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1 Introduction

This paper presents a noisy rational expectations equilibrium (REE) model with endogenous infor-

mation acquisition to explain the pre-FOMC announcement drift documented by Lucca and Moench

(2015). Information is publicly available but costly to acquire. Because FOMC announcements re-

solve substantial uncertainty of the aggregate economy and have a significant impact on the stock

market, informed traders have particularly large information advantages in trading over uninformed

traders before announcements are made. As a result, it is optimal for uninformed traders to start

to acquire information days ahead of the announcements. Due to generalized risk sensitivity (GRS)

(Ai and Bansal, 2018) in preferences, as uncertainty resolves, equity market risk premium realizes

shortly before announcements. More importantly, because the newly acquired information is from

publicly available sources rather than leakage of the content of the upcoming announcement, our

theory can simultaneously explain the high average return and the low realized volatility during the

pre-FOMC announcement period.

Stock market returns earned on FOMC announcement days account for almost 100% of the

overall equity market risk premium since the mid-1990s. Ai and Bansal (2018) demonstrate that

this phenomenon can be consistent with general equilibrium asset pricing models if investors have

generalized risk sensitive preferences. The puzzling aspect of the FOMC announcement premium is

that it is mostly realized during the trading day before the actual announcements. If one is willing

to assume that most of the time, the contents of FOMC announcements are leaked to the market

days before the announcements, the example in Ai and Bansal (2018), illustrated in Figure 4 of their

paper, provides a direct explanation for the pre-FOMC announcement drift. However, information

leakage-based models are inconsistent with the low realized volatility during the pre-announcement

period.1

We define information leakage as the arrival of new information that is correlated with the up-

coming announcement but has not been incorporated in market prices. Because arrivals of new

information trigger immediate stock market responses, information leakage-based models typically

imply a counter-factually high level of realized volatility during the drift period. Empirically, how-

ever, the realized volatility of market returns during the pre-announcement period is slightly lower

than their counterparts on non-FOMC announcement days. It is the coexistence of low volatility and

high average return during the pre-announcement period that makes this phenomenon particularly

puzzling.

We develop a noisy REE model to explain the above puzzling pattern. In our model, the long-run

growth rate of the economy is governed by a latent state variable that is unobservable to all investors

but periodically announced by the central bank. Information, modeled as noisy signals about the

latent variable, is available but costly to acquire. There are two groups of investors, informed and

uninformed. Informed traders have zero cost of information acquisition and always observe noisy

1From an institutional point of view, evidence for information leakage is mostly anecdotal. In addition, the
pre-FOMC announcement drift accounts for almost 100% of the FOMC announcement premium. Attributing the
pre-FOMC announcement drift to leakage of information requires most of the information to be leaked before an-
nouncements. As argued by Lucca and Moench (2015), this extreme form of information leakage is implausible.
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signals about the latent growth rate. Uninformed investors do not observe the signals until they

pay a cost to acquire them. In our model, uninformed investors normally pay less attention to stock

market dynamics than informed traders but may choose to increase their attention when the benefit

exceeds the cost of information acquisition.

Our model has three key ingredients. The first is endogenous information acquisition. In

our model, uninformed investors endogenously choose to acquire information a few days ahead

of FOMC announcements. The endogenous information acquisition in our model is consistent with

the evidence documented by Fisher, Martineau, and Sheng (2020) that investors’ attention peaks

roughly three days before pre-scheduled FOMC announcements.

Second, uniformed investors’ preference satisfies generalized risk sensitivity. To maintain tractabil-

ity of the noisy REE setup, we develop a risk sensitive operator that extends the T 2 operator of

Hansen and Sargent (2007) and Hansen and Sargent (2011). In particular, this formulation allows

us to model investors’ ambiguity aversion about the hidden state variable, and at the same time, to

keep the closed-form solutions for the standard CARA-normal setup. Due to the generalized risk

sensitivity of preferences, resolution of uncertainty in our model is associated with the realization

of risk premium during the pre-announcement period, producing a pre-FOMC announcement drift.

The third key ingredient of our is asymmetric information. The information acquired by un-

informed investors is not leakage about the upcoming announcement; rather, it is the information

that is already known to informed investors and has been incorporated into equilibrium prices. As

a result, the degree of asymmetric information drops and noise gets eliminated from prices. More

importantly, information acquisition lowers, rather than increases, the realized volatility during the

pre-announcement period. This feature of our model generates the low realized volatility during

the pre-announcement period consistent with the empirical evidence.

Related Literature Our paper builds on the literature of macroeconomic announcement pre-

mium. Savor and Wilson (2013, 2014) are among the first to document the macroeconomic an-

nouncement premium. Ai and Bansal (2018) provide a revealed preference theory for the macroe-

conomic announcement premium. Wachter and Zhu (2020) develop a quantitative model of the

macroeconomic announcement premium based on rare disasters. Ai, Bansal, Im, and Ying (2020)

provide evidence for the impact of announcements on macroeconomic quantities as well as asset

markets and develop a production-based asset pricing model to explain these facts. Ernst, Gilbert,

and Hrdlicka (2019) present additional evidence for the macroeconomic announcement premium.

Within the above broader literature, our paper is more closely related to the FOMC announce-

ment premium. Lucca and Moench (2015) document the pre-FOMC announcement drift and

Cieslak, Morse, and Vissing-Jorgensen (2019) provide evidence for stock returns over the FOMC

announcement cycles. Morse and Vissing-Jorgensen (2020) provide a study for the information

transmission mechanism for Fed policies. Both Laarits (2020) and Ying (2020) provide models

of pre-announcement drifts. Both papers rely on the arrival of new information during the pre-

announcement period as in the example of Ai and Bansal (2018). Cocoma (2020) develops a general

equilibrium with disagreement to explain the pre-FOMC announcement drift.
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Several recent empirical work document important facts related to investor attention and trading

activities around FOMC announcement which provide a basis for the development of the theoreti-

cal model in this paper. Fisher, Martineau, and Sheng (2020) develop a macroeconomic attention

index and provide a systematic study of the pattern of investor attention around macroeconomic

announcements. Boguth, Grégoire, and Martineau (2018) emphasize the importance of press con-

ferences in shaping market expectations. Hu, Pan, Wang, and Zhu (2020) document the dynamics

of implied volatility around FOMC announcements. Ai, Bansal, Guo, and Yaron (2020) link the

dynamics of implied volatility around announcements to investors’ preference for early resolution of

uncertainty. Bollerslev, Li, and Xue (2018) study the relationship between realized volatility and

trading volume around FOMC announcements.

From the theoretical point of view, this paper builds on the noisy rational expectations lit-

erature pioneered by Grossman and Stiglitz (1980), Grossman (1981), and Hellwig (1980). The

continuous-time and dynamic setup are directly related to Wang (1993, 1994), and the setup of

the macroeconomic announcement is related to Han (2020). An incomplete list of recent applica-

tions of the dynamic Grossman-Stiglitz models include Breon-Drish (2015), Bond and Goldstein

(2015), Banerjee and Green (2015), Goldstein and Yang (2017), Albuquerque and Miao (2014),

Avdis (2016), Andrei and Cujean (2017), Andrei, Cujean, and Wilson (2018), Sockin (2019), Buffa,

Vayanos, and Woolley (2019).

This paper is also related to the literature on endogenous information acquisition and informa-

tion choice. Veldkamp and Van Nieuwerburgh (2010) study a joint decision problem of portfolio

choice and information acquisition. Banerjee and Breon-Drish (2020) analyze endogenous informa-

tion acquisition problems in an environment with strategic trading. Veldkamp (2011) provides an

excellent review of the literature of information choice and attention allocation.

From the perspective of general equilibrium asset pricing, this paper belongs to the large litera-

ture that studies various aspects of equity market risk and risk compensation based on preferences

with generalized risk sensitivity. To incorporate generalized risk sensitivity in a tractable way in the

Grossman-Stiglitz setup, we use the recursive multiple prior setup of Chen and Epstein (2002). See

also, Epstein and Schneider (2007). This preference is also related to the robust control preference

of Hansen and Sargent (2007, 2008, 2011). We do not attempt to survey this large literature but

refer the readers to Ai and Bansal (2018) for the references of preferences that satisfy generalized

risk sensitivity and their applications in asset pricing.

The rest of the paper is organized as follows. In Section 2, we summarize stylized facts related

to the FOMC announcement premium and the pre-FOMC announcement drift. We present our

model in Section 4 and study its implications in Section 5. Section 6 concludes.

2 Stylized Facts

We begin by summarizing the four stylized facts about stock market dynamics around pre-scheduled

FOMC announcements. All of the facts we list here are well established in the literature, and we
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simply use them as a guidance for the development of the model. See Appendix 6.1 for a detailed

data description.

1. The aggregate stock market exhibits high average returns starting from the previous trading

day until the release of the FOMC announcement. In Figure 1, we plot the cumulative return

around FOMC announcement starting from one trading day before the announcement until

one trading day afterwards. The solid line stands for announcement days and the dashed line

is the non-FOMC announcement day cumulative returns. The shaded area, 14:00-14:30 p.m.,

depicts the timing of most prescheduled FOMC meetings. Consistent with Lucca and Moench

(2015), we find that the 24-hour return before the pre-scheduled FOMC announcement during

the period of January 1994 to September 2020 is about 32 basis points on average.

Figure 1: The Pre-FOMC Announcement Drift

This figure plots the average three-day cumulative return (in percentage) around FOMC and non-FOMC announce-
ment days. The solid line displays the average cumulative return during regular trading hours from 9:30 a.m. on
one trading days before the FOMC announcements to 16:00 p.m. on days afterward. The dashed line is the average
cumulative return on all three trading consecutive days that do not include any FOMC announcement (Note that
there exits overlapping among these three-day windows). The shaded area, 14:00-14:30 is the half an hour window
containing most of the FOMC releases. The sample period is from January 1994 to September 2020.

2. Investors’ attention rises three days before FOMC announcements and peaks right after FOMC

announcements. Fisher, Martineau, and Sheng (2020) develop a macroeconomic attention

index based on news article counts. In Figure 2, we plot their constructed macroeconomic

attention index around FOMC announcements. Investor’s attention about monetary policy

starts to increase three days ahead of announcements. It spikes at one because there is one day

delay for the news article to be printed. This is the motivating evidence for our endogenous

information acquisition-based theory.

3. The realized volatility during the pre-FOMC announcement period is slightly lower than the

realized volatility during the same hours on non-announcement days. Realized volatility peaks

right after FOMC announcements. In Figure 3, we plot the 30-minute realized volatility over

the three days around FOMC announcements. The dotted line stands for announcement days
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Figure 2: Monetary Policy Attention around FOMC Announcements
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This figure replicates the bottom right panel of Figure 4 in Fisher, Martineau, and Sheng (2020). The horizontal axis
is the number of days since the announcement. The vertical axis shows the lag and forward coefficients by regressing
the daily demeaned macroeconomic attention of composite monetary index on dummy variables of days since the
announcements, controlling for day-of-the-week fixed effects. The sample period is from January 1994 to December
2020.

and the dashed line depicts non-announcement days. Compared to non-announcement days,

realized volatility is lower before FOMC announcements, and peaks right after announcements.

Figure 3: Realized Volatility

This figure plots the intraday average market realized volatility during the three days around FOMC and non-FOMC
announcement days. The dotted line is the realized volatility for FOMC announcement days, and the dashed line is
that for non-FOMC announcement days. Realized volatility (annualized in percentage) is the average rolling sum of
squared log returns on the S&P 500 E-mini futures over the past 30 minutes. The dashed line is the same calculation
on all three consecutive trading days that do not include any FOMC announcement (Note that there exits overlapping
among these three-day windows). We calculate the realized volatility for each minute from 10:00 to 16:00. The sample
period is from September 1997 to September 2020. The shaded area, 14:00-14:30 is the half an hour window containing
most of the FOMC releases.

This evidence is inconsistent with information leakage-based story, which will trigger stock

market reactions and result in a high realized volatility during the pre-FOMC announcement

drift period.

In the following section, we show that a dynamic noisy rational expectations (REE) model with en-

dogenous information acquisition, after incorporating generalized risk sensitive preferences, provides
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a unified explanation for the above facts.

3 An Example of the Pre-FOMC Announcement Drift

In this section, we reproduce the simple example in Figure 4 of Ai and Bansal (2018) to illus-

trate how combining generalized risk sensitivity and information leakage can generate a pre-FOMC

announcement drift. More importantly, we use this example to illustrate the difficulty for a rep-

resentative agent model to simultaneously explain the low volatility and high return during the

pre-FOMC announcement period.

The Ai and Bansal (2018) model assumes a continuous-time setup where the aggregate consump-

tion follows dCt
Ct

= [xtdt+ σdBC,t], where σ is the volatility of consumption growth. The expected

consumption growth is driven by a hidden state variable xt , which follows

dxt = ax (x̄− xt) dt+ σxdBx,t, (1)

where x̄ is the long-run mean of xt, b is the rate of mean reversion, σx is the volatility of the hidden

state xt, and Bx,t is a standard Brownian motion independent of BC,t. At time t = T, 2T, 3T, · · · ,
pre-scheduled FOMC announcements reveal the true values of xt. To model information leakage,

we assume that starting from time τ < T , the representative investor observes an additional signal

lt, which carries information about the content of upcoming announcement xt:

lt = xtdt+ σl (t) dBl,t. (2)

where σl (t) is the inverse of signal precision and Bl,t is a mutually independent Brownian motion

noise. Ai and Bansal (2018) show that the posterior mean of xt, denoted x̂t can be written as:

dx̂t = ax (x̄− x̂t) dt+
qt
σ
dB̂C,t +

qt
σl (t)

dB̂l,t, (3)

where qt is the posterior variance of xt, defined as qt = Et
[
(x̂t − xt)2

]
. dB̂C,t = 1

σ

(
dCt
Ct
− Et

[
dCt
Ct

])
and dB̂l,t = 1

σl(t)
(dlt − Et [dlt]) are innovations in the observation processes relative to the investor’s

belief.

Assume that the representative investor has a recursive preference with a subjective discount

rate of ρ, a unit IES, and a risk aversion of γ, the pricing kernel can be written as:

dπt = −rtdt− σdB̂C,t − (γ − 1)

[(
1 +

qt
(ax + ρ)σ2

)
σdB̂C,t +

qt
(ax + ρ)σl (t)

dB̂l,t

]
, (4)

where the first term is the risk free rate, and the second term σdBC,t comes from the standard

expected utility with log preference, and the term in the square bracket arises due to generalized

risk sensitivity: γ > 1.

The case of information leakage can be modeled by assuming σl (t) = ∞ for t < τ and σl (t) =
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0.01% for t ∈ [τ, T ]. That is, during the pre-announcement period [τ, T ], the investor suddenly

starts to observe a very precise signal about the true contents of the upcoming announcement, xt.

In Figure 4 below, we plot the posterior variance (top panel), the average price-to-dividend ratio

(middle panel), and the volatility of the market return (bottom panel) implied by the above model.

Because the information is very precise, the posterior variance qt drops sharply at t = τ . At the

same time, the average price-to-dividend ratio rises sharply. This is because leakage of information

is associated with a high volatility of the stochastic discount factor: the term qt
(ax+ρ)σl(t)

in equation

(4) rises sharply after τ because σl (t) is close to zero. This mechanism generates a large risk

premium in the short period ahead of announcements.

Figure 4: Equilibrium without and with Information Acquisition
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This figure plots q̂t, the posterior variance for x̂t (top panel), the average price-to-dividend ratio (middle panel), and
the return volatility (annualized in percentage) (bottom panel) over one announcement cycle at the steady state value
x̂t = x̄. The horizontal axis is the number of days before the upcoming announcement, which is normalized to 0. The
information starts to leak at time τ < T . Here, τ = 42, three days before the announcement and T = 45. We refer to
Table S.I in Ai and Bansal (2018) for the rest of the parameter values.

The high volatility of the stochastic discount factor, however, is associated with the high volatil-

ity of the posterior belief qt
σl(t)

in equation (3). In fact, the high volatility of x̂t is the reason for the

high volatility of the stochastic discount factor. As shown in Figure 4, the realized volatility rises

sharply and simultaneously as the price-to-dividend ratio increases with leakage of information.

The above example illustrates a key difficulty for models that generate a pre-FOMC announce-

ment drift based on the arrival of new information to the market, or leakage of information. In

the data, the average excess return during the pre-FOMC announcement period is roughly 30 bps

per trading day, and that on non-announcement days is less than 2 bps. Holding the Sharpe ratio

constant, to account for a 30 bps premium, the information leakage-based story requires a realized

market volatility of twenty times higher during the pre-announcement period, whereas in the data,

the realized market volatility in this period is in fact lower than that on non-announcement days. In

the rest of the paper, we develop a noisy rational expectations model with information acquisition
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to resolve the above puzzle.

4 Dynamic Model

This section develops a continuous-time noisy REE model with endogenous information acquisition

and generalized risk-sensitive preferences.

4.1 Model Setup

The asset market Time is continuous and infinite. There is a unit measure of investors. An ω

fraction of them are uninformed investors and 1− ω fraction are informed investors. There are two

assets available for trading, a stock and a risk-free bond. We assume that the risk-free return r is

constant. The stock is the claim to the following dividend process:

dDt = (xt −Dt) dt+ σDdBD,t, (5)

where Dt is the dividend flow, xt is the long-run trend for the dividend flow, σD is the volatility

of the dividend flow, and BD,t is an i.i.d. shock to the dividend payment modeled as a standard

Brownian motion. We model the expected dividend flow as xt −Dt, so that the dividend process

is stationary. The assumption that the mean reversion rate equals to 1 is not important and can

be relaxed without affecting most parts of the model. The long-run trend of the dividend flow, xt,

is itself mean reverting, modeled as an Ornstein-Uhlenbeck (OU) process as in equation (1). In

addition, as is standard in the noisy REE literature, we assume that the total equity supply is a

stochastic process and denote it as θt, where

dθt = a
(
θ̄ − θt

)
dt+ σθdBθ,t. (6)

In the above equation, a is the rate of mean reversion, θ̄ is the long-run mean for θt, and σθ is

the noisy supply volatility. We assume that Brownian motions BD,t, Bx,t, and Bθ,t are mutually

independent.

Information and preference of informed investors We assume that the dividend process,

Dt, is observable to all investors, but its long-run trend xt and the total risky asset supply θt are

not. At pre-scheduled times, t = nT , for n = 1, 2, · · · , the monetary authority (central bank) makes

periodic announcements that reveal the true value of xt. Both informed and uninformed investors

can observe Dt and the pre-scheduled FOMC announcements and use them to update their beliefs

about the latent variable that drives the economic growth, xt.

We assume that market research can produce a signal that is informative about xt, denoted as

st:

dst = xtdt+ σsdBs,t, (7)
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where σs is the signal volatility and Bs,t is a Brownian motion independent of BD,t, Bx,t, and

Bθ,t. We think of st as information available in the public domain but costly to acquire. Informed

investors have a comparative advantage relative to uninformed investors in terms of information

acquisition. For simplicity, we assume that they have zero information acquisition cost and observe

st at all times.

Both types of investors maximize CARA utilities represented by
[
E
´∞

0 −e
−ρt−γCtdt

]
, where

Ct is the consumption at time t, ρ is the subjective time discount rate and γ is the absolute risk

aversion.

Information and beliefs Informed investors observe three sources of information about the

latent variable xt that drives the economic growth: the dividend process Dt, pre-scheduled FOMC

announcements at t = nT, n = 1, 2, · · · , and the signal process st obtained from market research.

Denote x̂t ≡ Êt [xt] and q̂ (t) ≡ Êt
[
(x̂t − xt)2

]
as the posterior mean and variance of the informed

investors about xt, where Ê indicates the belief of the informed. If the informed investors’ prior for

xt is a Gaussian distribution, then their posterior distribution for xt is also Gaussian and can be

characterized by the standard Kalman filter. We assume FOMC announcements convey information

about the economic growth and fully reveal the true value of xt, we then have x̂t = xt and q̂t = 0 at

prescheduled announcements t = nT . After announcements, because x̂t process evolves according

to equation (8), x̂t drifts away from the true value of xt and q̂t increases above zero, up until the

next announcement. Standard Kalman filter implies that the dynamics of x̂t can be computed by:

dx̂t = b (x̄− x̂t) dt+
q̂ (t)

σD
dB̂D,t +

q̂ (t)

σs
dB̂s,t, (8)

where dB̂D,t = dDt− Êt [dDt] and dB̂s,t = dst− Êt [dst] are innovations in the observation processes

relative to informed investors’ expectations.

In contrast, uninformed investors do not observe st, unless they pay a cost to acquire such infor-

mation. To keep the structure simple, we assume that they have an option to acquire information

at time τ by paying a one-time fixed cost K. Exercising the option allows all uninformed investors

to observe a common noisy signal at time t ≥ τ about the publicly available information {sv}tv=−∞
by paying a constant flow cost k. Note that {sv}tv=−∞ summarizes the history of information that

informed investors have already observed up to time t. Since informed investors’ posterior belief x̂t

contains all the information in {sv}tv=−∞ that is relevant for forecasting xt, learning from {sv}tv=−∞
is equivalent to learning about x̂t. Because the stock price (see equation (10) below) is a function

of x̂t, it is more convenient to model the newly acquired information as a signal for x̂t:

dsu,t = x̂tdt+ σu (t) dBu,t, (9)

where Bu,t is independent of Bs,t, BD,t, Bx,t, and Bθ,t. We focus on the symmetric equilibrium

where all uninformed investors start to acquire information at time τ . In Section 4.2, we show that

uninformed investors solve an optimal information acquisition problem by choosing the optimal
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stopping time τ .

We interpret st as the frontier market research, that is, the best information any agent in the

economy has about the latent state variable xt. Following Sims (2003), we can interpret information

acquisition as a form of rational inattention. Before τ , uninformed investors are rationally inatten-

tive to the frontier market research as acquiring such information is costly. We can conveniently

denote this case as σu (t) =∞ for t < τ . After the option of information acquisition is exercised at

time τ , uninformed investors start to allocate attention towards the information in st until the next

announcement. We write σu (t) = σu for t ∈ [τ, T ]. Different from the example in Section 3 where

the signal is about the true contents of the announcement xt, the newly acquired information here

is about the publicly available information st that anyone could obtain by paying more attention

to the frontier market research.

It is convenient to denote the posterior mean of an uninformed investor as x̃t = Ẽt [x̂t] and the

posterior variance as q̃ (t) ≡ Ẽt
[
(x̃t − x̂t)2

]
, where Ẽ captures the belief of the uninformed investor.

We conjecture and later verify that the equilibrium price takes the following form

Pt = φ (t) + φDDt − φθ (t) θt + φx (t) x̂t + φ∆ (t) x̃t, (10)

where φθ (t), φx (t), and φ∆ (t) are time-varying sensitivities of price to θt, x̂t and x̃t, respectively,

and the sum of the two coefficients, φ̄x ≡ φx (t) + φ∆ (t) is a constant.2 Clearly, if we define

∆t ≡ x̂t − x̃t to be the difference between the beliefs of the informed and uninformed investors,

price can therefore be written as:

Pt = φ (t) + φDDt − φθ (t) θt + φ̄xx̂t − φ∆ (t) ∆t. (11)

Learning from prices Here we describe the beliefs of uninformed investors in our model, which

is the key to understanding the model’s implications for the pre-FOMC announcement drift. Note

that due to the presence of the noisy supply, the equilibrium price is only partially revealed to the

uninformed but still contains information about the best predictions for xt. Uninformed investors

would benefit from learning from the equilibrium price. It is convenient to define ξt = φx (t) x̂t −
φθ (t) θt− q̂t

σ2
D
φx (t)Dt as the information content of prices, as observing ξt is the same as observing

the equilibrium price. The uninformed investors observe three sources of information about the

informed investors’ belief x̂t: the dividend process, the equilibrium price (or ξt), and the signal su,t

after paying the information acquisition cost. Standard Kalman filter implies that the dynamics of

x̃t can be written as:3

dx̃t = b (x̄− x̃t) dt+
q̂ (t) + q̃ (t)

σD
dB̃D,t + ν (t)σξ (t) dB̃ξ,t +

q̃ (t)

σu (t)
dB̃u,t, (12)

2As is standard in this literature, we use a guess-and-verify approach to prove the functional form of Pt and the
property that φx (t) + φ∆ (t) = φ̄x is a constant.

3See Appendix 6.3 for the proof.
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where dB̃D,t = dDt − Ẽt [dDt], dB̃ξ,t = dξt − Ẽt [dξt] and dB̃u,t = dsu,t − Ẽt [dsu,t] are innovations

in the observation processes relative to expectations. In the above expression, ν (t) is defined in

equation (51) and the volatility of dξt, σξ (t) is defined in equation (46) in Appendix 6.3.

Before τ , uninformed traders can only learn about x̂t from the dividend process and the equi-

librium price. After the information acquisition, they can also learn from the newly acquired

information, su,t. It is important to note that in our setup, the endogenously acquired signal, su,t is

about the information about x̂t, which has already been incorporated into the market price through

informed investors’ trading activities. The newly acquired information is not informative about the

difference between the true value of xt and x̂t, which is only revealed through announcements. In

other words, the content of the upcoming announcement, xt, is not revealed until right after the

announcement. This feature of our model is essential in accounting for the low volatility during the

pre-announcement period.

GRS through recursive CARA preferences In order to account for the equilibrium announce-

ment premium, we assume that the uninformed investors’ preference satisfies the property of GRS

in Ai and Bansal (2018). To maintain tractability and at the same time to allow for GRS, we

extend the T 1 and T 2 operators in Hansen and Sargent (2007, 2011) and define the preference as

a stochastic differential utility. Denote the continuation utility of the uninformed investor at time

t as Ṽt. Given a consumption process {Ct}∞t=0, the associated continuation utility Ṽt is a stochastic

differential utility of the form

dṼt = LṼtdt+ σV (t) dB̃t, (13)

where B̃t =
[
B̃D,t, B̃ξ,t, B̃u,t

]
is a vector of standard Brownian motions relative to uninformed

investors’ information, and σV (t) is vector of diffusions defined in equation (103) in Appendix 6.4.

The Dynkin operator L [�] is defined as

LṼt = lim
∆→0

1

∆
Et
[
Ṽt+∆ − Ṽt

]
. (14)

We show that Ṽt must satisfy an HJB equation of the form

ρṼt = −e−γCt + LṼt + T Ṽt, (15)

where the operator T [�] is defined as:

T Ṽt = −1

2

κ∣∣∣Ṽt∣∣∣ lim
∆→0

1

∆2
V ar

[
E
[
Ṽt+∆

∣∣∣ x̂t]∣∣∣x̃t] . (16)

In the above formulation, κ is a parameter that describes the investors’ ambiguity aversion. The

case κ = 0 corresponds to the expected utility without GRS, and a positive κ implies that investors

are ambiguity averse with respect to the unknown state variable, x̂t. In settings under robust

control with hidden Markov state variables, Hansen and Sargent (2007, 2011) use the T 1 operator to
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model robustness concerns about the conditional distribution of signals given hidden state variables

(model uncertainty) and the T 2 operator to model robustness concerns about misspecification of the

distribution of the hidden state variable (state uncertainty). The T operator defined above has the

same interpretation as the T 2 operator in Hansen and Sargent (2011), although we use a different

functional form for tractability. We provide the details of the development of these operators for

CARA utility in the appendix. For simplicity, we assume that the ambiguity aversion parameter

for the T 1 operator is zero and use the T operator defined above to focus on ambiguity aversion

about the hidden state. κ therefore summarizes uninformed investors’ degree of state uncertainty.

4.2 Equilibrium and Equilibrium Conditions

For simplicity, we will focus on stationary equilibria in which equilibrium prices satisfy Pt = Pt mod T

where mod denotes the modulo operator, and so do equilibrium quantities. That is, all equilibria are

identical across different announcement cycles. Without loss of generality, we can therefore focus

on prices and quantities over the closed time interval [0, T ], because they repeat themselves within

each announcement cycle. We use T+ and T− to denote the moment right after announcements

and right before announcements, respectively. Whenever there is any confusion, time 0 should be

understood as T+ and T should be understood as T−.

Below we construct an equilibrium in which there exists a τ ∈ (0, T ) such that all uninformed

investors find it suboptimal to acquire any information before τ , and after t > τ , they optimally

choose to acquire the signal su,t until the next announcement.

Definition of the equilibrium A stationary equilibrium consists of a collection of pricing func-

tions {φ (t) , φD, φθ (t) , φ∆ (t)}, demand functions of the informed investors, α (t, θt,∆t) = α0 (t) +

αθ (t) θt + α∆ (t) ∆t, and demand functions for uninformed investors, β
(
t, θ̃t

)
= β0 (t) + βθ (t) θ̃t

such that:

1. Given the pricing functions {φ (t) , φD, φθ (t) , φx (t) , φ∆ (t)}, {α0 (t) , αθ (t) , α∆ (t)} represents

the optimal portfolio demand for the informed investors.

2. Uniformed investors strictly prefer not to acquire information for all t < τ . After time τ ,

uninformed investors prefer to acquire information.

3. Given their information set, {β0 (t) , βθ (t)} represents the optimal portfolio demand of unin-

formed investors.

4. Markets clear, that is,

(1− ω)α (t, θt,∆t) + ωβ
(
t, θ̃t

)
= θt (17)

for all t ∈ [0, T ].
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Equilibrium beliefs Because the information set of uninformed investors is a subset of the

information set of the informed investors, informed investors can infer the belief of uninformed

investors, x̃t and compute the difference, ∆t ≡ x̂t− x̃t. We combine equations (8) and (12) to derive

the difference in belief as a diffusion process:

d∆t = −a∆ (t) ∆tdt−
q̃ (t)

σD
dB̂D,t+

q̂ (t)

σs
[1− φx (t) ν (t)] dB̂s,t+φθ (t) ν (t)σθdBθ,t−

q̃ (t)

σu (t)
dBu,t, (18)

where a∆ (t) is defined in equation (57) in Appendix 6.3. Given the pricing equation (11), we

define the excess return process as dQt = (Dt − rPt) dt+ dPt. Using the law of motion of the state

variables, we can write the excess return as a diffusion process from the perspective of the informed

investors:

dQt = [e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt+ %D (t) dB̂D,t + %ξ (t) dB̂ξ,t + %u (t) dBu,t, (19)

where the coefficients e0 (t), eθ (t), e∆ (t), %D (t), %ξ (t), %u (t) are given in equation (60) in Appendix

6.3, and σξ (t) dB̂ξ,t = dξt − Êt [dξt] is the innovation in ξt relative to the informed investors’

information. This implies the local variance of excess return is of the following form

σP (t) = %2
D (t) + %2

ξ (t) + %2
u (t) . (20)

Uninformed investors, however, cannot distinguish ∆t from θt. Because they observe the prices,

rational expectations imply Pt = Ẽt [Pt]. This allows us to rewrite the equilibrium price (11) as:

Pt = φ (t) + φDDt − φθ (t) θ̃t + φ̄xx̃t. (21)

The law of motion of x̃t is given in equation (12). To derive the law of motion for θ̃t, recall that

observing prices is equivalent to observing ξt = φx (t) x̂t−φθ (t) θt− q̂(t)
σ2
D
φx (t)Dt. Taking conditional

expectation Ẽt on both sides, we have ξt = Ẽt [ξt]. Therefore,

ξt = φx (t) x̃t − φθ (t) θ̃t −
q̂ (t)

σ2
D

φx (t)Dt. (22)

We have: θ̃t = φx(t)
φθ(t) x̃t −

1
φθ(t)ξt −

q̂(t)
σ2
D

φx(t)
φθ(t)Dt. The law of motion of θ̃t can therefore be written as:

dθ̃t = a
(
θ̄ − θ̃t

)
dt+

φx (t)

φθ (t)

q̃ (t)

σD
dB̃D,t + [φx (t) ν (t)− 1]

σξ (t)

φθ (t)
dB̃ξ,t +

φx (t)

φθ (t)

q̃ (t)

σu (t)
dB̃u,t. (23)

This allows us to write the excess return process dQt in terms of a diffusion process adapted to the

information set of the uninformed investors:

dQt =
[
e0 (t) + eθ (t) θ̃t

]
dt+ %D (t) dB̃D,t + %ξ (t) dB̃ξ,t + %u (t) dB̃u,t. (24)
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Portfolio selection and information acquisition Informed investors in our model solve an op-

timal portfolio selection problem. At time t, they maximize life-time utility, Êt
[´∞

0 −e
−ρs−γĈt+sds

]
by choosing consumption and portfolio holdings,

{
Ĉt+s, αt+s

}∞
s=0

, subject to the following law of

motion of wealth:

dŴt =
(
Ŵtr − Ĉt

)
dt+ αtdQt, (25)

where the excess return process dQt is given in equation (19). As a result, the value function for

informed investors, denoted as V̂ (t,W, θ,∆) satisfies the following HJB equation:

V̂
(
t, Ŵ , θ,∆

)
= max

Ĉ,α

{
u
(
Ĉ
)

+ LĈ,αV̂
(
t, Ŵ , θ,∆

)}
, (26)

where the Dynkin operator LĈ,α is defined in equation (14), and the superscripts indicate that the

expectation is taken under the probability law associated with the policy functions
{
Ĉ, α

}
.

Uninformed investors solve both an optimal consumption-investment problem and an optimal

information acquisition problem. They maximize the life-time utility by choosing the optimal stop-

ping time τ , optimal consumption and portfolio holding
{
C̃t+s, βt+s

}∞
s=0

, subject to the law of

motion of wealth: dW̃t =
(
W̃tr − C̃t

)
dt + βtdQt. Consider an announcement cycle, [0, T ], we

focus on symmetric equilibria where all uninformed investors exercise the option of information

acquisition at time τ ∈ [0, T ]. For tractability, we allow the information acquisition cost, K
(
θ̃
)

to

depend on the posterior belief θ̃t. This allows us to choose the functional form of K
(
θ̃
)

so that the

equilibrium optimal stopping time τ is deterministic.

For t < τ , we denote the value function as Ṽ
(
t,W, θ̃|∞

)
, where the notation (·|∞) indicates

σu (t) =∞ of t < τ . The value function must satisfy the following HJB equation:

ρṼ
(
t,W, θ̃|∞

)
= max

C,β

[
u (C) + LC,β∞ Ṽ

(
t,W, θ̃|∞

)
+ T C,β∞ Ṽ

(
t,W, θ̃|∞

)]
, (27)

where the LC,β∞ and T C,β∞ operators are defined in equations (14) and (16), respectively. The

superscripts indicate that the expectation is taken under the probability law associated with the

policy functions
(
C̃, β

)
and the belief associated with σu (t) =∞.

After the exercising the option for information acquisition, for t > τ , we denote the value

function as Ṽ
(
t,W, θ̃|σu

)
. Optimality of consumption-portfolio choice requires that the following

HJB equation must be satisfied:

ρṼ
(
t,W, θ̃|σu

)
= max

C,β

[
u (C − k) + LC,βσu Ṽ

(
t,W, θ̃|σu

)
+ T C,βσu Ṽ

(
t,W, θ̃|σu

)]
, (28)

where the rate of consumption is C−k because uninformed investors need to pay a flow cost of k to

keep observing the signals su (t). Here, the subscripts of the LC,βσu and T C,βσu operators indicate the

expectations are taken with respect to an information set that includes the newly acquired signal,

su (t).
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Because uninformed investors optimally exercise the option of information acquisition at time

t = τ by paying the cost K
(
θ̃
)

, value functions must satisfy the following value matching condition.

For all W and θ̃,

Ṽ
(
τ,W, θ̃|σu

)
= Ṽ

(
τ,W −K

(
θ̃
)
, θ̃|∞

)
. (29)

In addition, as shown in the appendix, the following conditions are sufficient conditions for t = τ

being an optimal stopping time.

Lemma 1. Suppose Ṽ
(
t,W, θ̃|σu

)
satisfies the HJB equations, (27) and (28), and the value match-

ing condition (29). Suppose also, the following two conditions hold:

1. For all t < τ , the following inequality holds:

ρṼ
(
t,W +K

(
θ̃
)
, θ̃|∞

)
≥ max

C,β

{
u (C − k) + LC,βσu Ṽ

(
t,W +K

(
θ̃
)
, θ̃|∞

)}
. (30)

2. For all t > τ ,

ρṼ
(
t,W −K

(
θ̃
)
, θ̃|σu

)
≥ max

C,β

{
u (C) + LC,β∞ Ṽ

(
t,W −K

(
θ̃
)
, θ̃|σu

)}
(31)

Then τ is the optimal time for information acquisition, and Ṽ
(
t,W, θ̃|σu

)
is the associated value

function.

Proof. See Appendix 6.6.

Market clearing In our model, the equilibrium price is pinned down by the market clearing

condition in equation (17). Using equation (22), φx (t) x̂t − φθ (t) θt = φx (t) x̃t − φθ (t) θ̃t, we could

obtain the following identity,

θ̃t = θt −
φx (t)

φθ (t)
∆t. (32)

Intuitively, because uninformed investors observe prices, they can make mistakes about x̂t and θt

separately, but will not make a mistake about φx (t) x̂t− φθ (t) θt . This restriction implies that the

only reason for the uninformed to be relatively more pessimistic about x̂t is that they believe that

the higher level of price is not justified by higher fundamentals, x̂t, but by a lower noisy supply θt.

That is, x̂t − x̃t and θt − θ̃t must have the same sign to capture the relative pessimism between

informed and uninformed investors.

Using the above to replace θ̃t in the market clearing condition (17), we obtain the following

restrictions on the portfolio decisions:

(1− ω)α0 (t) + ωβ0 (t) = 0, (33)

(1− ω)αθ (t) + ωβθ (t) = 1, (34)

(1− ω)α∆ (t)− ωφx (t)

φθ (t)
βθ (t) = 0. (35)
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In Appendix 6.3, we show that investors’ optimality problems and the above market clearing con-

ditions jointly pin down the pricing functions {φ (t) , φθ (t) , φ∆ (t)}.

5 Model Implications

Thanks to the CARA-normal setup, our model allows for closed-form solutions. We provide details

of our model solutions and derivations in Appendix 6.5. In this section, we calibrate our model and

demonstrate the main implications of our model under our chosen calibration. Here we summarize

the main implications of the model.

1. Uninformed investors’ incentive to acquire information increases monotonically over time and

peaks before the announcements. Because information acquisition is costly, it is optimal to

acquire information shortly before announcements.

2. As uninformed investors start to acquire information, stock returns and their stochastic dis-

count factor become more correlated. Under generalized risk sensitivity, this higher correlation

translates into a higher risk premium and leads to an increase in expected returns, or the pre-

FOMC announcement drift.

3. Because newly acquired information (about x̂t) has already been incorporated into the market

price through informed investors’ trading activities, information acquisition by uninformed in-

vestors does not trigger a high realized volatility. Instead, it eliminates noise in the equilibrium

price and leads to a lower realized volatility during the pre-announcement period.

4. Upon the announcement, the true value of xt is revealed, and as a result, realized volatility

spikes.

We begin by analyzing the incentives for the endogenous information acquisition.

Timing of the information acquisition In our model, as in the data, periodical announcements

are pre-scheduled. Uninformed investors do not find it optimal to acquire information until close

to the upcoming announcements for two reasons. First, because announcements fully reveal the

true value of xt, initially after the previous announcement, both the informed and the uninformed

investors have little uncertainty about xt, so there is no need to acquire additional information.

As t increases from 0, xt drifts away from its previous value due to lack of information. From

the perspective of uninformed traders, uncertainty slowly builds up and the benefit of information

acquisition rises over time.

In the model, we measure uncertainty in two ways, the posterior variance for xt from the

perspective of uninformed investors, Ẽ
[
(x̃t − xt)2

]
= q̃ (t) + q̂ (t), and the stock return volatility.4

To illustrate the buildup of uncertainty over time, in Figure 5, we plot the posterior variance of

uninformed investors, q̃ (t) + q̂ (t) in the top panel and the variance of stock returns, V ar [dQt] in

4See Appendix 6.3 for the derivations of the joint distributions in beliefs.
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the bottom panel, in an economy without information acquisition. As in the data, our example

features eight FOMC announcements per year and therefore each announcement cycle is 45 days.

Clearly, without information acquisition, both measures of uncertainty increase over time until the

announcement. As a result, the benefit for the uninformed traders to acquire information also

increases over time.

Figure 5: Uncertainty Dynamics in an Economy without Information Acquisition
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This figure plots two measures of uncertainty in an economy without information acquisition within one announcement
cycle. The top panel is the uninformed investors’ posterior variance about xt, q̂t+ q̃t and the bottom panel is the local
variance of stock market returns, σP (t) defined in equation (20). The horizontal axis is the number of days before the
upcoming announcement, which is normalized to 0. A −5, for example, stands for five days before the announcement.

The second reason for the increasing pattern of the incentive for information acquisition is

that due to the asymmetric information, the information disadvantage of the uninformed investors

rises over time, and so does their trading losses. To see this, note that the expected excess

return of the uninformed investors’ portfolio is β
(
θ̃t

)
dQt, where we denote β

(
θ̃t

)
= β0 (t) +

βθ (t) θ̃t is the equilibrium portfolio policy for the uninformed investors. We can intuitively define

E
[
β (θt) dQt − β

(
θ̃t

)
dQt

]
as the expected trading loss due to asymmetric information. That is,

the expected gain uninformed investors could obtain if he knows the true state variable θt. Note

that [
β (θt)− β

(
θ̃t

)]
dQt = βθ (t)

(
θt − θ̃t

)
dQt. (36)

Using the identities Pt = Ẽt [Pt] and equation (32), θt − θ̃t = −φx(t)
φθ(t) ∆t. We first take conditional
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expectation of (36) given the informed investors’ information set:

Êt
[
βθ (t)

(
θt − θ̃t

)
dQt

]
= βθ (t)

(
θt − θ̃t

)
[e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt

= βθ (t)
(
θt − θ̃t

)
[e0 (t) + eθ (t) θt] dt+ βθ (t)

(
θt − θ̃t

)
e∆ (t) ∆tdt

= βθ (t)
(
θt − θ̃t

)
[e0 (t) + eθ (t) θt] dt− βθ (t)

φx (t)

φθ (t)
e∆ (t) ∆2

tdt,

where the last line uses the identity θt − θ̃t = −φx(t)
φθ(t) ∆t. Now, taking the unconditional expectation

of the above equations, we have

E
[[
β (θt)− β

(
θ̃t

)]
dQt

]
= −βθ (t)

φx (t)

φθ (t)
e∆ (t) q̃tdt. (37)

The term βθ (t) φx(t)
φθ(t)e∆ (t)V ar [∆t] can therefore be interpreted as the unconditional expectation

of trading losses per unit of investment in the market portfolio for uninformed investors due to

information disadvantage.

Figure 6: Information Disadvantage of Uninformed Investors
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This figure plots two measures of the information disadvantage for uninformed investors over one announcement cycle
without information acquisition. The top panel plots the unconditional variance of difference in beliefs, q̃t. The
bottom panel is the expected trading loss due to the information gap, βθ (t) φx(t)

φθ(t)
e∆ (t)V ar [∆t], defined in equation

(37). The horizontal axis is the number of days before the upcoming announcement, which is normalized to 0. A −5,
for example, stands for five days before the announcement.

In Figure 6, we plot two measures of the information disadvantage for uninformed investors. The

top panel plots the unconditional variance of difference in beliefs: q̃t = V ar [∆t]. The bottom panel

is the expected trading loss due to information gap, φx(t)
φθ(t)e∆ (t)V ar [∆t], as defined in equation (37).

As shown in the figure, the information disadvantage for uninformed investors, as measured by q̃t is

relatively small on non-announcement days and increases over time until the announcement. The

expected trading loss exhibits the same pattern. In an economy without information acquisition,
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the information advantage of informed investors increases over time and peaks right before the

announcement. At the announcement, the true value of xt is revealed and a large amount of new

information arrives at the market in a short period. Information suddenly becomes homogeneous

and the posterior variance for both informed and uninformed investors jumps to zero. Therefore,

information acquisition prior to announcements is particularly valuable for uninformed investors

because the information disadvantage is particularly costly right before the announcements.

Figure 7: Uninformed Investors’ Posterior Variance, q̃t
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This figure plots q̃t, the posterior variance of the uninformed investor’s belief of x̂t over one announcement cycle.
The top panel is a model without information acquisition and the bottom penal is our benchmark economy with
endogenous information acquisition. The vertical line indicates the timing when uninformed investors start to acquire
information. The horizontal axis is the number of days before the upcoming announcement, which is normalized to
0. A −5, for example, stands for five days before the announcement.

In Figure 7, we plot q̃t, which is the uninformed investors’ posterior variance of x̂t. The top

panel is the path of q̃t in equilibrium without information acquisition, where q̃t increases mono-

tonically from day −45 to day 0, the announcement day. The bottom panel of Figure 7 is q̃t in

our benchmark model with endogenous information acquisition, in which the uninformed decide to

acquire information starting from 3 days before the announcement. As uninformed investors start

to acquire information, the price becomes more informative, and q̃t drops sharply from day −3 to

day 0. The fact that investors start to acquire information endogenously in our model days ahead of

the FOMC announcement provides a rational explanation for the increasing patterns of investors’

attentions around macroeconomic announcements documented by Fisher, Martineau, and Sheng

(2020).

Pre-FOMC announcement drift To understand the model’s implications on pre-FOMC an-

nouncement drift, in Figure 8, we plot the unconditional expectation of equilibrium price: φ̂ (t) =

E [Pt] = φ (t) +
[
φ̄x + φD

]
x̄−φθ (t) θ̄ as a function of time for a model without information acquisi-

tion (top panel) and that for a model with information acquisition (bottom panel). To illustrate the
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quantitative implication on the magnitude of the pre-announcement drift, we normalize the level of

φ̂ (t) at time −45 to 100. Therefore, an increase of φ̂ (t) from 99 to 100, for instance, corresponds

to 100 basis points of return. Our model generates a pre-announcement drift of 31.6 bps.

Figure 8: Expected level of price, φ̂ (t)
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This figure plots the expected level of price, φ̂ (t) of a model without information acquisition (top panel) and that
for our benchmark economy with endogenous information acquisition (bottom panel). The vertical line indicates the
timing when uninformed investors start to acquire information. The horizontal axis is the number of days before the
upcoming announcement, which is normalized as 0. A −5 for example, stands for five days before the announcement.

In the model without information acquisition, the expected level of price monotonically decreases

until T and jumps upwards upon the announcement. The fact that generalized risk sensitivity pro-

duces an announcement premium is the same as in Ai and Bansal (2018). In the model with

information acquisition, the function φ̂ (t) reaches its minimum at time τ , as the uninformed in-

vestors start to acquire information. From its minimum at time τ = −3 to the announcement time,

the drift is about 20 basis points, which is similar in magnitude to the pre-FOMC announcement

drift we computed in Section 2. At the announcement, the expected return increases again as the

new information arrives, giving an announcement premium about 22 basis points.

The above pattern of drift in price is also reflected in the pattern of expected returns. From

equation (19), the unconditional expected excess return of the stock is

E [dQt] /E [Pt] =
[
e0 (t) + eθ (t) θ̄

]
/E [Pt] . (38)

In Figure 9, we plot the expected return of the stock as a function of time. Consistent with the

pattern of prices, expected return increases sharply starting from τ = −3, as uninformed investors

start to acquire information.

Equation (150) in Appendix 6.5 shows explicitly that the unconditional expected return depends

on two terms, one comes from the standard expected utility and the other term is proportional to the

ambiguity aversion κ and the continuation utility reduction T Ṽt defined in (16). Intuitively, after
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information acquisition, the variance of conditional expectation increases sharply, as newly arrived

information has a large impact on the belief of uninformed investors. When uninformed investors

start to acquire information, they become more pessimistic hence require higher compensation in

returns because the newly acquired information creates significant variations in their continuation

utilities due to ambiguity. This feature of our model provides a rational explanation for the pre-

FOMC announcement drift.

As in Ai and Bansal (2018), due to GRS in preferences, resolution of uncertainty is associated

with realizations of risk premium. In the context of our model, GRS is captured by the T operator

defined in equation (16). Note that the magnitude of this term depends on the variance of conditional

expectation. Intuitively, uninformed investors are ambiguity averse about the hidden state x̂t, or

equivalently, θt.
5 Intuitively, higher variations in the conditional expectation about the hidden state

trigger more pessimism from the uninformed investors due to ambiguity aversion and lower their

level of continuation utility. In equilibrium, this ambiguity requires risk compensation and demands

a higher return from the stock market.

From equation (12), the local variance of the conditional expectation is given by

V ar [dx̃t] =

[
q̂ (t) + q̃ (t)

σD

]2

+[ν (t)σξ (t)]2+

[
q̃ (t)

σu (t)

]2

. (39)

As we show in the appendix, the equilibrium volatility of the stochastic discount factor is pro-

portional to V ar [dx̃t]. Before information acquisition, for t < τ , σu (t) = ∞. As a result,

V ar [dx̃t] =
[
q̂(t)+q̃(t)

σD

]2
+[ν (t)σξ (t)]2 is determined by the first two terms. After information ac-

quisition, because uninformed investors pay more attention to learn about the public available

information, they start to obtain a very precise signal, i.e., a small σu. Most of the variance of dx̃t

starts to be driven by the last term
[
q̃(t)
σu(t)

]2
. As a result, the variance of the stochastic discount

increases sharply during the pre-announcement period, generating a significant pre-announcement

drift.

In Figure 9, we plot the expected excess return of the stock (top panel) and the variance of

conditional expectation, V ar [dx̃t] (bottom panel) in the economy with information acquisition.

After information acquisition, the variance of conditional expectation increases sharply, as newly

arrived information has a large impact on the belief of uninformed investors. Because the variance of

the stochastic discount factor is proportional to V ar [dx̃t], as the variance of conditional expectation

increases, the expected return of the stock also rises. Intuitively, when uninformed investors start

to acquire information, they become more pessimistic hence require higher compensation in returns

because the newly acquired information creates significant variations in their continuation utilities

due to ambiguity. This feature of our model provides a rational explanation for the pre-FOMC

announcement drift.

5Recall that the identity Pt = Ẽt [Pt] implies that φx (t) x̃t − φθ (t) θ̃t = φx (t) x̂t − φθ (t) θt, where the sum
φx (t) x̂t − φθ (t) θt can be inferred from prices. As a result, concerns about misspecification of the distribution of x̂t
is equivalent to concerns about robustness of θt.
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Figure 9: Expected Excess Return of the Stock
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This figure plots the expected excess return of the stock E [dQt] /E [Pt] (top panel) and the variance of conditional
expectation V ar [dx̃t] (bottom panel), as a function of time in our benchmark model with information acquisition.
The horizontal axis is the number of days before the upcoming announcement, which is normalized to 0. A −5, for
example, stands for five days before the announcement.

Equilibrium asset prices To better understand the asset pricing implications of ambiguity and

endogenous information acquisition, in this section, we discuss the equilibrium pricing functions

φθ (t) and φ∆ (t). We plot pricing functions φθ (t) and φ∆ (t) in Figure 10 for an economy without

information acquisition in top panels and those for our benchmark model with endogenous informa-

tion acquisition in bottom panels. As shown in Figure 10, the function φθ (t) monotonically increases

in the model without information acquisition. φθ (t) is the impact of noisy supply on the stock price

from equation (10). In our model, stock price decreases in θt for two reasons. First, increases in

supply lower the equilibrium price due to a downward sloping demand curve as in standard equi-

librium models. This effect does not depend on the uncertainty or the asymmetric information.

Second, the information asymmetry and learning amplify the responses of prices to supply shocks,

therefore an increase in θt further lowers the price. Because the uninformed investors cannot infer

the true value of θt and xt from prices, they attribute part of the price drop as deteriorations in

fundamentals and downwardly revise their beliefs about xt. The uninformed investors reduce their

holdings of the stock because of their distorted pessimistic beliefs. This lowers the demand of the

asset and the price has to drop further to clear the market.

Clearly, the second effect is stronger when uninformed investors are more uncertain about xt.

At time t = −45, right after an announcement, uninformed investors know the true value of x0

and the information asymmetry is temporarily eliminated. As t increases, the uncertainty about

xt builds up, and changes in prices have stronger impacts on uninformed investors’ beliefs because

they have to rely more and more on learning from prices. Therefore, prices become more sensitive

to supply shocks, θt.

In the economy with information acquisition, after time τ = −3, as the uninformed investors
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Figure 10: Pricing functions
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This figure plots the pricing functions φθ (t) and φ∆ (t) of a model without information acquisition (the top panels)
and those for our benchmark economy with endogenous information acquisition (the bottom panels). The vertical
line indicates the timing when uninformed investors start to acquire information. The horizontal axis is the number
of days before the upcoming announcement, which is normalized as 0. A −5 for example, stands for five days before
announcements.

acquire more information, their uncertainty drops and the amplification effect from information

asymmetry reduces. As a result, the function φθ (t) starts to drop until time 0. The drop of φθ (t)

function after τ is important for our model to account for the lower realized volatility during the

pre-announcement drift period. After time τ , the impact of noise traders reduces, and so does the

realized volatility of stock returns.

In both models, with and without information acquisition, φ∆ (t) monotonically decreases over

time. The function φ∆ (t) has a clear interpretation in equation (10): it is the price impact of unin-

formed investors. In the economy without information acquisition, because the posterior variance,

q̃ (t), monotonically increases over time, uninformed investors become more and more uncertain

about x̂t and, as a result, they trade less and less aggressively, and exert a lower and lower price

impact over time.

In the model with information acquisition, φ∆ (t) decreases monotonically over time until time

−3, when information acquisition starts. The information acquisition at time τ = −3 has two

effects on uninformed investors’ price impact, φ∆ (t). On one hand, information acquisition lowers

uncertainty and uninformed traders have an incentive to trade more aggressively. On the other hand,

information acquisition creates an additional correlation between stock returns and the wealth of

the uninformed investors due to ambiguity aversion. As a result, they trade less aggressively due

to the hedging demand channel. In Figure (10), the hedging demand channel dominates, and the

price impact φ∆ (t) keeps falling after τ .

Return volatility As we emphasize in Section 2, a particularly puzzling aspect of the pre-FOMC

announcement drift is the coexistence of high average returns and low realized volatility during
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the pre-announcement period. While the low realized volatility during the pre-announcement drift

period is difficult to reconcile with an information leakage-based explanation, it is a robust feature of

our model with asymmetric information and endogenous information acquisition. Because the newly

acquired information is about the private information of informed investors, which has already been

incorporated into prices through their trading activities, information acquisition is not associated

with a higher realized volatility. On the contrary, information acquisition reduces uncertainty,

information asymmetry, and in particular, the price impact of noise traders. As we show in Figure

10, the price impact of noise traders drops after τ . As a result, information acquisition by uninformed

investors is a process of eliminating noise in stock prices and therefore associated with a lower

realized volatility of stock returns.

Figure 11: Return Volatility
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The top and bottom panel plot the return volatility (annualized in percentage) in our benchmark economy without
and with endogenous information acquisition, respectively. The vertical line indicates the timing when uninformed
investors start to acquire information. The horizontal axis is the number of days before the upcoming announcement,
which is normalized as 0. A −5 for example, stands for five days before announcements.

In Figure 11, we plot the realized volatility of stock returns in the economy without information

acquisition (top panel) and that in an economy with information acquisition (bottom panel) implied

by our model. Consistent with the pattern of pricing functions in Figure 10, realized volatility is low

in our model during the pre-announcement period. This feature of our model provides a coherent

explanation for the coexistence of high average return and low realized volatility during the pre-

announcement period.

In addition, because there is no information leakage during the pre-announcement period, the

actual announcements are associated with arrival of substantial new information to the market. As

a result, in our model, realized volatility spikes upon announcements. This pattern is also consistent

with the empirical evidence that we document in Section 2.
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6 Conclusion

In this paper, we develop a noisy rational expectations model with endogenous information acqui-

sition and periodic announcements to account for the pre-FOMC announcement puzzle. We show

that the endogenous information acquisition together with the generalized risk sensitive preference

allow us to provide an equilibrium interpretation of the coexistence of the puzzling pattern of a high

average return and low realized market volatility during the pre-FOMC announcement period. The

endogenous information acquisition in our model is consistent with the pattern of investor attention

documented by Fisher, Martineau, and Sheng (2020). Our model does not assume information

leakage and matches the empirical patterns of the FOMC announcement returns and volatility

dynamics in the data quite well.
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Boguth, Oliver, Vincent Grégoire, and Charles Martineau, 2018, Shaping Expectations and Coordinating At-

tention: The Unintended Consequences of FOMC Press Conferences, Journal of financial and quantitative

analysis 54, 2327–2353.

Bollerslev, Tim, Jia Li, and Yuan Xue, 2018, Volume, Volatility, and Public News Announcements, The

Review of Economic Studies 85, 2005–2041.

Bond, Philip, and Itay Goldstein, 2015, Government Intervention and Information Aggregation by Prices,

Journal of Finance 70, 2777–2812.

Breon-Drish, Bradyn, 2015, On Existence and Uniqueness of Equilibrium in a Class of Noisy Rational Ex-

pectations Models, The Review of Economic Studies 82, 868–921.

Brownlees, C.T, and G.M Gallo, 2006, Financial Econometric Analysis at Ultra-high Frequency: Data Han-

dling Concerns, Computational statistics & Data Analysis 51, 2232–2245.

Buffa, Andrea, Dimitri Vayanos, and Paul Woolley, 2019, Asset Management Contracts and Equilibrium

Prices, Unpublished Working Paper.

27



Chen, Zengjing, and Larry Epstein, 2002, Ambiguity, Risk, and Asset Returns in Continuous Time, Econo-

metrica 70, 1403–1443.

Cieslak, Anna, Adair Morse, and Annette Vissing-Jorgensen, 2019, Stock Returns over the FOMC Cycle,

The Journal of Finance 74, 2201–2248.

Cocoma, Paula, 2020, Explaining the Realized Pre-Announcement Drift, Unpublished Working Paper.

Epstein, Larry G, and Martin Schneider, 2007, Learning under Ambiguity, The Review of Economic Studies

74, 1275–1303.

Ernst, Rory, Thomas Gilbert, and Christopher M Hrdlicka, 2019, More than 100% of the Equity Premium:

How Much is Really Earned on Macroeconomic Announcement Days?, Unpublished Working Paper.

Fisher, Adlai J, Charles Martineau, and Jinfei Sheng, 2020, Macroeconomic Attention and the Stock Market,

Unpublished Working Paper.

Goldstein, Itay, and Liyan Yang, 2017, Information Disclosure in Financial Markets, Annual Review of

Financial Economics 9, 101–125.

Grossman, Sanford J., 1981, An Introduction to the Theory of Rational Expectations Under Asymmetric

Information, The Review of Economic Studies 48, 541–559.

Grossman, Sanford J., and Joseph E. Stiglitz, 1980, On the Impossibility of Informationally Efficient Markets,

American Economic Review 70, 393–408.

Han, Leyla Jianyu, 2020, Announcements, Expectations, and Stock Returns with Asymmetric Information,

Unpublished Working Paper.

Hansen, Lars Peter, and Thomas J. Sargent, 2007, Recursive Robust Estimation and Control without Com-

mitment, Journal of Economic Theory 136, 1–27.

Hansen, Lars Peter, and Thomas J Sargent, 2008, Robustness. (Princeton University Press).

Hansen, Lars Peter, and Thomas J Sargent, 2011, Robustness and Ambiguity in Continuous Time, Journal

of Economic Theory 146, 1195–1223.

Hellwig, Martin F, 1980, On the Aggregation of Information in Competitive Markets, Journal of Economic

Theory 22, 477–498.

Hu, Grace Xing, Jun Pan, Jiang Wang, and Haoxiang Zhu, 2020, Premium for Heightened Uncertainty:

Solving the FOMC Puzzle, Unpublished Working Paper.

Laarits, Toomas, 2020, Pre-Announcement Risk, Unpublished Working Paper.

Liptser, Robert S, and Albert N Shiryaev, 2001, Statistics of Random Processes II: Applications vol. 6.

(Springer Berlin) 2nd edn.

Lucca, David O, and Emanuel Moench, 2015, The pre-FOMC announcement drift, Journal of Finance 70,

329–371.

28



Luo, Yulei, Jun Nie, and Haijun Wang, 2022, Ignorance, Pervasive Uncertainty, and Household Finance,

Journal of Economic Theory 199, 105204.

Maenhout, Pascal J, 2004, Robust Portfolio Rules and Asset Pricing, Review of financial studies 17, 951–983.

Morse, Adair, and Annette Vissing-Jorgensen, 2020, Information Transmission from the Federal Reserve

to the Stock Market: Evidence from Governors Calendars, Working paper, University of California at

Berkeley.

Savor, Pavel, and Mungo Wilson, 2013, How Much Do Investors Care About Macroeconomic Risk? Evidence

from Scheduled Economic Announcement, Journal of Financial and Quantitative Analysis 48, 343–375.

Savor, Pavel, and Mungo Wilson, 2014, Asset Pricing: A Tale of Two Days, Journal of Financial Economics

113, 171–201.

Sims, Christopher, 2003, Implications of Rational Inattention, Journal of Monetary Economics 50, 665–690.

Sockin, Michael, 2019, Not So Great Expectations: A Model of Growth and Informational Frictions, Unpub-

lished Working Paper.

Veldkamp, Laura, 2011, Information Choice in Macroeconomics and Finance. (Princeton University Press

Princeton, N.J.).

Veldkamp, Laura, and Stijn Van Nieuwerburgh, 2010, Information Acquisition and Under-Diversification,

Review of Economic Studies 77, 779–805.

Wachter, Jessica A., and Yicheng Zhu, 2020, A Model of Two Days: Discrete News and Asset Prices,

Forthcoming, The Review of Financial Studies.

Wang, Jiang, 1993, A Model of Intertemporal Asset Prices under Asymmetric Information, Review of Eco-

nomic Studies 60, 249–282.

Wang, Jiang, 1994, A Model of Competitive Stock Trading Volume, Journal of Political Economy 102,

127–168.

Ying, Chao, 2020, The Pre-FOMC Announcement Drift and Private Information: Kyle Meets Macro-Finance,

Unpublished Working Paper.

29



Appendix

6.1 Data

We obtain the pre-scheduled FOMC announcement days from Bloomberg. It includes both the dates

and the exact release time. Following Lucca and Moench (2015), we focus on pre-scheduled FOMC

meetings, and extend the sample period to September 2020. There are in total 213 scheduled FOMC

meetings between January 1994 and September 2020. Before 2011, most FOMC announcements

were scheduled around 14:15 p.m. Between 2011 to 2012, there were eight FOMC meetings arranged

around 12:30 p.m. After March 2013, all the FOMC announcements were scheduled around 14:00.

We use high frequency data on E-mini S&P 500 index futures from the Chicago Mercantile

Exchange (CME) which start from 11:30 a.m. EST, September 9, 1997.6,7 We focus on the Emini

data because it reports the trading volume and it is tradable over 24 hours. Before that, we use

S&P 500 index futures instead from CME, available from April 21, 1982. On each day of the E-

mini futures, there may be multiple contract delivery dates. We choose the delivery date with the

highest volume within each calendar day as the most active futures contract, which is usually the

nearest-term contract and occasionally the next contract during rolling forward weeks. We then

convert the time zone to EST as the original time stamp is in CST. The raw data are cleaned

following the standard procedures described in Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2009). First, we delete those entries outside regular trading hours (9:30 to 16:00). Second, we

delete the invalid prices with missing values or equal to zero (or 9999.75). Third, we delete entries

with canceled or corrected prices (exclude “CAN” = “C” or “X”). Last, within each time stamp

(in seconds), we use the median price. If there are two median prices, we use the mean of these

two medians. In this way, we obtain the time series of prices in one second. Fourth, in order to

mitigate the microstructure noise, we sample the price into one minute frequency. The sampling

method follows the “Last” scheme of Brownlees and Gallo (2006), where we pick the last entry of

the period ending immediately prior to the timestamp. For example, 10:30 represents the last data

from 10:29:00 to 10:29:59. After September 1997 when the Emini S&P 500 futures are available,

we obtain the trading volume as the total contracts traded within the 1-min sampling interval. We

delete the all the entries with 0 or missing trading volume.

We use log return on the futures from 24 hours before to five minutes before FOMC announce-

ments as the pre-announcement drift. To measure the post-announcement return, we use log return

from five minutes before FOMC announcements to one hour afterwards. For instance, the pre-

announcement drift for the meeting at 14:00 on 2019 Dec.11 is defined as the log return from 13:55

on 2019 Dec.10 to 13:55 on 2019 Dec.11, whereas the post-announcement return is calculated as

the log return from 13:55 to 14:55 on 2019 Dec.11. We report the summary statistics for pre- and

post- announcement return in Table 1.

6https://www.cmegroup.com/confluence/display/EPICSANDBOX/Time+and+Sales. We use the calendar date
(Entry Date) instead of the adjusted trading date (Trade Date).

7There are three missing dates from E-mini future data: October 29,1997, January 28 and 29, 2014. The last one
is a pre-scheduled FOMC release day. We exclude these days in our analysis.
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The average pre-FOMC announcement drift is 32.28 basis points with a Newey-West t-stat of

4.88. The coefficient of regressing pre-announcement drift on post-announcement return is -0.106,

with a robust standard error of 0.048 (t-stat of -2.21). The ex-ante return is significantly negative

correlated with ex-post announcement return.

We calculate realized variance as the sum of 30-minutes log squared return. The realized volatil-

ity at the minute t can be estimated by σt =
√

1
N

∑N−1
j=0 r2

t−j , where N equals 30 if there is no

missing values and rt is the log return at time t (defined as the log price difference). For the

trading volume M , we simply average over past 30 minutes total number of contracts traded:

Mt = 1
N

∑N−1
j=0 volmt−j . We calculate the rolling realized volatility and trading volume for each

minute.

Table 1: Summary Statistics

Mean St.Dev. Min Max Obs. Time

Pre-Ann Drift (%) 0.323 0.965 -3.098 8.639 212 1994Jan-2020Sep

Post-Ann Return (%) 0.056 0.056 -2.131 2.901 212 1994Jan-2020Sep

Realized Volatility (annualized in %) 13.360 9.634 1.865 144.628 184 1997Sep-2020Sep

Trading Volume (1000 shares) 2.473 2.397 0.004 26.011 184 1997Sep-2020Sep

This table reports summary statistics of pre-announcement drift, post-announcement return, realized volatility and
trading volume on FOMC announcement days. We obtain log returns on S&P 500 futures during regular trading
hours (9:30-16:00) from January 1994 to September 2020. Pre-Ann Drift stands for the log return in 24-hour windows
from one day before the FOMC announcement to five minutes before the meeting. Post-Ann Return is the log return
from 5 minutes before the FOMC announcement to one hour afterward. Realized volatility (annualized in percentage)
is the average sum of squared returns over the past 30 minutes (t = [−29, 0]) and the trading volume is the average
contracts traded during the past 30 minutes on FOMC days. We calculate the rolling realized volatility and trading
volume for each minute from 10:00 to 16:00. The sample period is from September 1997 to September 2020.

6.2 Calibration

Table 2: Parameters

Para. Value Description Para. Value Description

r 0.012 risk-free rate σθ 0.75 volatility of total equity supply

ρ 0.03 time discount factor σu 0.002 inverse of acquired information precision

x̄ 80 mean level of dividend flow κ 300 ambiguity aversion

b 0.15 persistence of hidden state γ 2 risk aversion

a 0.1 persistence of total equity supply θ̄ 35 unconditional mean of aggregate supply

σd 1 dividend flow volatility ω 0.95 fraction of uninformed investor

σs 0.7 inverse of signal precision k 10 flow cost of information acquisition

σx 0.85 volatility of hidden state
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6.3 Equilibrium Beliefs

The Filtering Problem of Informed The optimal learning for the informed investor is a stan-

dard Kalman filter problem with the unobserved state variable given in equation (1) and the observed

processes in equations (5), (6), and (7). Applying Theorem 10.3 from Liptser and Shiryaev (2001),

we can show that the law of motion of the posterior mean satisfies equation (8) where the innovation

processes for (5) and (7) are given by

dB̂D,t =
1

σD
[dDt − (x̂t −Dt) dt] , and dB̂s,t =

1

σs
(dst − x̂tdt) . (40)

The law of motion of the conditional variance q̂t must satisfy the Riccati equation

dq̂ (t) =

[
σ2
x − 2bq̂ (t)−

(
1

σ2
D

+
1

σ2
s

)
q̂2 (t)

]
dt. (41)

We can solve q̂ (t) =
σ2
x

(
1−e−2b̂(t+t∗)

)
(b̂−b)e−2b̂(t+t∗)+b+b̂

, where b̂ =

√
b2 + σ2

x

(
1
σ2
D

+ 1
σ2
s

)
and t∗ = 1

2b̂
ln
σ2
x+(b̂−b)q̂(0)

σ2
x−(b̂+b)q̂(0)

.

We assume announcements fully resolve the uncertainty, so that q̂ (0) = 0.

Information Content of Prices In addition to observing the dividend, the uninformed trader

also observes the equilibrium price. We have assumed that the price process takes the form of equa-

tion (10). Because the uninformed know Dt and x̃t, observing the price is equivalent to observing

ζt ≡ φx (t) x̂t − φθ (t) θt. Here, ζt can be represented as a Markov process given the state variable

x̂t, ζt:

dζt =

[
bx̄φx (t)− aθ̄φθ (t) +

((
a− b−

φ′θ (t)

φθ (t)

)
φx (t) + φ′x (t)

)
x̂t +

(
φ′θ (t)

φθ (t)
− a
)
ζt

]
dt

+
q̂ (t)

σD
φx (t) dB̂D,t +

q̂ (t)

σs
φx (t) dB̂s,t − σθφθ (t) dBθ,t, (42)

It is convenient to define ξt = ζt − q̂(t)
σ2
D
φx (t)Dt so that (x̂t, Dt, ξt) has a state space representation.

The dynamics of ξt is

dξt =

[
bx̄φx (t)− aθ̄φθ (t) +mx (t) x̂t +

(
φ′θ (t)

φθ (t)
− a
)
ξt +mD (t)Dt

]
dt+ σξ (t) dB̂ξ,t, (43)

where the coefficients,

mx (t) =

(
a− b−

φ′θ (t)

φθ (t)
− q̂ (t)

σ2
D

)
φx (t) + φ′x (t) , (44)

mD (t) =
1

σ2
D

[
q̂ (t)φx (t)

(
1− a+

φ′θ (t)

φθ (t)

)
− q̂′ (t)φx (t)− q̂ (t)φ′x (t)

]
, (45)

and the volatility of ξt is

σξ (t) =

√
q̂2 (t)

σ2
s

φ2
x (t) + σ2

θφ
2
θ (t), (46)

32



and B̂ξ,t is a standard Brownian motion that is independent of B̂D,t:

dB̂ξ,t =
1

σξ (t)

[
q̂ (t)

σs
φx (t) dB̂s,t − σθφθ (t) dBθ,t

]
. (47)

We will call ξt the information content of price, as observing price is equivalent to observing ξt.

From the informed investor’s perspective, dividend flow follows

dDt = (x̂t −Dt) dt+ σDdB̂D,t. (48)

To apply the Kalman-Bucy filter from Liptser and Shiryaev (2001), we treat (8) as the unobserved

state variable and (48), (43) and (9) as the observations. The uninformed investors’ posterior beliefs

can be characterized as follows

dx̃t = b (x̄− x̃t) dt+
q̂ (t) + q̃ (t)

σD
dB̃D,t + ν (t)σξ (t) dB̃ξ,t +

q̃ (t)

σu (t)
dB̃u,t, (49)

dq̃ (t) =

( 1

σ2
D

+
1

σ2
s

)
q̂2
t − 2bq̃t −

1

σ2
u (t)

q̃2
t −

(q̂t + q̃t)
2

σ2
D

−

mx (t) q̃t +
φx(t)q̂2

t
σ2
s

σξ

2
 dt (50)

where

ν (t) =
1

σ2
ξ (t)

[
φx (t)

σ2
s

q̂2 (t) +mx (t) q̃ (t)

]
. (51)

and dB̃D,t = 1
σD

(
dDt − Ẽt [dDt]

)
, dB̃ξ,t = 1

σξ(t)

(
dξt − Ẽt [dξt]

)
and dB̃u,t = 1

σu(t)

(
dsu,t − Ẽt [dsu,t]

)
are innovations in the observation processes relative to expectations. More specifically,

dB̃D,t =
1

σD
[dDt − (x̃t −Dt) dt] (52)

dB̃ξ,t =
1

σξ (t)
[dξt − µ̃ξ (t) dt] (53)

dB̃u,t =
1

σu (t)
[dsu,t − x̃tdt] . (54)

where µ̃ξ (t) = bx̄φx (t)− aθ̄φθ (t) +mx (t) x̃t +
(
φ′θ(t)

φθ(t) − a
)
ξt +mD (t)Dt.

Joint Distributions From the perspective of the informed, xt|st ∼ N (x̂t, q̂t), and both x̂t and

θt are observable. Below, we derive the joint distribution of [xt, x̂t, θt] from the perspective of the

uninformed investors.

We deal with the interior and the boundary separately. In the interior, beliefs are continuous

and there is no probability distortion over an infinitesimal interval. Obviously, under the belief

of the uninformed, x̂t|st ∼ N (x̃t, q̃t). By law of iterated expectation, Ẽ (xt) = x̃t. In addition,

Ṽ ar [xt] = q̃t + q̂t. That is, from the perspective of the uninformed, xt|st ∼ N (x̃t, q̃t + q̂t).
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We are now ready to derive the conditional distribution for θt. Note that the learning identity

implies ζt ≡ φx (t) x̂t − φθ (t) θt, that is, θt = 1
φθ,t

(φx,tx̂t − ζt). Hence, Ẽ (θt) = 1
φθ,t

(φx,tx̃t − ζt). In

addition, Ṽ ar [θt] =
(
φx,t
φθ,t

)2
q̃t.

We can also compute covariance.

C̃ov (xt, x̂t) = C̃ov (xt, x̂t) = q̃t.

In addition,

˜Cov (xt, θt) = ˜Cov

[
xt,

1

φθ,t
(φx,tx̂t − ζt)

]
=
φx,t
φθ,t

q̃t, (55)

and ˜Cov (x̂t, θt) =
φx,t
φθ,t

q̃t.

On the boundary, from the perspective of the uninformed,

x̂T |sT ∼ N (x̃T , q̃T ) ; xT |sT ∼ N (x̃T , q̃T + q̂T ) .

To compute the distribution of θT , we have Ẽ
(
θT | x̂−T

)
= θT because once the uninformed know x̂t,

they will know θt from the learning identity, and

Ẽ
[
Ẽ
(
θT | x̂−T

)]
=

1

φθ,T
Ẽ
(
φx,T x̂

−
T − ζT

)
.

This is to say, there is probability distortion in the first step, but no probability distortion after we

conditioning on x̂. In the first step, we have:

Ẽ
[
Ẽ
(
θT | x̂−T

)]
=

1

φθ,T
Ẽ
(
φx,T x̂

−
T − ζT

)
=

1

φθ,T
(φx,T x̃T − ζT ) = θ̃−T

The last equality is true, because in the interior, the equality ζ−T ≡ φx (T−) x̃−T − φθ (T−) θ̃−T .

Difference in Beliefs Define the difference in beliefs ∆t ≡ x̂t− x̃t. Because the informed do not

have ambiguity, the law of motion of ∆t under the informed investors information set is

d∆t = −a∆ (t) ∆tdt− σ∆D (t) dB̂D,t + σ∆s (t) dB̂s,t + σ∆θ (t) dBθ,t − σ∆u (t) dBu,t, (56)

where the coefficients are:

a∆ (t) = b+
q̂ (t) + q̃ (t)

σ2
D

+ ν (t)mx (t) +
q̃t

σu (t)
, (57)

σ∆D (t) =
q̃ (t)

σD
,
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σ∆s (t) =
q̂ (t)

σs
[1− φx (t) ν (t)] ,

σ∆θ (t) = φθ (t) ν (t)σθ.

σ∆u (t) =
q̃ (t)

σu (t)
. (58)

Note that compared to Han (2020), d∆t has a downward trend. The uninformed think that the

informed are over optimistic, and therefore, x̃t typically increases faster than what x̂t actually is.

Excess Returns In this subsection, we use the results from the filtering problem derived above

to derive the excess return of the stock as diffusion processes under two types of investors’ beliefs.

We have conjectured that the equilibrium price is of the form (10). In order to solve for the optimal

portfolio choice, we need to compute investors’ beliefs about the return process. In the interior, this

means we need to represent instantaneous excess return dQt = dPt + Dtdt − rPtdt as functions of

investors’ own Brownian motions. On the boundary, we need to compute the conditional distribution

of P+
T − P

−
T from investors’ own beliefs. Consider first the informed investors. Equations (48), (6),

(8), and (18) represent the variables Dt, θt, x̂t, and ∆t in terms of Brownian motions with respect

to their information set. These give

dQt = {e0 (t) + [1− (1 + r)φD (t)]Dt + eθ (t) θt + [φD − (b+ r)φx] x̂t + e∆ (t) ∆t} dt

+%D (t) dB̂D,t + %s (t) dB̂s,t + %θ (t) dBθ,t + %u (t) dBu,t, (59)

where

e0 (t) = φ′ (t)− rφ (t) + bx̄φ̄x − aθ̄φθ (t)

eθ (t) = (a+ r)φθ (t)− φ′θ (t) ,

e∆ (t) = (a∆ (t) + r)φ∆ (t)− φ′∆ (t) ,

%D (t) = φDσD + φ̄x
q̂ (t)

σD
+ φ∆ (t)σ∆D (t) , (60)

%s (t) = [1 + φ∆ (t) ν (t)]φx (t)
q̂t
σs
,

%θ (t) = − [1 + φ∆ (t) ν (t)]φθ (t)σθ,

%u (t) = φ∆ (t)
q̃t

σu (t)
.

Note that before the information acquisition, all uninformed have homogeneous information, and

price is of the form (21). Further define the variance of excess return as

σP (t) = %2
D (t) + %2

s (t) + %2
θ (t) + %2

u (t) . (61)
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The market clearing condition implies that the expected return of the stock cannot depend on Dt,

x̂t and the constant. As a result, the coefficients them must be 0, implying

φD =
1

1 + r
, and φ̄x =

φD
b+ r

. (62)

The excess return could be simplified as

dQt = [e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt+ %D (t) dB̂D,t + %s (t) dB̂s,t + %θ (t) dBθ,t + %u (t) dBu,t,

= [e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt+ %D (t) dB̂D,t + %ξ (t) dB̂ξ,t + %u (t) dBu,t,

where

%ξ (t) = −
σξ (t)

σθφθ (t)
%θ (t) . (63)

Similarly, we can use equations (23), and (12) to write the excess return in terms of Brownian

motions with respect to the uninformed investor’s information set. This gives

dQt =
[
e0 (t) + eθ (t) θ̃t

]
dt+ %D (t) dB̃D,t + %ξ (t) dB̃ξ,t + %u (t) dB̃u,t. (64)

6.4 Generalized Risk Sensitivity Preference with Ambiguity

Recursive preference with GRS In this section, we develop the ambiguity preference that sat-

isfies the generalized risk sensitivity (GRS). We first start from a general recursive preference. Then

we take a continuous-time limit to form the HJB equation. Finally, we develop two-stage opera-

tors that introduce the robustness concerns about model uncertainty and hidden state uncertainty,

respectively.

In general, a recursive preference can be specified in the following way for a small time interval

∆:

Vt = u (Ct) ∆ + e−ρ∆h−1 (E [h (Vt+∆)]) . (65)

Ai and Bansal (2018) shows that GRS requires h to be a non-decreasing concave function. In the

continuous-time limit, we could write the the value function as the form of the stochastic differential

utility:

dVt = LVtdt+ σV (t) dBt, (66)

where LVt summarizes the drift and σV (t) contains the vector of diffusions, and dBt is a standard

vector of Brownian motions. Note that in continuous-time, we can write Vt+dt = Vt + dVt. Using

Taylor’s expansion around Vt, we have:

h (Vt+dt) = h (Vt) + h′ (Vt) [LVtdt+ σV (t) dBt] +
1

2
h′′ (Vt) [LVtdt+ σV (t) dBt]

2 + o ‖dt‖ , (67)
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where o ‖dt‖ indicates the higher order terms than dt. Taking expectations, we have

E [h (Vt+dt)] = h (Vt) + h′ (Vt)LVtdt+
1

2
h′′ (Vt) ‖σV (t)‖2 dt, (68)

and now, we apply the inverse function h−1 on both sides and use Taylor’s expansion around h (Vt):

h−1 {E [h (Vt+dt)]} = h−1 (h (Vt)) +
[
h−1 (h (Vt))

]′ [
h′ (Vt)LVt +

1

2
h′′ (Vt) ‖σV (t)‖2

]
dt+ o ‖dt‖

= Vt +

[
LVt +

1

2

h′′ (Vt)

h′ (Vt)
‖σV (t)‖2

]
dt+ o ‖dt‖ . (69)

Then the recursion (65) could be approximated as:

eρdtVt = eρdtu (Ct) dt+ Vt +

[
LVt +

1

2

h′′ (Vt)

h′ (Vt)
‖σV (t)‖2

]
dt. (70)

Subtracting Vt from both sides, dividing by dt, and taking the limit as dt → 0, we obtain the

following lemma.

Lemma 2. The continuous-time limit of the HJB (65) can be written as:

ρVt = u (Ct) + LVt +
1

2

h′′ (Vt)

h′ (Vt)
‖σV (t)‖2 . (71)

Now we specify the functional form of h. We consider the following concave function:

h (Vt) = − 1

1 + κ
(−Vt)1+κ . (72)

where κ measures the degree of ambiguity aversion or preference for robustness. There are three

key features about this specification.

First, h′ (V ) = (−V )κ > 0, and h′′ (V ) = −κ (−V )κ−1 < 0 indicate that h is a strictly increasing

and strictly concave function. This concavity ensures that our recursive preference in (65) satis-

fies GRS by Ai and Bansal (2018), which is a sufficient condition to generate the announcement

premium.

Second, the functional form of h preserves the homogeneity property of preferences. In partic-

ular, it maintains the close-form solution for the value function as an exponential function. Our

derivation is equivalent to Luo, Nie, and Wang (2022) who use recursive exponential utility to keep

the tractability for CARA utility and adopt the two-stage procedures of optimal robust control and

robust filtering problems as in our paper.

Third, our specification coincides with the normalized version of HJB advocated by Maenhout

(2004). In order to keep the homogeneity in HJB equation with robustness, he scales the ambiguity

κ by the value function: κ̂ = κ/Vt. Here, we are essentially giving a recursive utility interpretation

of the normalization without the scaling.
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If we plug (72) in (71), we will get

ρVt = u (Ct) + LVt +
κ

Vt
‖σV (t)‖2 . (73)

Two-stage robustness Now we provide a generalization of the T 1 and T 2 operator in Hansen

and Sargent (2007, 2011) to our recursive setup. Assume the law of motion of x follows a Markov

diffusion process of the form

dxt = µx (xt) dt+ σx (t) dBx,t.

We assume that a subset of x, which we denote as z are unobservable. We assume that zt is normally

distributed and we observe a vector of signals for zt:

dst = µs (zt) dt+ σs (t) dBs,t. (74)

Here, we assume that s is L dimensional signal process, and Bs,t are L dimensional Brownian

Motions. That is, for simplicity, we are assuming that the noise in different signal processes are

independent. Also, we assume µs (zt) = µs,0 + µszt is linear, where µs,0 and µs are both L × 1

dimensional. For simplicity, we assume that σs (t) = diag (σ1 (t) , σ2 (t) , · · · , σL (t)) is diagonal. We

assume that Kalman filter can be applied. Because the hidden state zt is contained in xt, the new

state variable needs to replace zt with its estimate (assuming normality, so that ẑt is the sufficient

statistic for the posterior distribution of zt). We denote the new state variable (after replacing the

hidden state with its point estimate) as x̂t. After this replacement, ẑt is contained in x̂t. We assume

that the law of motion of the state variables x̂t can be written as:

dx̂t = µx (x̂t) dt+ σx (t) dB̂x,t, (75)

where B̂x,t is a L× 1 dimensional vector of innovation process of the form:

dB̂x,t = σ−1
s (t) [dst − µs (zt) dt] = σ−1

s (t) [µs (t) (zt − ẑt) dt+ σs (t) dBs (t)] . (76)

In our formulation, µx (x̂t, ẑt) is J × 1, σx (t) is J × L, µs (t) is L× 1, and σs (t) is L× L.

We will work with the simple case in which the value function does not depend on the hidden

state, in the Language of Hansen and Sargent ( 2011). In this formulation, the value function is a

function of x̂t and the law of motion of utility (in the interior) is:

dV (x̂t) = LV (x̂t) dt+ ∂V (x̂t)σx (t) dB̂x,t

= LV (x̂t) dt+ ∂V (x̂t)σx (t)σ−1
s (t)

µs (t) (zt − ẑt) dt︸ ︷︷ ︸
misspecified state

+ σs (t) dBs (t)︸ ︷︷ ︸
misspecified dynamics

 , (77)

The standard robust control problem concerns the misspecification of the future shocks B̂x,t. The

two-stage robust control problem concern about misspecification of µs (t) (zt − ẑt) dt and dBs (t)
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separately. The distortion with respect to dBs (t) represents ambiguity about the law of motion of

signals given the true state variable (T 1 operator), and distortion with respect to µs (t) (zt − ẑt) dt
represents ambiguity about the true distribution of the hidden state zt arising from filtering (T 2

operator).

Consider the recursive preference with two-stage robustness:

V (x̂t) = u (Ct) dt+ e−ρdtT 2
{
T 1 [V (x̂t+dt)|xt]

∣∣ x̂t} (78)

where T 1 (V ) = h−1
1 E [h1 (V )], and T 2 (V ) = h−1

2 E [h2 (V )], where h1 = − 1
1+κ1

(−V )1+κ1 and

h2 = − 1
1+κ2/dt

(−V )1+κ2/dt . T 1 and T 2 operators reflect investors’ concerns about misspecified

dynamics given the true state and misspecified state estimation, respectively. Note that we follow

Hansen and Sargent (2011) and scale the ambiguity aversion by 1/dt to prevent the ambiguity from

vanishing in the continuous time limit. Using (77) we can write

Vt+dt = Vt + LV (x̂t) dt+ ∂V (x̂t)σx (t) dB̂x,t (79)

= Vt + LV (x̂t) dt+ ∂V (x̂t)σx (t)σ−1
s (t) [µs (t) (zt − ẑt) dt+ σs (t) dBs (t)]

= Vt +
[
LV (x̂t) + ∂V (x̂t)σx (t)σ−1

s (t)µs (t) (zt − ẑt)
]
dt+ ∂V (x̂t)σx (t) dBs (t) . (80)

Using Taylor expansion similar to (69), we obtain

T 1 [Vt+dt| zt] = h−1
1 E [h1 (Vt+dt)| zt]

= Vt +
[
LV (x̂t) + ∂V (x̂t)σx (t)σ−1

s (t)µs (t) (zt − ẑt)
]
dt+

1

2

h′′1 (Vt)

h′1 (Vt)
‖∂V (x̂t)σx (t)‖2 dt.

To save notation, we denote ηt = LV (x̂t) + 1
2
h′′1 (Vt)
h′1(Vt)

‖∂V (x̂t)σx (t)‖2. Given our assumption on the

functional form of h1, we have ηt = LV (x̂t)− 1
2
κ1
|Vt| ‖∂V (x̂t)σx (t)‖2.

Note that ηt is known given x̂t. We linearize around Vt + ηtdt and using Taylor expansion to

write

T 2
{
T 1 [Vt+dt| zt]

}
= h−1

2 E
{
h2

(
Vt + ηtdt+ ∂V (x̂t)σx (t)σ−1

s (t)µs (t) (zt − ẑt) dt
)}

= Vt + ηtdt+
1

2

h′′2 (Vt)

h′2 (Vt)

∥∥∂V (x̂t)σx (t)σ−1
s (t)µs (t)

∥∥2
qt (dt)2 . (81)

where qt denotes the posterior variance of zt. Note the the ambiguity term is of order (dt)2.

Therefore, as remarked by Hansen and Sargent (2011), in order to sustain an ambiguity ad-

justment in continuous time, we increase the curvature of h2 as we have diminished the sam-

pling interval by 1/dt. Using the assumed functional form h2 = − 1
1+κ2/dt

(−V )1+κ2/dt, we have

1
2
h′′2 (Vt)
h′2(Vt)

∥∥∂V (x̂t)σx (t)σ−1
s (t)µs (t)

∥∥2
qt (dt)2 = −1

2
κ2
|Vt|
∥∥∂V (x̂t)σx (t)σ−1

s (t)µs (t)
∥∥2
qtdt. We de-

note T 1Vt = −1
2
κ1
|Vt| ‖∂V (x̂t)σx (t)‖2, and T 2Vt = −1

2
κ2
|Vt|
∥∥∂V (x̂t)σx (t)σ−1

s (t)µs (t)
∥∥2
qt. Multiply
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equation (78) by eρdt and substituting the above equation and ηt back, we have(
eρdt − 1

)
Vt =

[
eρdtu (Ct) + LV (x̂t) + T 1Vt + T 2Vt

]
dt.

Dividing both sides by dt and take the limit as dt→ 0, we obtain the following HJB equation:

ρVt = u (Ct) + LVt + T 1Vt + T 2Vt, (82)

which is the generalization of Equations (8) and (9) in Hansen and Sargent (2011). It is clear

that T 1Vt characterizes the continuation reduction due to model uncertainty and T 2Vt shows the

continuation reduction due to state uncertainty, and κ1 and κ2 penalizes each term.

Note that we can write

T 1Vt = −1

2

κ1

|Vt|
1

dt
V art

[
∂V (x̂t)σx (t) dB̂s (t)

∣∣∣ zt] = −1

2

κ1

|Vt| dt
V art [Vt+dt| zt] (83)

and

T 2Vt = −1

2

κ2/dt

|Vt|
1

dt
V art

{
∂V (x̂t)σx (t)σ−1

s (t)µs (t) (zt − ẑt) dt
}

= −1

2

κ2/dt

|Vt|
1

dt
V art

{
E
[
∂V (x̂t)σx (t) dB̂s (t)

∣∣∣ zt]} = −1

2

κ2

|Vt| (dt)2V art {E [Vt+dt| zt]} .(84)

In our model, we assume the uninformed investors do not have robust concerns about model

uncertainty. They care about the misspecification in the distributions of the hidden state. Therefore,

from now on, we assume κ1 = 0 and κ2 = κ.

6.5 Optimal Portfolio Choice Decisions

Portfolio Demand for the Informed: Interior The optimization problem for the informed

investor in the interior is written as

V̂
(
t, Ŵ , θ,∆

)
= max

αt,Ĉt

Ê
[ˆ T−t

0
−e−ρs−γĈt+sds+ e−ρ(T−t)V −

(
T, ŴT , θT ,∆T

)]
s.t. dŴt =

(
Ŵtr − Ĉt

)
dt+ αtdQt

dQt = [e0 (t) + eθ (t) θt + e∆ (t) ∆t] dt+ %D (t) dB̂D,t + %s (t) dB̂s,t + %θ (t) dBθ,t + %u (t) dBu,t,

dθt = a
(
θ̄ − θt

)
dt+ σθdBθ,t,

d∆t = −a∆ (t) ∆tdt− σ∆D (t) dB̂D,t + σ∆s (t) dB̂s,t + σ∆θ (t) dBθ,t − σ∆u (t) dBu,t.

Conjecture the informed investor’s value function takes the form of V̂
(
t, Ŵ , θ,∆

)
= −e−rγŴ−g(t,θ,∆),

where

g (t, θ,∆) = g (t) + gθ (t) θt +
1

2
gθθ (t) θ2

t + g∆ (t) ∆t +
1

2
g∆∆ (t) ∆2

t + gθ∆ (t) θt∆t. (85)
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Using Ito’s Lemma, the HJB equation is:

ρV̂ = −e−γĈ + V̂t + V̂W

[
rŴ − Ĉ + α (e0 (t) + eθ (t) θ + e∆ (t) ∆)

]
+

1

2
V̂WWα

2σP (t) + αV̂Wθσθ%θ (t)

+αV̂W∆σQ∆ (t) + V̂θa
(
θ̄ − θ

)
− V̂∆ (a∆ (t) ∆ + b∆ (t)) +

1

2
V̂θθσ

2
θ +

1

2
V̂∆∆σ∆ (t) + V̂∆θσθσ∆θ (t) ,

where

σ∆ (t) = σ2
∆D (t) + σ2

∆s (t) + σ2
∆θ (t) + σ2

∆u (t)

σQ∆ (t) = −%D (t)σ∆D (t) + %s (t)σ∆s (t) + %θ (t)σ∆θ (t)− %u (t)σ∆u (t) , (86)

Under the guessed value function form, the first order conditions (FOCs) with respect to Ĉ and α

are

Ĉt = rŴ +
1

γ
[g (t, θ,∆)− ln r] , (87)

αt =

[
e0 (t) + eθ (t) θ + e∆ (t) ∆− (gθ (t) + gθθ (t) θt + gθ∆ (t) ∆t)σθ%θ (t)

− (g∆ (t) + g∆∆ (t) ∆t + gθ∆ (t) θt)σQ∆ (t)

]
rγσP (t)

(88)

substituting expressions in (86) yields the demand function of the form:

αt = α0 (t) + αθ (t) θt + α∆ (t) ∆t, (89)

where

α0 (t) =
e0 (t)− gθ (t)σθ%θ (t)− σQ∆ (t) g∆ (t)

rγσP (t)
(90)

αθ (t) =
eθ (t)− %θ (t)σθgθθ (t)− σQ∆ (t) gθ∆ (t)

rγσP (t)
(91)

α∆ (t) =
e∆ (t)− %θ (t)σθgθ∆ (t)− σQ∆ (t) g∆∆ (t)

rγσP (t)
. (92)
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Matching coefficients of the value function, and use α0 (t), αθ (t) and α∆ (t) to simplify, we have the

following odes system,

g′ (t) = r − ρ− r ln r + rg (t)− 1

2
r2γ2σP (t)α2

0 (t) +
1

2
σ2
θ

[
g2
θ (t)− gθθ (t)

]
+

1

2
σ∆ (t)

[
g2

∆ (t)− g∆∆ (t)
]

+ σθσ∆θ (t) [gθ (t) g∆ (t)− gθ∆ (t)]− aθ̄gθ (t) , (93)

g′θθ (t) = rgθθ (t)− r2γ2σP (t)α2
θ (t) + 2agθθ (t) + σ2

θg
2
θθ (t) + σ∆ (t) g2

θ∆ (t) + 2σθσ∆θ (t) gθθ (t) gθ∆ (t) ,(94)

g′∆∆ (t) = rg∆∆ (t)− r2γ2σP (t)α2
∆ (t) + 2a∆ (t) g∆∆ (t) + σ2

θg
2
θ∆ (t) + σ∆ (t) g2

∆∆ (t)

+2σθσ∆θ (t) gθ∆ (t) g∆∆ (t) , (95)

g′θ∆ (t) = rgθ∆ (t)− r2γ2σP (t)αθ (t)α∆ (t) + agθ∆ (t) + a∆ (t) gθ∆ (t) + σ2
θgθθ (t) gθ∆ (t)

+σ∆ (t) g∆∆ (t) gθ∆ (t) + σθσ∆θ (t)
[
gθθ (t) g∆∆ (t) + g2

θ∆ (t)
]

; (96)

g′θ (t) = rgθ (t)− r2γ2σP (t)α0 (t)αθ (t) + agθ (t) + σ2
θgθ (t) gθθ (t)

+σ∆ (t) g∆ (t) gθ∆ (t) + σθσ∆θ (t) [gθ (t) gθ∆ (t) + gθθ (t) g∆ (t)]− aθ̄gθθ, (97)

g′∆ (t) = rg∆ (t)− r2γ2σP (t)α0 (t)α∆ (t) + a∆ (t) g∆ (t) + σ2
θgθ (t) gθ∆ (t)

+σ∆ (t) g∆ (t) g∆∆ (t) + σθσ∆θ (t) [gθ (t) g∆∆ (t) + gθ∆ (t) g∆ (t)]− aθ̄gθ∆, (98)

Portfolio Demand for the Uninformed: Interior The optimization problem of the unin-

formed investors is characterized as:

Ṽ
(
t, W̃ , θ̃

)
= max

βt,C̃t

Ẽ
[ˆ T−t

0
−e−ρs−γC̃t+sds+ e−ρ(T−t)Ṽ −

(
T, W̃T , θ̃T

)]
s.t. dW̃t =

(
W̃tr − C̃t

)
dt+ βtdQt

dQt =
[
e0 (t) + eθ (t) θ̃t

]
dt+ %D (t) dB̃D,t + %ξ (t) dB̃ξ,t + %u (t) dB̃u,t,

dθ̃t = a
(
θ̄ − θ̃t

)
dt+

φx (t)

φθ (t)

q̃ (t)

σD
dB̃D,t + [φx (t) ν (t)− 1]

σξ (t)

φθ (t)
dB̃ξ,t +

φx (t)

φθ (t)

q̃ (t)

σu (t)
dB̃u,t.

Conjecture the uninformed investor’s value function would be of the form: Ṽ
(
t, W̃ , θ̃

)
= −e−rγW̃−f(t,θ̃),

where

f
(
t, θ̃
)

= f (t) + fθ (t) θ̃t +
1

2
fθθ (t) θ̃2

t . (99)

The stochastic differential equation of the value function in equation (13) takes the following form:

dṼ = LṼ
(
t, W̃ , θ̃

)
+D

[
dṼ
(
t, W̃ , θ̃

)]
(100)

where

LṼ
(
t, W̃ , θ̃

)
= Ṽt + ṼW

[
rW̃ − C̃ + β

(
e0 (t) + eθ (t) θ̃

)]
+

1

2
ṼWWβ

2σP (t) + βṼWθσQθ (t) + Ṽθa
(
θ̄ − θ̃

)
+

1

2
Ṽθθσθθ (t)
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where

σQθ (t) =
φx (t)

φθ (t)

q̃ (t)

σD
%D (t) + (φx (t) ν (t)− 1)

σξ (t)

φθ (t)
%ξ (t) +

φx (t)

φθ (t)

q̃ (t)

σu (t)
%u (t) (101)

σθθ (t) =

[
φx (t)

φθ (t)

q̃ (t)

σD

]2

+

[
(φx (t) ν (t)− 1)

σξ (t)

φθ (t)

]2

+

[
φx (t)

φθ (t)

q̃ (t)

σu (t)

]2

. (102)

D [�] is the diffusion operator and

D
[
dṼ
(
t, W̃ , θ̃

)]
= ṼWβ

[
%D (t) dB̃D,t + %ξ (t) dB̃ξ,t + %u (t) dB̃u,t

]
+Ṽθ

[
φx (t)

φθ (t)

q̃ (t)

σD
dB̃D,t + [φx (t) ν (t)− 1]

σξ (t)

φθ (t)
dB̃ξ,t +

φx (t)

φθ (t)

q̃ (t)

σu (t)
dB̃u,t

]
= −Ṽ

{[
rγβ%D (t) +

∂f

∂θ̃

φx (t)

φθ (t)

q̃ (t)

σD

]
dB̃D,t +

[
rγβ%ξ (t) +

∂f

∂θ̃
[φx (t) ν (t)− 1]

σξ (t)

φθ (t)

]
dB̃ξ,t

+

[
rγβ%u (t) +

∂f

∂θ̃

φx (t)

φθ (t)

q̃ (t)

σu (t)

]
dB̃u,t

}
Therefore, the vector σV (t) is defined as

σV (t) =

[
−Ṽ

(
rγβ%D,t +

∂f

∂θ̃

φx,t
φθ,t

q̃t
σD

)
,−Ṽ

(
rγβ%ξ,t +

∂f

∂θ̃
(φx,tνt − 1)

σξ,t
φθ,t

)
,−Ṽ

(
rγβ%u,t +

∂f

∂θ̃

φx,t
φθ,t

q̃t
σu,t

)]>
.

(103)

Rewrite the above in terms of the informed investors’ information set,

D
[
dṼ
(
t, W̃ , θ̃

)]
= −Ṽ

{[
rγβ%D (t) +

∂f

∂θ̃

φx (t)

φθ (t)

q̃ (t)

σD

](
1

σD
∆tdt+ dB̂D,t

)
+

[
rγβ%ξ (t) +

∂f

∂θ̃
[φx (t) ν (t)− 1]

σξ (t)

φθ (t)

](
mx (t)

σξ (t)
∆tdt+ dB̂ξ,t

)
+

[
rγβ%u (t) +

∂f

∂θ̃

φx (t)

φθ (t)

q̃ (t)

σu (t)

](
1

σu (t)
∆tdt+ dBu,t

)}
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Therefore, we apply the T operator in equation (16) on the value function to obtain

T
[
Ṽ
]

= −1

2
κ

1∣∣∣Ṽ ∣∣∣V ar
[
E
[
dṼ | x̂

]
| x̃
]

=
1

2
κṼ q̃ (t)

{[
rγβ%D (t) +

∂f

∂θ̃

φx (t)

φθ (t)

q̃ (t)

σD

]
1

σD

+

[
rγβ%ξ (t) +

∂f

∂θ̃
[φx (t) ν (t)− 1]

σξ (t)

φθ (t)

]
mx (t)

σξ (t)
+

[
rγβ%u (t) +

∂f

∂θ̃

φx (t)

φθ (t)

q̃ (t)

σu (t)

]
1

σu (t)

}2

=
1

2
κṼ q̃ (t)

{
rγβ

[
%D (t)

σD
+ %ξ (t)

mx (t)

σξ (t)
+
%u (t)

σu (t)

]
+
∂f

∂θ̃

[
φx (t)

φθ (t)

q̃ (t)

σ2
D

+ [φx (t) ν (t)− 1]
mx (t)

φθ (t)
+
φx (t)

φθ (t)

q̃ (t)

σ2
u (t)

]}2

=
1

2
κṼ q̃ (t)

[
(rγχD)2 β2 +

(
∂f

∂θ̃

)2

χ2
θ + 2rγβχD

∂f

∂θ̃
χθ

]

where

χD =
%D (t)

σD
+ %ξ (t)

mx (t)

σξ (t)
+
%u (t)

σu (t)
(104)

χθ =
φx (t)

φθ (t)

q̃ (t)

σ2
D

+ [φx (t) ν (t)− 1]
mx (t)

φθ (t)
+
φx (t)

φθ (t)

q̃ (t)

σ2
u (t)

. (105)

The HJB of the above problem is written as:

ρṼ = −e−γC̃ + LṼ
(
t, W̃ , θ̃

)
+ T

[
Ṽ
]

(106)

The FOCs wrt C̃t and βt are

0 = γe−γC̃t − ṼW

0 = ṼW

(
e0 (t) + eθ (t) θ̃

)
+ ṼWWβσP (t) + ṼWθσQθ (t) + κṼ q̃ (t)

[
(rγχD)2 β + rγ

∂f

∂θ̃
χDχθ

]
which gives

β = −
ṼW

(
e0 (t) + eθ (t) θ̃

)
+ ṼWθσQθ (t) + κṼ q̃ (t) rγ ∂f

∂θ̃
χDχθ

ṼWWσP (t) + κṼ q̃ (t) (rγχD)2 .

Under the guessed value function form, Ṽt = −∂f
∂t Ṽ , ṼW = −rγṼ , ṼWW = (rγ)2 Ṽ , Ṽθ = −∂f

∂θ Ṽ ,
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Ṽθθ =

[(
∂f
∂θ

)2
− ∂2f

∂θ2

]
Ṽ , ṼWθ = rγ ∂f∂θ Ṽ . The FOCs are therefore

C̃ = rW̃ +
1

γ

[
f
(
t, θ̃t

)
− ln r

]
, (107)

β =
e0 (t) + eθ (t) θ̃ −

(
fθ (t) + fθθ (t) θ̃

)
[σQθ (t) + κχDχθ q̃ (t)]

rγ
[
σP (t) + κχ2

D q̃ (t)
] . (108)

We then obtain the demand function of the form

βt = β0 (t) + βθ (t) θ̃t. (109)

where

β0 (t) =
e0 (t)− fθ (t) [σQθ (t) + κχDχθ q̃ (t)]

rγ
[
σP (t) + κχ2

D q̃ (t)
] (110)

βθ (t) =
eθ (t)− fθθ (t) [σQθ (t) + κχDχθ q̃ (t)]

rγ
[
σP (t) + κχ2

D q̃ (t)
] . (111)

Substituting this into HJB gives

0 = r − ρ− ∂f

∂t
+ rf − r ln r − rγβ

(
e0 (t) + eθ (t) θ̃

)
+

1

2
r2γ2β2

[
σP (t) + κχ2

D q̃ (t)
]

+βrγ
∂f

∂θ̃
[σQθ (t) + κχDχθ q̃ (t)]− ∂f

∂θ̃
a
(
θ̄ − θ̃

)
+

1

2

[(
∂f

∂θ̃

)2

− ∂2f

∂θ̃2

]
σθθ (t) +

1

2
κq̃ (t)

(
∂f

∂θ̃

)2

χ2
θ.

Matching coefficients of the value function, and use β0 (t) and βθ (t) to simplify, we have

0 = r − ρ− ∂f

∂t
+ rf − r ln r − 1

2
r2γ2β2

[
σP (t) + φ2χ

2
D q̃ (t)

]
−∂f
∂θ̃
a
(
θ̄ − θ̃

)
+

1

2

[(
∂f

∂θ̃

)2

− ∂2f

∂θ̃2

]
σθθ (t) +

1

2
κq̃ (t)

(
∂f

∂θ̃

)2

χ2
θ.

Finally we obtain the ODEs for the uninformed investors’ value function coefficients as follows:

f ′ (t) = r − ρ− rlnr + rf (t)− 1

2
(rγ)2 [σP (t) + κχ2

D q̃ (t)
]
β2

0 (t) +
1

2
σθθ
[
f2
θ (t)− fθθ (t)

]
−aθ̄fθ (t) +

1

2
κq̃ (t)χ2

θf
2
θ (t) (112)

f ′θθ (t) = (2a+ r) fθθ (t)− (rγ)2 [σP (t) + κχ2
D q̃ (t)

]
β2
θ (t) +

(
σθθ + κq̃ (t)χ2

θ

)
f2
θθ (t) (113)

f ′θ (t) = (a+ r) fθ (t)− (rγ)2 [σP (t) + κχ2
D q̃ (t)

]
β0 (t)βθ (t) +

(
σθθ + κq̃ (t)χ2

θ

)
fθ (t) fθθ (t)− aθ̄fθθ (t) .(114)

Market Clearing Conditions Market clearing condition is

(1− ω)αt + ωβt = θt, (115)
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Using the relationship θ̃t = θt − φx(t)
φθ(t) ∆t gives

0 = (1− ω)α0 (t) + ωβ0 (t) (116)

1 = (1− ω)αθ (t) + ωβθ (t) , (117)

0 = (1− ω)α∆ (t)− ωβθ (t)
φx (t)

φθ (t)
. (118)

The ODEs for the pricing functions φ (t) , φθ (t) and φ∆ (t) can be characterized as follows:

φ′ (t) = rφ+ aθ̄φθ − bx̄φ̄x +
(1− ω)

(
κq̃χ2

D + σP
)

(gθσθ%θ + g∆σQ∆) + σPωfθ (κq̃χDχθ + σQθ)

(1− ω)κq̃χ2
D + σP

(119)

φ′θ (t) = (a+ r)φθ −
(1− ω)

(
κq̃χ2

D + σP
)

(gθθσθ%θ + gθ∆σQ∆) + σPωfθθ (κq̃χDχθ + σQθ) + rγσP
(
κq̃χ2

D + σP
)

(1− ω)κq̃χ2
D + σP

(120)

or simplify the term eθ (t) = (a+ r)φθ (t)− φ′θ (t) in βθ (t) in (118) gives

φ′∆ (t) = (a∆ + r)φ∆ (t)− (gθ∆σθ%θ + g∆∆σQ∆)

− φ̄x − φ∆ (t)

φθ (t)

ωσP
(

1
1−ω rγσP + gθ∆σQ∆ + gθθσθ%θ − fθθσQθ − κfθθ q̃χDχθ

)
(1− ω)κq̃χ2

D + σP

(121)

Portfolio Demand for the Informed: Boundary First, we derive boundary conditions for

the informed investor’s value function coefficients. The informed investor’s optimization problem

at the boundary can be written as

−e−rγŴ−−g(T,θT ,∆T ) = max
αT

{
−ÊT

[
e−rγŴ

+−g(0,θT ,0)
]}

= e−rγŴ
−

max
αT

{
−ÊT

[
e−rγαT (P+

T −P
−
T )−g(0,θT ,0)

]}
, (122)

where xT ∼ N (x̂T , q̂T ). Solving the exponent part within the expectation operator yields:

−rγαT
(
P+
T − P

−
T

)
− g (0, θT , 0) = −Φ0 − Φ1xT ,

where Φ0 = rγαT
{

[φ (0)− φ (T )]− [φθ (0)− φθ (T )] θT − φ̄xx̂T + φ∆ (t) ∆T

}
+ g (0) + gθ (0) θT +

1
2gθθ (0) θ2

T and Φ1 = rγαT φ̄x. Then

ÊT
[
e
−rγαT (P+

T
−P−

T )−g(0,θT ,0)
]

= e−Φ0−(Φ1x̂T− 1
2

Φ2
1q̂T ) = eTerm

i
, (123)

where

Termi = −rγαT {[φ (0)− φ (T )]− [φθ (0)− φθ (T )] θT + φ∆ (t) ∆T }

−g (0)− gθ (0) θT −
1

2
gθθ (0) θ2

T +
1

2
r2γ2α2

T φ̄
2
xq̂T . (124)
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Optimization implies

αT = α0 (T ) + αθ (T ) θT + α∆ (T ) ∆T , (125)

where

α0 (T ) =
φ (0)− φ (T )

rγφ̄2
xq̂T

, αθ (T ) =
φθ (T )− φθ (0)

rγφ̄2
xq̂T

, and α∆ (T ) =
φ∆ (T )

rγφ̄2
xq̂T

. (126)

Therefore, g (T, θT ,∆T ) = −Termi gives

g (T ) + gθ (T ) θT +
1

2
gθθ (T ) θ2

T + g∆ (T ) ∆T +
1

2
g∆∆ (T ) ∆2

T + gθ∆ (T ) θT∆T

=
[φ (0)− φ (T ) + φ∆ (T ) ∆T + (φθ (T )− φθ (0)) θT ] 2

q̂T φ̄2
x

+
1

2
gθθ (0) θ2

T + gθ (0) θT + g (0) .(127)

Matching the coefficients yields the boundary conditions summarized as follows

g (T )− g (0) =
[φ (T )− φ (0)]2

2q̂T φ̄2
x

, gθθ (T )− gθθ (0) =
[φθ (T )− φθ (0)]2

q̂T φ̄2
x

,

gθ (T )− gθ (0) =
− [φ (T )− φ (0)] [φθ (T )− φθ (0)]

q̂T φ̄2
x

, g∆∆ (T ) =
φ2

∆ (T )

q̂T φ̄2
x

,

g∆ (T ) = − [φ (T )− φ (0)]φ∆ (T )

q̂T φ̄2
x

, gθ∆ (T ) =
φ∆ (T ) [φθ (T )− φθ (0)]

q̂T φ̄2
x

. (128)

Portfolio Demand for the Uninformed: Boundary Second, we derive boundary conditions

for the uninformed investor’s value function coefficients. The uninformed investor’s optimization

problem at the boundary is

V
(
T, W̃−T , θ̃T

)
= h−1

[
max
βT

{
ẼT
[
h
(
V
(

0, W̃+
T , θT

))]}]
where h [V ] = − 1

1+κ (−V )1+κ. This gives

e[−rγW̃
−
T −f(T,θ̃T )](1+κ) = e−rγW̃

−(1+κ) max
βT

ẼT
[
e[−rγβT (P+

T −P
−
T )−f(0,θT )](1+κ)

]
,

e−f(T,θ̃T )(1+κ) = max
βT

ẼT
[
e[−rγβT (P+

T −P
−
T )−f(0,θT )](1+κ)

]
, (129)

where

(
xT

θT

)
∼ N

( x̃T

θ̃T

)
,

 q̂T + q̃T
φx(T )
φθ(T ) q̃T

φx(T )
φθ(T ) q̃T

φ2
x(T )
φ2
θ(T )

q̃T

, in which we use the variance-covariance

relationship derived before. Note, xT − x̃T = xT − x̂T + x̂T − x̃T . Recall the learning identity:

φx (t) x̂t − φθ (t) θt = φx (t) x̃t − φθ (t) θ̃t. Use this to write x̂T − x̃T as a function of θT − θ̃T , we
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obtain: x̂T − x̃T =
φθ,T
φx,T

(
θT − θ̃T

)
. Therefore,

P+
T − P

−
T = [φ (0)− φ (T )]−

[
φθ (0) θT − φθ (T ) θ̃T

]
+ φ̄x (xT − x̃T )

= [φ (0)− φ (T )]−
(
φθ,0 −

φθ,T
φx,T

φ̄x

)(
θT − θ̃T

)
+ (φθ,T − φθ,0) θ̃T + φ̄x (xT − x̂T ) .

Note that xT ∼ N (x̂T , q̂T ), or xT − x̂T ∼ N (0, q̂T ). We also know that θT − θ̃T ∼ N (0,Ω), where

Ω ≡ φ2
x(T )
φ2
θ(T )

q̃T . The joint distribution

(
xT − x̂T
θT − θ̃T

)
∼ N

((
0

0

)
,

(
q̂T 0

0 Ω

))
. Hence, we would

like to rewrite the above equation in terms of xT − x̂T and θT − θ̃T :

P+
T − P

−
T = n0 (T ) + µ1 (T )

(
θT − θ̃T

)
+ nθ (T ) θ̃T + φ̄x (xT − x̂T )

where

n0 (T ) ≡ φ (0)− φ (T ) (130)

nθ (T ) ≡ φθ (T )− φθ (0) (131)

µ1 (T ) ≡ φ̄x
φθ (T )

φx (T )
− φθ (0) . (132)

Also,

f (0, θT ) = f (0) + fθ (0) θT +
1

2
fθθ (0) θ2

T

= ν0 (T ) + ν1 (T )
(
θT − θ̃T

)
+

1

2
fθθ,0

(
θT − θ̃T

)2

where

ν0 (T ) ≡ f (0) + fθ (0) θ̃T +
1

2
fθθ (0) θ̃2

T (133)

ν1 (T ) ≡ fθ (0) + fθθ (0) θ̃T . (134)

Solving the exponent part within the expectation operator in the optimization problem gives:

(1 + κ)

{
−rγβT

[
n0 (T ) + µ1 (T )

(
θT − θ̃T

)
+ nθ (T ) θ̃T + φ̄x (xT − x̂T )

]
−
[
ν0 + ν1

(
θT − θ̃T

)
+

1

2
fθθ,0

(
θT − θ̃T

)2
]}

Then we need to compute the expectation. We first integrate out

ẼT
[
e−rγ(1+κ)βT φ̄x(xT−x̂T )

]
= e

1
2

(rγ)2(1+κ)2φ̄2
xq̂T β

2
T .
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Hence,

ẼT
[
e[−rγβT (P+

T −P
−
T )−f(0,θT )](1+κ)

]
= e(−rγβTµ0−ν0)(1+κ)+ 1

2
(rγ)2(1+κ)2φ̄2

xq̂T β
2
T ẼT

[
e

[
−(rγβTµ1+ν1)(θT−θ̃T )− 1

2
fθθ,0(θT−θ̃T )

2
]
(1+κ)

]
,

where

µ0 (T ) ≡ n0 (T ) + nθ (T ) θ̃T . (135)

Lemma 3. Let X ∼ N (0,Ω), then

E
[
e−

1
2
aX2+bX

]
=

1√
1 + aΩ

e
1
2
b2Ω

1+aΩ = e
1
2

[
b2Ω

1+aΩ
−ln(1+aΩ)

]
. (136)

Applying the above lemma, we have

ẼT
[
e

[
−(rγβTµ1+ν1)(θT−θ̃T )− 1

2
fθθ,0(θT−θ̃T )

2
]
(1+κ)

]
= e

Ω(rγβT µ1+ν1)2
(1+κ)2

2(1+fθθ,0(1+κ)Ω)
− 1

2
ln(1+fθθ,0(1+κ)Ω)

.

Therefore,

ẼT
[
e[−rβT (P+

T −P
−
T )−f(0,θT )](1+κ)

]
= eTerm

u
,

where

Termu =
1

2
(rγ)2 (1 + κ) Λβ2

T − rγ (1 + κ) [µ0 − Γ (1 + κ)µ1ν1]βT

+

[
−ν0 (1 + κ) +

Γ

2
(1 + κ)2 ν2

1 −
1

2
ln (1 + fθθ,0 (1 + κ) Ω)

]
where

Γ ≡ Ω

1 + fθθ (0) Ω
(137)

Λ ≡ φ̄2
xq̂T + Γµ2

1 (T ) . (138)

The FOC with respect to βT gives

βT =
1

rγΛ
[µ0 (T )− Γ (1 + κ)µ1 (T ) ν1 (T )]

=
1

rγΛ

[
m0 (T ) +mθ (T ) θ̃T

]
where

mθ (T ) ≡ nθ (T )− Γ (1 + κ)µ1 (T ) fθθ (0) (139)

m0 (T ) ≡ n0 (T )− Γ (1 + κ)µ1 (T ) fθ (0) . (140)
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Denote

βT = β0 (T ) + βθ (T ) θ̃T , (141)

where

β0 (T ) =
1

rγΛ
m0 (T ) (142)

βθ (T ) =
1

rγΛ
mθ (T ) . (143)

Plugging back,

Termu =

[
−ν0 (1 + κ) +

Γ

2
ν2

1 (1 + κ)2 − 1

2
ln (1 + fθθ,0 (1 + κ) Ω)

]
− 1 + κ

2Λ

(
m0 +mθθ̃T

)2
.

Substituting ν0 (T ) and ν1 (T ) into f
(
T, θ̃T

)
= −Termu

1+κ gives

f (T ) + fθ (T ) θ̃T +
1

2
fθθ (T ) θ̃2

T = f (0) + fθ (0) θ̃T +
1

2
fθθ (0) θ̃2

T −
Γ

2

[
fθ (0) + fθθ (0) θ̃T

]2
(1 + κ)

+
1

2 (1 + κ)
ln (1 + fθθ,0 (1 + κ) Ω) +

1

2Λ

(
m0 +mθθ̃T

)2

and matching the coefficients yields the boundary conditions summarized as follows

f (T )− f (0) = −Γ

2
f2
θ (0) (1 + κ) +

1

2Λ
m2

0 (T ) +
1

2 (1 + κ)
ln (1 + fθθ (0) (1 + κ) Ω) (144)

fθ (T )− fθ (0) = −Γfθθ (0) fθ (0) (1 + κ) +
1

Λ
m0 (T )mθ (T ) (145)

fθθ (T )− fθθ (0) = −Γf2
θθ (0) (1 + κ) +

1

Λ
m2
θ (T ) . (146)

Market Clearing Note that market clearing requires: (1− ω)αT + ωβT = θT at the announce-

ment. This implies

(1− ω)α0 (T ) + ωβ0 (T ) = 0,

(1− ω)αθ (T ) + ωβθ (T ) = 1,

(1− ω)α∆ (T )− ωβθ (T )
φx,T
φθ,T

= 0.
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Substituting expressions in equations (126) and (141) gives

(1− ω)
φ0 − φT
φ̄2
xq̂T

+ ω
m0

Λ
= 0,

(1− ω)
φθ,T − φθ,0
φ̄2
xq̂T

+ ω
mθ

Λ
= rγ,

(1− ω)
φ∆,T

φ̄2
xq̂T
− ωmθ

Λ

φx,T
φθ,T

= 0.

Eventually we can pin down the boundary conditions for the pricing function coefficients.

φ (T )− φ (0) = − ω (1 + κ) φ̄2
xq̂T

(1− ω) Λ + ωφ̄2
xq̂T

Γµ1 (T ) fθ (0) (147)

φθ (T )− φθ (0) =
φ̄2
xq̂T

(1− ω) Λ + ωφ̄2
xq̂T

[rγΛ + ω (1 + κ) Γµ1 (T ) fθθ (0)] (148)

φ∆ (T ) =
ωφ̄2

xq̂T
(1− ω) Λ

φx (T )

φθ (T )
mθ (T ) . (149)

Unconditional Expected Return Now we derive the unconditional expected return from our

model. Using equations (110) and (111), we can write

E (dQt) /E (Pt) =
E
(
e0 (t) + eθ (t) θ̃t

)
φ (t) +

(
φD + φ̄x

)
x̄− φθ (t) θ̄

=
rγ
(
β0 (t) + βθ (t) θ̄

)
σP (t) +

(
fθ (t) + fθθ (t) θ̄

)
σQθ (t)

φ (t) +
(
φD + φ̄x

)
x̄− φθ (t) θ̄︸ ︷︷ ︸

expected return due to expected utility

+κq̃ (t)χD
rγ
(
β0 (t) + βθ (t) θ̄

)
χD q̃ (t) +

(
fθ (t) + fθθ (t) θ̄

)
χθ

φ (t) +
(
φD + φ̄x

)
x̄− φθ (t) θ̄︸ ︷︷ ︸

expected return due to ambiguity

. (150)

The first term in the expected return comes from the standard expected utility, whereas the second

term appears only because of ambiguity aversion. Note that χD defined in equation (104) arises from

the variance of conditional expectation in the T operator and κ represents the degree of ambiguity

aversion.

6.6 Optimal Information Acquisition

In this section, we provide a proof for the sufficient conditions for optimal information acquisition

time in Lemma 1. For simplicity, we focus on the case of expected utility. Using the notation in the

lemma, we let Ṽ
(
t,W, θ̃|∞

)
be the value function before information acquisition and Ṽ

(
t,W, θ̃|σu

)
be the value function after information acquisition. To prove the optimality of τ , it is enough to

51



show that for all t < τ ,8

Ṽ
(
t,W, θ̃|∞

)
≥ Ṽ

(
t,W −K

(
θ̃
)
, θ̃|σu

)
, (151)

and for all t > τ , and any consumption plan {Cs}ts=τ ,

Ṽ
(
τ,W −K

(
θ̃
)
, θ̃|σu

)
≥ E∞τ

[ˆ t

τ
e−ρ(s−τ)u (Cs) ds+ e−ρ(t−τ)Ṽ

(
t,Wt −K

(
θ̃t

)
, θ̃t|σu

)]
.

(152)

Inequality (151) guarantees that exercising the option at any time t < τ is dominated by exercising

at time τ . And inequality (152) implies that exercising the option at time τ is better than postponing

option exercise to t for any t > τ . The notation E∞τ indicates that the expectation is taken with

respect to the belief such that σu (s) =∞ for all s ∈ (τ, t).

We first establish (151). Given the negative exponential form of the value function, (151) is

equivalent to

Ṽ
(
t,W +K

(
θ̃
)
, θ̃|∞

)
≥ Ṽ

(
t,W, θ̃|σu

)
. (153)

Let {Cs}τs=t be the consumption policy associated with the value function Ṽ
(
t,Wt, θ̃t|σu

)
,

Ṽ
(
t,Wt, θ̃t|σu

)
= Eσut

[ˆ τ

t
e−ρ(s−t)u (Cs − k) ds+ e−ρ(τ−t)Ṽ

(
τ,Wτ , θ̃τ |σu

)]
. (154)

Replacing the term Ṽ
(
τ,Wτ , θ̃τ |σu

)
using the value matching condition at τ , Ṽ

(
τ,Wτ , θ̃τ |σu

)
=

Ṽ
(
τ,Wτ +K (θτ ) , θ̃τ |∞

)
, we can write the inequality (153) as

Ṽ
(
t,Wt +K

(
θ̃t

)
, θ̃t|∞

)
≥ Eσut

[ˆ τ

t
e−ρ(s−t)u (Cs − k) ds+ e−ρ(τ−t)Ṽ

(
τ,Wτ +K (θτ ) , θ̃τ |∞

)]
,

(155)

or

e−ρtṼ
(
t,W +K

(
θ̃t

)
, θ̃t|∞

)
≥ Eσut

[ˆ τ

t
e−ρsu (Cs − k) ds+ e−ρτ Ṽ

(
τ,Wτ +K (θτ ) , θ̃τ |∞

)]
.

(156)

Using Dynkin’s formula,

Eσut
[
e−ρτ Ṽ

(
τ,Wτ +K (θτ ) , θ̃τ |∞

)]
= e−ρtṼ

(
t,Wt +K

(
θ̃t

)
, θ̃t

∣∣∣∞)
+ Eσut

[ˆ τ

t
Lσu

{
e−ρsṼ

(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)} ds] .
(157)

8Here we allow the value function Ṽ
(
t,W, θ̃|σu

)
to be defined for all t ∈ [0, T ] through equation (28). For t < τ ,

Ṽ
(
t,W, θ̃|σu

)
is interpreted as investor’s utility if he were to decide to acquire information at t.

52



The term Lσu
{
e−ρsṼ

(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)} = e−ρs
[
−ρṼ

(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)+ Lσu Ṽ
(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)].
Note that

− ρṼ
(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)+ Lσu Ṽ
(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)
=− ρṼ

(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)+ Lσu Ṽ
(
s,Ws +K

(
θ̃s

)
, θ̃s

∣∣∣∞)+ u (Cs − k)− u (Cs − k)

≤− u (Cs − k) ,

where the last inequality uses the condition (30). As a result, Equation (157) implies

Eσut
[
e−ρτ Ṽ

(
τ,Wτ +K (θτ ) , θ̃τ |∞

)]
≤ e−ρtṼ

(
t,Wt +K

(
θ̃t

)
, θ̃t

∣∣∣∞)−Eσut [ˆ τ

t
e−ρsu (Cs − k) ds

]
,

(158)

which is (156).

Similarly, inequality (152) can be written as:

e−ρτ Ṽ
(
τ,Wτ −K

(
θ̃τ

)
, θ̃τ

∣∣∣σu) ≥ E∞τ
[ˆ t

τ
e−ρsu (Cs) ds+ e−ρtṼ

(
t,Wt −K

(
θ̃t

)
, θ̃t

∣∣∣σu)] .
(159)

Using Dynkin’s formula,

E∞τ
[
e−ρtṼ

(
t,Wt −K

(
θ̃t

)
, θ̃t

∣∣∣σu)] = e−ρτ Ṽ
(
τ,Wτ −K

(
θ̃τ

)
, θ̃τ

∣∣∣σu)
+ E∞τ

[ˆ t

τ
L∞

{
e−ρsṼ

(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)} ds] .
(160)

We can write the term L∞
{
e−ρsṼ

(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)} as e−ρs
{
−ρṼ

(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)+ L∞Ṽ
(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)}.

Note that

− ρṼ
(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)+ L∞Ṽ
(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)
=− ρṼ

(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)+ L∞Ṽ
(
s,Ws −K

(
θ̃s

)
, θ̃s

∣∣∣σu)+ u (Cs)− u (Cs)

≤− u (Cs) ,

where the last inequality uses the condition (152). As a result, (160) implies

E∞τ
[
e−ρtṼ

(
t,Wt −K

(
θ̃t

)
, θ̃t

∣∣∣σu)] ≤ e−ρτ Ṽ (τ,Wτ −K
(
θ̃τ

)
, θ̃τ

∣∣∣σu)− E∞τ
[ˆ t

τ
e−ρsu (Cs) ds

]
,

(161)

which is (159), as needed.
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6.7 Implied Volatility

Implied Variance We would like to compute V ar0 [Pt − P0] = V ar0 [Pt]. First consider the case

in which t < T . We solve the three components separately. First, we solve for x̃t. Using the law of

motion (12), we have:

x̃t = e−bt
ˆ t

0
ebsbx̄ds+ e−bt

ˆ t

0
ebs

q̂s + q̃s
σD

dB̃D,s + e−bt
ˆ t

0
ebsν (s)σξ (s) dB̃ξ,s + e−bt

ˆ t

0
ebs

q̃s
σu,s

dB̃u,s.

Therefore, compute the diffusion

D [x̃t] =

ˆ t

0
eb(s−t)

q̂s + q̃s
σD

dB̃D,s +

ˆ t

0
eb(s−t)ν (s)σξ (s) dB̃ξ,s +

ˆ t

0
eb(s−t)

q̃s
σu,s

dB̃u,s. (162)

Next, we compute Dt. Using law of motion: dDt = (x̃t −Dt) dt+ σDdB̃D,t, we obtain

Dt = e−t
[ˆ t

0
esx̃sds+

ˆ t

0
esσDdB̃D,s

]
.

The term

ˆ t

0
eux̃udu =

ˆ t

0
e(1−b)u

ˆ u

0

{
ebsbx̄ds+

ˆ u

0
ebs

q̂s + q̃s
σD

dB̃D,s +

ˆ u

0
ebsν (s)σξ (s) dB̃ξ,s +

ˆ u

0
ebs

q̃s
σu,s

dB̃u,s

}
du.

We focus on the diffusion part:

ˆ t

0

ˆ u

0
ebs+(1−b)u q̂s + q̃s

σD
dB̃D,sdu =

ˆ t

0

ˆ t

s
ebs+(1−b)u q̂s + q̃s

σD
dudB̃D,s

=
1

(1− b)σD

ˆ t

0

[
e(1−b)t+bs − es

]
(q̂s + q̃s) dB̃D,s.

Similarly, we have:

ˆ t

0

ˆ u

0
ebs+(1−b)uν (s)σξ (s) dB̃ξ,sdu =

1

(1− b)

ˆ t

0

[
e(1−b)t+bs − es

]
ν (s)σξ (s) dB̃ξ,s.

ˆ t

0

ˆ u

0
ebs+(1−b)u q̃s

σu,s
dB̃u,sdu =

1

(1− b)

ˆ t

0

[
e(1−b)t+bs − es

] q̃s
σu,s

dB̃u,s.

The diffusion part of Dt is

D [Dt] =

ˆ t

0

[(
eb(s−t) − es−t

) q̂s + q̃s
(1− b)σD

+ es−tσD

]
dB̃D,s

+

ˆ t

0

(
eb(s−t) − es−t

) ν (s)σξ (s)

1− b
dB̃ξ,s +

ˆ t

0

(
eb(s−t) − es−t

) q̃s
(1− b)σu,s

dB̃u,s.(163)
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Finally, we deal with θ̃t. Using law of motion of θ̃t in (23),

D
[
θ̃t

]
=

ˆ t

0
ea(s−t)φx (s)

φθ (s)

q̃s
σD

dB̃D,s +

ˆ t

0
ea(s−t) [φx (s) ν (s)− 1]

σξ (s)

φθ (s)
dB̃ξ,s

+

ˆ t

0
ea(s−t)φx (s)

φθ (s)

q̃s
σu,s

dB̃u,s. (164)

Summing up (162), (163), and (164), we can represent the price in the form of

D [Pt] =

ˆ t

0
TermD (s) dB̃D,s +

ˆ t

0
Termξ (s) dB̃ξ,s +

ˆ t

0
Termu (s) dB̃u,s, (165)

where

TermD (s) = φD

[(
eb(s−t) − es−t

) q̂s + q̃s
(1− b)σD

+ es−tσD

]
− φθ (t) ea(s−t)φx (s)

φθ (s)

q̃s
σD

+ φ̄xe
b(s−t) q̂s + q̃s

σD
(166)

Termξ (s) = φD

[
eb(s−t) − es−t

] ν (s)σξ (s)

1− b
− φθ (t) ea(s−t) [φx (s) ν (s)− 1]

σξ (s)

φθ (s)
+ φ̄xe

b(s−t)ν (s)σξ (s)(167)

Termu (s) = φD

[
eb(s−t) − es−t

] q̃s
(1− b)σu,s

− φθ (t) ea(s−t)φx (s)

φθ (s)

q̃s
σu,s

+ φ̄xe
b(s−t) q̃s

σu,s
. (168)

and compute the variance as:

V ar0 [Pt] =

ˆ t

0
Term2

D (s) ds+

ˆ t

0
Term2

ξ (s) ds+

ˆ t

0
Term2

u (s) ds. (169)

Next, consider the general case where we need to compute V art [Pt+τ ]. If t+τ ≤ T, that is, if we

compute implied variance within an announcement cycle, we use the above formula. If t + τ > T .

We first compute V art [PT− ] using the above formula. It is also easy to compute the variance at

the announcement V arT− [PT+ − PT− ]. We then compute V arT+ [Pt+τ ] . The reason we can add

up variance is because these different components are independent.

V art [Pt+τ ] =

ˆ t+τ

t

[
Term2

D (s) ds+ Term2
ξ (s) + Term2

u (s)
]
ds. (170)

P+
T − P

−
T = φ̄x (xT − x̃T )− φθ (0)

[
θT − θ̃T

]
− [φθ (0)− φθ (T )] θ̃T ,

where

(
xT

θT

)
∼ N

( x̃T

θ̃T

)
,

 q̂T + q̃T
φx(T )
φθ(T ) q̃T

φx(T )
φθ(T ) q̃T

φ2
x(T )
φ2
θ(T )

q̃T

, gives

V arT− [PT+ − PT− ] = φ̄2
x (q̂T + q̃T ) + φ2

θ (0)
φ2
x (T )

φ2
θ (T )

q̃T − 2φ̄xφθ (0)
φx (T )

φθ (T )
q̃T . (171)
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Therefore, the total variance is obtained by

V art [PT− ]︸ ︷︷ ︸
IV before announcement

+V arT− [PT+ − PT− ]︸ ︷︷ ︸
IV at announcement

+ V arT+ [Pt+τ ]︸ ︷︷ ︸
IV after announcement

=

ˆ T−

t

[
Term2

D (s) + Term2
ξ (s) + Term2

u (s)
]
ds+

ˆ t+τ

T+

[
Term2

D (s) + Term2
ξ (s) + Term2

u (s)
]
ds

+φ̄2
x (q̂T + q̃T ) + φ2

θ (0)
φ2
x (T )

φ2
θ (T )

q̃T − 2φ̄xφθ (0)
φx (T )

φθ (T )
q̃T (172)

In Figure 12, we plot the implied variance around the announcement. It is clear that the implied

variance reduces during the drift period and drops significantly after the announcements. This is

consistent with the empirical evidence documented by Hu, Pan, Wang, and Zhu (2020).

Figure 12: Implied Volatility
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IV with Information Acquisition

The figure plots the implied volatility (annualized in percentage) in our benchmark economy with endogenous infor-
mation acquisition. The horizontal axis is the number of days around the announcement, which is normalized as 0.
A −1 for example, stands for five days before announcements.
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