MOM 7.39 5.23 0.39 -0.12 2.24 5.15
(t) 3.90 2.59 0.23 -0.08 1.22 2.18
αFF5 14.90 14.95 8.16 8.88 11.45 3.44
(t) 3.59 3.59 2.16 2.16 2.61 1.47
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1980.24.

Table B.6 presents the results in a fashion analogous to Table 2. For all three measures for

financial constraints, the collateralizability spread is positive, large, and significant. This shows

that our baseline results do not suffer from a look-ahead bias with respect to the estimation of the

collateralizability coefficients.

In order to capture the fact that structure capital is more collateralizable than equipment capital

(Rampini and Viswanathan (2010), Campello and Giambona (2013)), we employ a constrained

version of the leverage regression in Table 1 by estimating the equation

Bi,t
ATi,t

= (ζE + e∆)StructSharel,t + ζEEquipSharel,t + γXi,t + εi,t,

i.e., we impose the restriction ζS = ζE + e∆ > ζE . Then we perform a maximum likelihood

estimation of above equation to obtain the time series of the estimates of ζE and ∆. In our sample,

the estimated e∆ across expanding windows is of mean 0.15 with standard error of 0.02.

As a further note, one advantage of our approach to sort stocks into portfolios does not rely

on absolute precision in the estimation of ζE and ζS (which could potentially be subject to various

sources of biases, e.g., due to endogeneity of capital structure choices, measurement errors in cap-

ital etc.). The outcome of the portfolio sort only depends on the ranking of the collateralizability

measure for a given firm, not on its exact magnitude. In our empirical construction of the collat-

eralizability measure, we consider three types of capital according to BEA, structure, equipment,

and intellectual capital. As long as ζS > ζE and intellectual capital does not contribute to col-

lateralizability, the rank of a firm with respect to asset collateralizability will depend only on the

composition of its capital, not on the numerical values of the estimated ζ-coefficients.

B.4.2 Collateralizability and additional firm characteristics

As indicated by the results in Table 5, our model can quantitatively replicate the patterns of leverage,

asset growth and the investment rate. In Table B.7, we now present additional characteristics of

the firms in our collateralizability-sorted portfolios.

Cash flow and size are relatively flat across the five portfolios, low collateralizability firms

24The regressor, marginal tax rate, is only available after 1980, therefore we drop this regressor. All other
regressors are available from 1975 onwards. The results are similar if we start our sample in 1980 with
marginal tax rate.
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Table B.6: Portfolios Sorting based on Expanding Window Estimated Collateralizability

This table reports average value-weighted monthly excess returns (in percent and annualized) for portfolios

sorted on collateralizability. The sample period is from July 1981 to December 2016. At the end of June

of each year t, we sort the constrained firms into five quintiles based on their collateralizability measures

(estimated using expanding window) at the end of year t− 1, where quintile 1 (quintile 5) contains the firms

with the lowest (highest) share of collateralizable assets. We hold the portfolios for a year, from July of year

t until the June of year t+ 1. Firms are classified as constrained in year t, if their year end WW or SA index

are higher than the corresponding median in year t−1, or if the firms do not pay dividends in year t−1. The

WW and SA indices are constructed according to Whited and Wu (2006) and Hadlock and Pierce (2010),

respectively. Standard errors are estimated using Newey-West estimator. The table reports average excess

returns E[R] − Rf , as well as the associated t-statistics, and Sharpe ratios (SR). We annualize returns by

multiplying by 12.

1 2 3 4 5 1-5

Financially constrained firms - WW index
E[R]−Rf (%) 11.76 10.68 9.80 7.18 5.20 6.55
(t) 2.33 2.31 2.24 1.71 1.30 2.18
SR 0.41 0.41 0.40 0.30 0.24 0.38

Financially constrained firms - SA index
E[R]−Rf (%) 9.61 10.74 9.36 7.82 3.64 5.97
(t) 1.84 2.21 2.11 1.74 0.88 2.07
SR 0.32 0.40 0.38 0.31 0.16 0.35

Financially constrained firms - Non-Dividend
E[R]−Rf (%) 14.32 9.18 6.93 7.13 6.75 7.57
(t) 3.11 2.07 1.59 1.59 1.63 2.83
SR 0.54 0.36 0.28 0.28 0.29 0.49
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on average hold more cash. Although cash is not modeled in our paper, this empirical finding

is still consistent with our model intuition. Firms with less collaterizable assets hold more cash

to compensate for the fact that they can hardly obtain collateralized loans, and even less so in

recessions. The probability of debt issuance is increasing with asset collateralizability, while the

probability of equity financing shows the opposite tendency. This reflects the substitution effect

between the two types of external financing. Additionally, firms with more collateralizable assets

on average have more short-term and long-term debt.

In Table B.8, we report the correlations of the collateralizability measure with other firm char-

acteristics which have been shown in the past literature to predict the cross-section of stock returns,

including the book-to-market ratio (BM) , the R&D-to-asset ratio (XRD/AT), the organizational

capital-to-asset ratio (OG/AT), (log) size (log(ME)), the investment rate, i.e., the ratio of invest-

ment to capital (I/K), and the return on assets (ROA). Notably, the collateralizability measure

and these firm characteristics are only weakly correlated, with the correlation coefficients ranging

between −33% to 16%.

B.4.3 Double sorting on collateralizability and leverage

As discussed in the main text, firms with higher asset collateralizablility have higher debt capacity

and thus tend to have higher financial leverage. When a firm is highly levered, its equity is more

exposed to aggregate risks. The effects of collateralizability and leverage can thus offset each other

in determining the overall riskiness of the firm and consequently its expected equity return.

In order to disentangle these two effects, we conduct an independent double sort on collateraliz-

ability and financial leverage. The average returns for the resulting portfolios are reported in Table

B.9. First, within each quintile sorted on book leverage, the collateralizability spread is always

significantly positive. Second, the average returns of the high-minus-low leverage portfolios within

each collateralizability quintile are not statistically significant.

C Sensitivity analysis

In this section, we discuss the sensitivity of our quantitative results to several important parameters.

To save space, we only discuss the moments which are sensitive to the respective each parameter.

The results are reported in Table C.10.
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Table B.7: Firm Characteristics

This table reports the median of firm characteristics across portfolios of firms sorted on collateralizability.
The sample starts in 1979 and ends in 2016. Collateralizability is defined as in Section D.2. Book leverage
is lease adjusted following Li, Whited, and Wu (2016). BM is the book-to-market ratio. I

K+H is the sum
of physical investments (CAPX), R&D and organizational capital investments over the sum of PPEGT and
intangible capital. More details on the definition of R&D and organizational capital investments can be found
Appendix D.3. log(ME) is the nature log of the market capitalization. Cash flow is defined as OIBDP to
total asset ratio. Gross profitability is defined as revenue minus cost of goods denominated by total assets.
ROE is the return on equity, which is the OIBDP divided by book equity. Asset growth is the growth rate
of total assets. Type-K asset growth is the growth rate of PPEGT. Age is defined as the years a firm being
recorded in COMPUSTAT. WW and SA index are following Whited and Wu (2006) and Hadlock and Pierce
(2010), respectively. Dividend is calculated as the mean of the dividend dummy within each portfolio, which
represents the probability of a firm paying dividend of that portfolio. Cash/AT is defined as cash and cash
equivalents over total asset ratio. The probability of equity (debt) issuance is defined as the mean of a dummy
variable within that quintile, which takes value of one if the flow to equity (debt) is negative. Flow to equity
is defined as purchases of common stock plus dividends less sale of common stock. Flow to debt is defined
as debt reduction plus changes in current debt plus interest paid, less debt issuance. Probability of external
financing is defined as the mean of a dummy variable, which takes value of one when the sum of flow to debt
and equity are negative.

1 2 3 4 5
Collateralizability 0.081 0.168 0.260 0.377 0.619
Book leverage 0.104 0.163 0.228 0.343 0.460
BM 0.441 0.576 0.611 0.673 0.670
I

K+H
0.174 0.169 0.162 0.165 0.191

log(ME) 3.822 3.988 4.000 4.153 4.178
Cash flow 0.037 0.094 0.110 0.113 0.098
Gross profitability 0.478 0.423 0.375 0.339 0.276
ROE 0.060 0.164 0.204 0.231 0.223
Asset growth 0.003 0.048 0.068 0.079 0.116
Type-K asset growth 0.075 0.092 0.100 0.108 0.129
Age 7.000 9.000 9.000 8.000 8.000
WW -0.159 -0.183 -0.189 -0.194 -0.191
SA -2.284 -2.506 -2.540 -2.576 -2.580
Prob(Dividend) 0.136 0.146 0.178 0.172 0.162
Cash/AT 0.246 0.142 0.114 0.087 0.104
Prob(Equity issuance) 0.665 0.594 0.523 0.501 0.496
Prob(Debt issuance) 0.097 0.118 0.114 0.122 0.143
Prob(External finance) 0.240 0.215 0.191 0.190 0.208
Short-term debt/AT 0.007 0.011 0.012 0.015 0.017
Long-term debt/AT 0.006 0.011 0.014 0.019 0.012
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Table B.8: Correlations Among Firm Characteristics

This table reports the correlation between collateralizability and other firm characteristics. The sample
period is from 1978 to 2016, it focuses on constrained firms identified using Whited and Wu (2006) index.
Log(ME) is the log of market capitalization deflated by CPI. BM is the book-to-market ratio. XRD/AT is
R&D expenditure over total book assets. OG/AT is organizational capital over total book assets. I/K is the
investment rate, it is calculated as the Compustat item CAPX divided by PPENT. ROA is Compustat item
IB divided by book assets.

Variables Collateralizability BM XRD/AT OG/AT log(ME) I/K ROA

Collateralizability 1.000
BM 0.105 1.000
XRD/AT -0.333 -0.180 1.000
OG/AT -0.233 -0.065 0.117 1.000
log(ME) -0.013 -0.159 -0.006 -0.207 1.000
I/K 0.011 -0.021 0.008 -0.001 0.004 1.000
ROA 0.161 -0.041 -0.456 -0.154 0.126 -0.015 1.000

Table B.9: Independent Double Sort on Collateralizability and Leverage

This table reports annualized average value-weighted monthly excess returns for portfolios double-sorted
independently on collateralizability and leverage. The sample starts in July 1979 and ends in December
2016. At the end of June in each year t, we independently sort financially constrained firms into quintiles
based on collateralizability (horizontal direction) and into quintiles based on book financial leverage (vertical
direction), then we compute the value-weighted returns of each portfolio. The book financial leverage is
defined as financial debt over total asset ratio. A firm is considered financially constrained in year t, if its
WW index (Whited and Wu (2006)) is above the respective median at the end of year t− 1. The t-statistics
are estimated following Newey and West (1987). All returns are annualized by multiplying with 12.

L Col 2 3 4 H Col L-H t-stat

L Lev 11.96 7.58 10.51 10.14 5.48 6.48 1.81
2 13.84 11.38 11.19 5.31 5.98 7.85 1.96
3 13.07 14.16 11.05 9.70 4.50 8.57 2.06
4 15.48 10.10 11.73 5.39 5.04 10.43 2.51
H Lev 16.94 10.82 10.74 8.39 7.25 9.69 2.09
H-L 4.98 3.24 0.23 -1.75 1.76
t-stat 1.17 0.81 0.06 -0.55 0.60
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Collateralizability parameter (ζ) The parameter ζ determines the collateralizability of

type-K capital. We vary this parameter by ±10% around the benchmark value of 0.513 from Table 3

and make the following observations.

First, since we assume the collateral constraint is binding, higher collateralizability mechanically

increases the average leverage ratio. Second, higher collateralizability leads to a lower risk premium

for type-K capital, but to a higher risk premium for type-H capital, which overall implies a higher

collateralizability premium. This is consistent with our model mechanism. Note that the price of

type-K capital contains not only the present value of future cash flows, but also the present value of

Lagrangian multipliers. According to equation (10), an increase in ζ makes the second component

more important, which in turn makes the hedging channel more important and type-K capital less

risky. On the other hand, a higher leverage ratio makes the entrepreneur’s net worth more volatile,

and therefore increases the risk premium of type-H capital.

Type-K and type-H capital ratio (φ) We vary this parameter by ±10%. A higher φ

implies a larger proportion of collateralizable assets in the economy, and as a result, it mechanically

increases the leverage ratio and the overall asset collateralizability. A higher leverage ratio in

turn leads to a more volatile entrepreneur’s net worth, and therefore, increases the risk premia for

both types of capital. On the other hand, higher φ implies more type-K capital, which can be

used to hedge against aggregate risk. Therefore, higher φ may also reduce the overall riskiness of

the aggregate economy and lower down the risk premium. As shown in Panel B, hedging effect

dominates, thus the overall risk premium is lower and return spread is also lower.

Shock correlation (ρA,x) As explained in Section 6.1, we assume a negative correlation

between the aggregate productivity shock and the financial shock in order for the model to generate

a positive correlation between consumption and investment growth, consistent with the data. For

parsimony, we had imposed a perfectly negative correlation in our benchmark calibration. We vary

this parameter and consider the cases ρA,x = −0.8 and− 0.9.

In terms of results, the correlation between consumption and investment growth becomes less

positive, confirming our model intuition presented in Section 6.1. Furthermore, varying this corre-

lation parameter does not qualitatively change the collateralizability spread and has limited effects

on various risk premia as well.
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Table C.10: Sensitivity Analysis

The table shows the results of sensitivity analyses, where key parameters of the model are varied around the

values from the benchmark calibration shown in Table 3. A star superscript denotes the parameter value

from the benchmark calibration.

Panel A: the role of collateralizability parameter ζ

Data Benchmark 0.9ζ∗ 1.1ζ∗

σ(∆y) 3.05 (0.60) 3.50 3.52 3.47

E[ Bt
Kt+Ht

] 0.32(0.01) 0.33 0.29 0.37

E[RM −Rf ] 5.71 (2.25) 5.71 5.22 6.21
σ(RM −Rf ) 20.89 (2.21) 7.85 7.73 7.97
E[R̄LevK − R̄H ] -7.50 -6.74 -8.32

Panel B: the role of capital composition φ: ±10%

Data Benchmark 0.9φ∗ 1.1φ∗

σ(∆y) 3.05 (0.60) 3.50 3.53 3.46

E[ Bt
Kt+Ht

] 0.32(0.01) 0.33 0.30 0.36

E[RM −Rf ] 5.71 (2.25) 5.71 5.83 5.58
σ(RM −Rf ) 20.89 (2.21) 7.85 7.68 8.05
E[R̄LevK − R̄H ] -7.50 -7.59 -7.38

Panel C: the role of shock correlations

Data Benchmark ρA,x = −0.8 ρA,x = −0.9

σ(∆y) 3.05 (0.60) 3.50 3.26 3.32
corr(∆c,∆i) 0.40 (0.28) 0.51 0.44 0.45

E[ Bt
Kt+Ht

] 0.32(0.01) 0.33 0.32 0.33

E[RM −Rf ] 5.71 (2.25) 5.71 4.73 4.98
σ(RM −Rf ) 20.89 (2.21) 7.85 7.33 7.48
E[R̄LevK − R̄H ] -7.50 -6.86 -7.10
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Table C.10: Sensitivity Analysis (Continued)

Panel D: the role of persistence of financial shock ρx

Data Benchmark 80% Half life 120% Half life

σ(∆y) 3.05 (0.60) 3.50 3.39 3.60
AC1(∆y) 0.49 (0.15) 0.51 0.48 0.54
AC1( Bt

Kt+Ht
) 0.86 (0.33) 0.81 0.81 0.82

E[ Bt

Kt+Ht
] 0.32(0.01) 0.33 0.33 0.33

E[RM −Rf ] 5.71 (2.25) 5.71 5.47 6.02
σ(RM −Rf ) 20.89 (2.21) 7.85 7.79 7.92
E[R̄LevK − R̄H ] -7.50 -6.85 -8.08

Panel E: the role of persistence of productivity shock ρA

Data Benchmark 80% Half life 120% Half life

σ(∆y) 3.05 (0.60) 3.50 3.49 3.50
AC1(∆y) 0.49 (0.15) 0.51 0.51 0.51
AC1( Bt

Kt+Ht
) 0.86 (0.33) 0.81 0.80 0.82

E[ Bt

Kt+Ht
] 0.32(0.01) 0.33 0.33 0.33

E[RM −Rf ] 5.71 (2.25) 5.71 4.93 6.30
σ(RM −Rf ) 20.89 (2.21) 7.85 7.87 7.73
E[R̄LevK − R̄H ] -7.50 -7.10 -7.80

Panel F: the role of volatility of financial shock σx

Data Benchmark 0.9σ∗
x 1.1σ∗

x

σ(∆y) 3.05 (0.60) 3.50 3.42 3.58
σ(∆i) 10.30 (2.36) 9.75 9.08 10.42
E[RM −Rf ] 5.71 (2.25) 5.71 6.23 5.16
σ(RM −Rf ) 20.89 (2.21) 7.85 7.88 7.82
E[R̄LevK − R̄H ] -7.50 -6.56 -8.48

Panel G: the role of volatility of productivity shock σA

Data Benchmark 0.9σ∗
A 1.1σ∗

A

σ(∆y) 3.05 (0.60) 3.50 3.23 3.77
σ(∆i) 10.30 (2.36) 9.75 9.37 10.12
E[RM −Rf ] 5.71 (2.25) 5.71 4.10 7.51
σ(RM −Rf ) 20.89 (2.21) 7.85 7.06 8.64
E[R̄LevK − R̄H ] -7.50 -6.95 -8.04
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Persistence parameters of exogenous shocks (ρx and ρA) We vary persistence pa-

rameters of exogenous shocks (ρx and ρA) one at a time. The parameter variations we consider

change the half-life of a shock to x or a by ±20%.

First, an increase in ρx has opposite effects on the risk premia of type-K and type-H capital. On

the one hand, a more persistent financial shock makes type-K capital an even better hedging device,

which reduces the equilibrium risk premium. On the other hand, entrepreneurs’ net worth becomes

more volatile, and as a result, the risk premium of type-H capital increases. Put together, this

leads to a higher risk premium for the aggregate market and to a larger collateralizability spread.

Second, an increase in ρA generates a stronger long-run risk channel in cash flows, and as a result,

we observe higher risk premia for both type-K and type-H capital. The effects of lower ρx and ρA

are exactly opposite to those generated by higher values for these parameters.

Shock volatilities (σx and σA) We vary the shock volatilities σx and σA, one at a time,

by ±10%. We observe that the effect caused by increasing the two shock volatilities are very similar.

A higher σx or σA leads to an increase in both the market risk premium and the collateralizability

spread, which is intuitively clear, since the economy in general becomes riskier.

D Data and measurement

We now provide details on the data sources, the construction of our empirical collateralizability

measure, and on the measurement of intangible capital.

D.1 Data sources

Our major sources of data are (1) firm level balance sheet data from the CRSP/Compustat Merged

Fundamentals Annual Files, (2) monthly stock returns from CRSP, and (3) industry level non-

residential capital stock data from the BEA table.25 We adopt the standard screening process

for the CRSP/Compustat Merged Database. We exclude utilities and financial firms (SIC codes

between 4900 and 4999 and between 6000 and 6999, respectively). Additionally, we only keep

common stocks that are traded on NYSE, AMEX and NASDAQ. The accounting treatment of

R&D expenses was standardized in 1975, and we allow three years for firms to adjust to the new

25The BEA table is from “private fixed asset by industry”, Table 3.1ESI.
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accounting rules, so that our sample starts in 1978. Following Campello and Giambona (2013), we

exclude firm-year observations for which the value of total assets or sales is less than $1 million. We

focus on the impact of asset collateralizability on debt capacity of firms, therefore we drop small

firms, which do not have much debt in the first place. In practice, we drop firm-year observations

with market capitalization below $8 million, which roughly corresponds to the bottom 5% of firms.

All firm characteristics are winsorized at the 1% level. The potential delisting bias of stock returns

is corrected following Shumway (1997) and Shumway and Warther (1999).

In order to obtain a long sample with broader coverage,26 we use the narrowly defined industry

level non-residential fixed asset (structure, equipment and intellectual) from the BEA tables to back

out industry level structure and equipment capital shares.

In Table D.11, we provide the definitions of the variables used in our empirical analyses.

D.2 Measurement of collateralizability

This section provides details on the construction of the firm specific collateralizability measure,

complementing the description of the methodology provided in Section 2.

We first construct proxies for the share of the two types of capital, denoted by StructShare

and EquipShare. Then we run the leverage regression (2), which allows us to later calculate the

firm-specific collateralizability score.

The BEA classification features 63 industries. We match the BEA data to Compustat firm level

data using NAICS codes, assuming that, for a given year, firms in the same industry have the same

structure and equipment capital shares. We construct measures of structure and equipment shares

for industry l in year t as

StructSharel,t =
StructureBEAl,t

Fixed AssetBEAl,t

Fixed AssetCompustat
l,t

PPEGTCompustat
l,t + IntangibleCompustat

l,t

and

EquipSharel,t =
EquipmentBEAl,t

Fixed AssetBEAl,t

Fixed AssetCompustat
l,t

PPEGTCompustat
l,t + IntangibleCompustat

l,t

,

26COMPUSTAT shows the components of physical capital (PPEGT) only for the period from 1969 to 1997.
However, even for the years between 1969 and 1997, only 40% of the observations have non-missing entries
for the components of PPEGT, which are buildings (PPENB), machinery and equipment (PPENME), land
and improvements (PPENLI).
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where ATl,t are total assets in industry l in year t, i.e., the sum of assets across all firms in our

sample belonging to industry l in year t. The first component on the right hand side refers to the

structure (equipment) share from BEA data, which is given as the ratio of structure (equipment)

to fixed assets at the industry level. The second component refers to the industry level fixed asset

to total asset ratio in Compustat. We use PPEGT in Compustat as the equivalent for fixed assets

in the BEA data. By doing so, we map the BEA industry level measure of structure (equipment)

to fixed asset ratio to corresponding measures in the Compustat, at the industry level. Since we

distinguish assets by their collateralizability, we normalize fixed assets by the total value of physical

and intangible capital.

We interpret the weighted sum, ζSStructSharel,t + ζEEquipSharel,t, as the contribution of

structure and equipment capital to financial leverage. The product of this sum and the book value

of assets, (ζSStructSharel,t + ζEEquipSharel,t) · ATi,t, then represents the total collateralizable

capital of firm i in year t.27 Given this, the collateralizability score for firm i in year t is computed

as

ζi,t =
(ζS · StructSharel,t + ζE · EquipSharel,t) ·ATi,t

PPEGTi,t + Intangiblei,t
, (D51)

where PPEGTi,t and Intangiblei,t are the physical capital and intangible capital of firm i in year

t, respectively. The importance of taking intangible capital into account has been emphasized in

the recent literature, e.g., by Eisfeldt and Papanikolaou (2013) and Peters and Taylor (2017). The

asset-specific collateralizablity parameters ζS and ζE we adopt in our empirical analyses are the

ones shown in the last column of Table 1, where firms are classified as constrained based jointly on

all three measures (SA index, WW index, and non-dividend paying).

In the above collateralizability measure, we implicitly assume the collateralizability parameter

for intangible capital to be equal to zero. We do this based on empirical evidence that intangible

capital can hardly be used as collateral, since only 3% of the total value of loans to companies

are actually collateralized by intangibles like patents or brands (Falato et al. (2013)). Our results

remain qualitatively very similar when we exclude intangible capital from the denominator of the

collateralizability measure in (D51) and only exploit the differences in collateralizability between

structure and equipment capital.

27Alternatively, we also used the market value of assets to compute total collateralizable capital. The
empirical collteralizability spread based on this sorting measure is even stronger than that obtained in our
benchmark analysis.
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D.3 Measuring intangible capital

In this section, we provide details regarding the construction of firm-specific intangible capital. The

total amount of intangible capital of a firm is given by the sum of externally acquired and internally

created intangible capital, where the latter consists of R&D capital and organizational capital.

Externally acquired intangible capital is given by item INTAN in Compustat. Firms typically

capitalize this type of asset on the balance sheet as part of intangible assets. For the average firm

in our sample, INTAN amounts to about 19% of total intangible capital with a median of 3%,

consistent with Peters and Taylor (2017). We set externally acquired intangibel capital to zero,

whenever the entry for INTAN is missing.

Concerning internally created intangible capital, R&D capital does not appear on the firm’s

balance sheet, but it can be estimated by accumulating past expenditures. Following Falato et al.

(2013) and Peters and Taylor (2017), we capitalize past R&D expenditures (Compustat item XRD)

using the so-called perpetual inventory method, i.e.,28

RDt+1 = (1− δRD)RDt +XRDt,

where δRD is the depreciation rate of R&D capital. Following Peters and Taylor (2017), we set the

depreciation rates for different industries following Li and Hall (2016). For unclassified industries,

the depreciation rate is set to 15%.29

Finally, we also need the initial value RD0. We use the first non-missing R&D expenditure,

XRD1, as the first R&D investment, and specify RD0 as

RD0 =
XRD1

gRD + δRD
, (D52)

where gRD is the average annual growth rate of firm level R&D expenditure. In our sample, gRD is

around 29%.

Following Eisfeldt and Papanikolaou (2013) and Peters and Taylor (2017), our organizational

capital is constructed by accumulating a fraction of Compustat item XSGA, ”Selling, General and

Administrative Expense”, which indirectly reflects the reputation or human capital of a firm. How-

ever, as documented by Peters and Taylor (2017), XSGA also includes R&D expenses XRD, unless

28This method is also used by the BEA R&D satellite account.
29Our results are not sensitive to the choice of depreciation rates.
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they are included in the cost of goods sold (Compustat item COGS). Additionally, XSGA some-

times also incorporates the in-process R&D expense (Compustat item RDIP ). Hence, following

Peters and Taylor (2017), we subtract XRD and RDIP from XSGA.30 Additionally, also follow-

ing Peters and Taylor (2017), we add the filter that when XRD exceeds XSGA, but is less than

COGS, or when XSGA is missing, we keep XSGA with no further adjustment. Afterwards, we

replace missing XSGA with zero. As in Hulten and Hao (2008), Eisfeldt and Papanikolaou (2014),

and Peters and Taylor (2017), we count only 30% of SGA expenses as investment in organizational

capital, the rest is treated as operating costs.

Using a procedure analogous to the one described above for internally created R&D capital,

organizational capital is constructed as

OGt+1 = (1− δOG)OGt + SGAt,

where SGAt = 0.3(XSGAt−XRDt−RDIPt) and the depreciation rate δOG is set to 20%, consistent

with Falato, Kadyrzhanova, and Sim (2013) and Peters and Taylor (2017). Again analogous to the

case of R&D capital we set the initial level of organizational capital OG0 according to

OG0 =
SGA1

gOG + δOG
.

The average annual growth rate of firm level XSGA, gOG, is 18.9% in our sample.

30RDIP (in-process R&D expense) is coded as negative in Compustat. Subtracting RDIP from XSGA
means RDIP is added to XSGA. As discussed in Peters and Taylor (2017), XSGA does not include this
component, so we add this component back to XSGA, then subtract the total amount of R&D expenditures.
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Table D.11: Definition of Variables

Variables Definition Sources

Structure share We first construct the structure shares from BEA industry capital
stock data, defined as structure capital over total fixed asset ratio.
Then we rescale the structure shares by the corresponding industry
average of physical asset (PPEGT) to book asset ratio (AT).

BEA + Compustat

Equipment share We first construct the equipment shares from BEA industry capi-
tal stock data, defined as equipment capital over total fixed asset
ratio. Then we rescale the equipment shares by the corresponding
industry average of physical asset (PPEGT) to book asset ratio
(AT).

BEA + Compustat

Intangible capital Intangible capital is defined following Peters and Taylor (2017). We
capitalize R&D and SGA expenditures using the perpetual inven-
tory method.

Compustat

Collateralizability Collateralizable capital divided by PPEGT + Intangible. Collater-
alizable capital and intangible capital are defined in Section D.2

BEA + Compustat

BE Book value of equity, computed as the book value of stockholders
equity, plus balance sheet deferred taxes and investment tax credit
(if available), minus the book value of preferred stock. Depending
on availability, we use the redemption, liquidation, or par value (in
that order) as the book value of preferred stock.

Compustat

ME Market value of equity is copmputed as price per share times the
number of shares outstanding. The share price is taken from CRSP,
the number of shares outstandings from Compustat or CRSP, de-
pending on availability.

CRSP+Compustat

BM Book to market value of equity ratio. Compustat

Tangibility Physical capital (PPEGT) to the sum of physical (PPEGT) and
intangible capital ratio.

Compustat

Book size Natural log of the sum of PPEGT and intangible capital. Compustat

Gross profitability Compustat item REVT minus COGS divided by AT. Compustat

OG/AT Organizational capital divided by total assets (AT). Compustat

XRD/AT R&D expenditure to book asset ratio. Compustat

Book leverage Lease adjusted book leverage is defined as lease adjusted debt over
total asset ratio (AT). The lease adjusted debt is the financial debt
(DLTT+DLC) plus the net present value of capital lease as in Li,
Whited, and Wu (2016).

Compustat

Dividend dummy Dummy variable equal to 1, if the firm’s dividend payment (DVT,
DVC or DVP) over the year was positive.

Compustat

Sales growth volatility Rolling window standard deviation of past 4 year’s sales growth. Compustat

Rating dummy Dummy variable equal to 1, if the firm has either a bond rating or
a commercial paper rating, and 0 otherwise.

Compustat

Marginal tax rate Following Graham (2000). John Graham’s website

WW index Following Whited and Wu (2006). Compustat

SA index Following Hadlock and Pierce (2010). Compustat

Return on asset Income before extraordinary items (IB) divided by total assets
(AT).

Compustat
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Table D.11: Definition of Variables (Continued)

Variables Definition Sources

Cash Compustat item CHE. Compustat

Equity issuance The negative of flow to debt. Compustat item -(PRSTKC+DV-SSTK). Compustat

Debt issuance The negative of flow to debt. Compustat item -(DLTR+DLCCH+XINT-DLTIS). Compustat

External finance The sum of equity and debt issuance. Compustat

Short-term debt Compustat item DLC. Compustat

Long-term debt Compustat item DLTR. Compustat

Return on equity Operating income before depreciation (OIBDP) divided by book equity. Compustat

Financial leverage Total financial debt (DLTT + DLC) over total book asset (AT) ratio. Compustat

Cash flow Compustat item EBITDA divided by total assets Compustat
Asset growth Growth rate of total assets Compustat
Type-K asset growth Growth rate of PPEGT Compustat

Age The current year minus the year where a firm has the first non-missing observation. Compustat
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