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1 Introduction

The relationship between volatility and expected returns, or the risk and return trade-off is a fun-

damental concept in finance. Most of the consumption-based asset pricing models of time-varying

volatility assume stochastic volatility of macroeconomic fundamentals, such as stochastic volatility

in aggregate consumption or aggregate productivity. However, several facts about volatility and

the relationship between volatility and expected returns on financial markets prove to be puzzling

from this traditional viewpoint of stochastic volatility. First, financial market volatility exhibits

lots of high-frequency variations, while changes in the volatility of macroeconomic fundamentals

happen at much lower frequencies, such as at the annual or the decade frequency. Second, while

standard stochastic volatility models often predict a robust positive relationship between past

realized volatility and future expected returns, many researchers have documented a negative re-

lationship between past realized volatility and future expected returns, for example, Nelson (1991)

and Glosten, Jagannathan, and Runkle (1993). More recently, Moreira and Muir (2017) construct

a volatility managed portfolios that take less risk when realized volatility is high and more risk

when realized volatility is low. They show that the volatility managed portfolio produces large

excess returns relative to the market. Third, although neither implied nor realized volatility has

strong predictive powers for returns, the difference between the two, often called the variance risk

premium, has strong predictive powers for returns over the three-to-six-month horizon.

In this paper, we develop an asset pricing model where stochastic volatility originates not from

changes in the volatility of macroeconomic fundamentals but variations of the informativeness of

publicly available information events, such as macroeconomic announcements. While empirical

evidences for changes in the volatility of macroeconomic fundamentals are mostly about long-run

trends that happen at very low frequencies, information continuously arrives at financial markets

and affect the volatility of asset prices at the daily, hourly, or even higher frequencies. The contrast

between our theory of information driven volatility and the standard models of stochastic volatility

is best illustrated using the following variance decomposition identity:

V ar [CT ] = V ar [E (CT |Xt)] +E[V ar (CT |Xt)]. (1)
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We interpret CT as macroeconomic fundamentals such as aggregate consumption, the value of

which will be realized at the terminal time T . We interpret Xt as a public signal revealed at

time t < T that are informative about CT . One example for such public signals is a macroe-

conomic announcement. To fix ideas, we interpret Xt as a macroeconomic announcement, the

above formula then decomposes the total variance of macroeconomic fundamentals, V ar [CT ] into

a variance realized on the announcement day t, V ar [E (CT |Xt)], and a variance that will realize

after t, E [V ar (CT |Xt)]. Traditional models of stochastic volatility assume time-variations in the

variance of macroeconomic fundamentals, V ar [CT ], while our theory focuses on variations in the

informativeness of macroeconomic news, that is, the V ar [E (CT |Xt)] term.

From a theoretical perspective, changes in V ar [CT ] affect the total quantity of risk. Because

volatility shocks are typically persistent, a high realization of V ar [CT ] in standard models also

forecasts a high expected volatility in the future and therefore implies a high expected return going

forward. However, this is precisely where the traditional theory has difficulty, as empirical evidence

is in favor of a negative relationship between past realized volatility and future expected returns

at relatively high frequencies. In contrast, changes in V ar [E (CT |Xt)] affect the intertemporal

distribution of risk and risk compensation. Holding the total amount of risk V ar [CT ] constant,

a higher realization of V ar [E (CT |Xt)] is associated with a larger realization of the risk premium

on announcement days, but also implies that on average, there will be a lower quantity of risk,

V ar (CT |Xt) in the future. We show that if preferences satisfy the property of generalized risk

sensitivity of Ai and Bansal (2018), then lower expected variance E [V ar (CT |Xt)] is also associated

with a lower expected return in the future, giving rise to a negative correlation between past realized

volatility and future expected returns, as documented by the previous empirical literature.

There are two motivations for our focus on information driven volatility. First, the documented

negative relationship between realized volatility and future expected returns are mostly at monthly

or higher frequencies. The volatility managed portfolios of Moreira and Muir (2017) re-balances

every month, and the predictability evidence of Nelson (1991) uses daily returns. Empirically,

variations in the volatility of macroeconomic fundamentals operate at a much lower frequency and

are unlikely to affect the day-to-day volatility of stock market returns in significant ways. At

high frequencies such as monthly and daily frequencies, keeping the variance of macroeconomic

fundamentals, V ar [CT ], fixed allows us to focus on the impact of information captured by the

3



term V ar [E (CT |Xt)].

Second, the empirical evidence of the macroeconomic announcement premium implies that in-

vestor preferences must satisfy generalized risk sensitivity (Ai and Bansal (2018)). Our theory of

information driven volatility relies on generalized risk sensitivity, because as we show in the pa-

per, this condition allows information driven volatility to require a risk premium in equilibrium

and predicts future returns. The recent empirical literature have convincingly established the im-

portance of information in determining the stock market risk compensation. For example, Savor

and Wilson (2013, 2014) demonstrate that more than 60% of the equity premium is realized on

a small number of macroeconomic announcement days. Lucca and Moench (2015) emphasize the

importance of FOMC announcements in risk compensation. Ai and Bansal (2018) demonstrate

that the empirical evidence of the macroeconomic announcement premium implies that the pref-

erence for the representative consumer must satisfy generalized risk sensitivity. Our theory that

links risk compensation to information driven volatility relies on the condition of generalized risk

sensitivity developed in Ai and Bansal (2018), which is supported empirically by the literature on

macroeconomic announcement premium.

To assess the quantitative importance of the mechanism of information-driven volatility, we

develop a continuous-time asset pricing model with homoscedasticity but with time-varying infor-

mation quality. In our model, the volatility of aggregate consumption is constant, and yet the

financial market exhibits stochastic volatility because the informativeness of public signals is time

varying.

First, we conduct several empirical tests for the unique implications of the mechanism of in-

formation driven volatility using both the U.S. stock market return data and the model simulated

data. In the data, FOMC announcements are the most identifiable events that reveal information

about the macroeconomy. To test the mechanism of information driven volatility, we first develop

a measure of informativeness of FOMC announcements. Using this measure, we show that more

informative macroeconomic announcements are associated with high realized returns and high im-

plied volatility reduction upon announcements, and low realized returns and low realized volatility

post announcements both in the data and in the model.

Second, we construct the volatility managed portfolio in our model and replicate the Moreira

and Muir (2017) exercise in our model. Following Moreira and Muir (2017), we construct a portfolio
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in our model that takes more leverage to invest in the market portfolio when past realized volatility

is low and reduces leverage and invests more in the risk-free bond when market volatility is high.

We show that similar to the evidence documented in the Moreira and Muir (2017) paper, in our

model, the volatility managed portfolio earns a higher return than the market portfolio.

In addition, we replicate the variance risk premium predictability exercise of Bollerslev, Tauchen,

and Zhou (2009) in our calibrated model. Despite the absence of stochastic volatility in macroe-

conomic fundamentals, the difference between the implied and the past realized volatility predicts

stock market returns in our model. Because implied volatility is a forwarding looking measure of

volatility, the difference between the implied and past realized volatility reflects the informativeness

of the upcoming information event. It predicts returns because, holding the past realized volatility

constant, the release of a highly informative signal is associated with both a high implied volatility

before the event and the realization of larger risk compensation associated with the event. If the

upcoming public signals are expected to be informative, the implied variance will rise, but the real-

ized variance stays the same. The empirically documented variance risk premium predictability can

therefore be explained by the information channel in our model without assuming high-frequency

movements in macroeconomic volatility.

We assume homoscedastic shocks in macroeconomic fundamentals in our model to emphasize

the importance of the information driven volatility. However, we do not intend to argue that time-

varying macroeconomic volatility is absent or unimportant for understanding equity market risk

compensations. Our purpose is to distinguish two notions of uncertainty: the variance of macroe-

conomic fundamentals and the variance of an investor’s posterior beliefs. We argue that variations

in the posterior beliefs affect the intertemporal distribution of risk and risk compensation and are

more important in understanding short-horizon risk compensations in financial markets. Changes

in the variance of macroeconomic fundamentals affect the total quantity of risk will undoubtedly

have prominent impacts on risk and risk compensation, but the effects are likely to manifest only

over longer horizons.

Related literature Our model builds on the literature on learning and information in financial

markets. David (1997) and David (2008) develop learning models to study equity market risk

compensations. Veronesi (2000) and Ai (2010) study how information quality affects the aggregate
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stock market risk premium. David and Veronesi (2013) estimate a regime-switching model with

learning. Pastor and Veronesi (2009b) develop a learning model to study the relationship between

technological innovations and stock market valuations. Pastor and Veronesi (2009a) provide an

excellent review of the literature on learning and asset pricing. Bansal and Shaliastovich (2010,

2011) and Shaliastovich (2015) develop models where learning results in asset price jumps. None

of the above papers focus on time-varying informativeness of macroeconomic news as we do.

Our paper is evidently related to the vast empirical literature on the expected return-volatility

relationship. Both Nelson (1991) and Glosten, Jagannathan, and Runkle (1993) document empirical

evidence that is supportive of a negative relationship between past realized volatility and future

expected returns. Harvey (1989) finds mixed evidence or a time-varying relationship between

expected excess returns and conditional variances. Consistent with our theory, Harrison and Zhang

(1999) find a negative relationship and sometimes a mixed evidence for the relationship between past

realized volatility and future expected returns over short horizons, but a positive relationship over

horizons longer than a year. More recently, Moreira and Muir (2017) demonstrate a positive average

return on their volatility managed portfolio relative to the market return, and their evidence is also

consistent with a negative relationship between past realized volatility and future expected returns.

Lochstoer and Muir (forthcoming) develop a model of extrapolative expectations of volatility shocks

to explain the variance risk premium predictability and the negative relationship between volatility

and expected returns.

Several recent papers provide empirical evidence that is consistent with the information driven

volatility channel emphasized in this paper. Baker, Bloom, Davis, Kost, Sammon, and Viratyosin

(2020) document that a higher clarity of news is associated with lower realized volatility in the

future. Zhang and Zhao (2020) provide evidence that in periods where public information is im-

precise, the realized macroeconomic announcement premium is low. Chaudhry (2021) shows that

announce days are typically associated with uncertainty reductions and lower expectations post

announcements.

Our paper is also related to the variance risk premium predictability literature. Bollerslev,

Tauchen, and Zhou (2009) document the predictability of stock market returns by the difference

between implied and realized variance, and develop a model of variance risk premium predictability

based on stochastic volatility in the volatility of macroeconomic fundamentals.Drechsler and Yaron
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(2011) develop a model with stochastic volatility and stochastic jumps to quantitatively explain the

variance risk premium predictability. Eraker and Wang (2015) estimate a non-linear diffusion model

and study the variance risk premium predictability. Zhou (2018) provides a thorough review of this

literature. The above literature has interpreted the difference between implied and realized variance

as the difference between variance under the physical measure and that under the risk neutral

measure and hence defined as the variance risk premium. We show that the difference between

implied and realized variance can predict returns without assuming a variance risk premium. In our

model, the difference between the two reflects the informativeness of the upcoming announcement.

It predicts returns because in our model, resolution of uncertainty is associated with realizations

of risk premium.

This paper is also closely related to the literature on generalized risk sensitivity and macroeco-

nomic announcements. From the empirical perspective, pre-scheduled macroeconomic announce-

ments are the most salient information events that are associated with significant realizations of

market equity premiums and affect the volatility of stock market returns. The literature that

documents a significant macroeconomic announcement premium, for example, Savor and Wilson

(2013, 2014) and Lucca and Moench (2015) provide strong empirical support for the mechanism

emphasized in this paper. From the theoretical point of view, Ai and Bansal (2018) demonstrate

that the existence of announcement premium implies generalized risk sensitivity in preferences. In

our setup, as we will demonstrate in Section 3 of the paper, generalized risk sensitivity is also

necessary for information quality to affect the intertemporal distribution of risk compensation.

The rest of the paper is organized as follows. In Section 2 summarizes the stylized facts between

realized variance and expected returns. In Section 3presents a simple two-period model to illustrate

the impact of informativeness of macroeconomic news on the intertemporal distribution of risk and

risk compensation. Section 4 develops a dynamic model to account for the stylized facts, and

Section 5 presents the quantitative results. Section 6 concludes.

2 Stylized Facts

In this section, we provide details on several stylized facts on volatility and stock market returns

that motivate the development of our theory.
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1. The volatility of macroeconomic fundamentals do not exhibit significant variations at the

monthly or annual frequency.

Figure 1: Macroeconomic volatility and stock market volatility
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The top panel is the monthly consumption growth rates (solid line) and the S&P500 index returns (dash-dotted line)
during the period of 1960.02-2019.12. The bottom panel is the estimated conditional volatility of the two series from
a GARCH(1,1) model during the same sample period.

In Figure 1, we plot the time series of monthly consumption growth and monthly stock market

returns in the top panel. In the bottom panel, we plot the estimated conditional volatility

of the two time series from a GARCH (1,1) model. Compared to stock market returns, the

variations of consumption growth are much smaller. The estimated conditional volatility of

stock returns exhibits sharp variations over the monthly horizon, while that of aggregate

consumption growth is virtually flat by comparison.

2. Strategies that take more leverage when volatility is low and take less market risk exposure
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when volatility is high produce large alphas. This is contradictory to the positive relation-

ship between past realized volatility and future expected returns predicted by standard asset

pricing models with stochastic volatility.

Figure 2: The volatility managed portfolio
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This figure plots the return on a volatility managed portfolio (solid line) and the return on the buy-and-hold market
portfolio (dashed line) during the period of 1926.07-2015.12.

In Figure 2, we follow Moreira and Muir (2017) and construct a volatility managed portfolio

that is rebalanced every month according to past-month realized volatility. Consistent with

their result, we find that a volatility managed market portfolio produces an average annual

return of 9.54% per year from 1926 through 2015, while the average market return on a

buy-and-hold strategy is 7.75% per year during the same period.

3. Even though realized market variance or implied variance do not have strong predictive powers

for returns, the difference between the two does for returns over three-to-six month horizons.

This is the well-known variance risk premium predictability (Bollerslev, Tauchen, and Zhou

(2009)). In Table 1, we report results of the following standard VRP predictability regression:

Rt,t+∆ = α+ β [IVt −RVt−21,t] + εt,t+∆, (2)
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where Rt,t+∆ is the cumulative market return from time t to time t + ∆, where ∆ =

21, 42, 63, 84, 105, 126 trading days. IVt is the forward-looking 30-day implied variance (VIX

index squared) at time t, and RVt−21,t is the past 30-day realized variance. The regression

coefficients are statistically significant and increasing up to six months.

Table 1: Return predictability by IV −RV

Number of days 21 42 63 84 105 126

IVt −RVt 0.03 0.04 0.08 0.13 0.10 0.08

(2.95) (1.67) (2.83) (5.59) (2.57) (1.87)

R2 (%) 1.62 1.81 4.47 9.39 3.99 2.34

This table presents the results of the return predictability regression (2). Columns 2 to 7 represent returns on the
left hand side of (2) with ∆ = [21, 42, 63, 84, 105, 126] trading days. The regression includes returns and VRPs every
21 days during the period of 1990.01.01-2019.12.31. Newey-West t-statistics with 1-6 lags are in parentheses.

3 A Three-Period Model

In this section, we present a three-period model to illustrate the mechanism of information driven

volatility. We show how the informativeness of public signals affects the intertemporal distribu-

tion of risk and, under the condition of generalized risk sensitivity, also affects the intertemporal

distribution of risk compensation.

We consider a representative-agent economy with three periods −1, 0, and 1. We use Ct to

denote aggregate consumption in period t, and we plot the event tree for the economy in Figure 3.

For simplicity, we assume that both C−1 and C0 are deterministic. Consumption in period 1, C1,

follows a lognormal distribution with lnC1 ∼ N
(
µ, σ2

)
. At time 0, there is a public announcement

that provides a noisy signal about lnC1 of the form s = lnC1 + ε with V ar [ε] = σ2ε .

In the lognormal setup, we can explicitly compute V ar [E [lnC1|s]] and E [V ar [lnC1|s]] in

the variance decomposition formula of Equation (1). The expressions for the stochastic discount

factors are also standard: Λ−1,0 =
β

1−β

(
C0
C−1

)−1 (
V0
m−1

)1−γ
and Λ0,1 =

β
1−β

(
C1
C0

)−1 (
C1
m0

)1−γ
, where

Λt,t+1 denotes the stochastic discount factor that prices date-t + 1 consumption goods in terms

of date-t consumption goods. Here, we use V0 = C1−β
0

(
E
[
C1−γ
1

]) β
1−γ

for the date-0 utility of

the agent. m0 =
(
E
[
C1−γ
1

]) 1
1−γ

is the date-0 certainty equivalent of future utility and m−1 =(
E
[
V 1−γ
0

]) 1
1−γ

is the date-−1 certainty equivalent of future utility. The following proposition
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Figure 3: A three-period model

This figure illustrates the timing of the two-period model. Consumption in period −1 and that in period 0 are
constant, whereas the consumption in period 1 follows a lognormal distribution.

demonstrates how the precision of the information, σ−2
ε , affects the risk the risk premium upon and

after the announcement.

Proposition 1. (Intertemporal distribution of risk and risk compensation)

Let lnC1 ∼ N
(
µ, σ2

)
, then the total variance, V ar [E [lnC1|s]] + V ar [lnC1|s] = σ2, and the

variance of the conditional expectation is:

V ar [E [lnC1|s]] = λσ2, (3)

where λ = σ2

σ2+σ2
ϵ
, and ∂

∂σ−2
ε
λ > 0.

Furthermore, suppose γ > 1, both Λ−1,0 and ln Λ0,1 are decreasing functions of C1. In addition,

the total variance of the stochastic discount factor is V ar [ln (Λ−1,0 × Λ0,1)] = γ2σ2, and the variance

of the announcement stochastic discount factor is

V ar [ln Λ−1,0] = λσ2β2 (1− γ)2 . (4)

Equation (3) is derived from the variance decomposition formula assuming the total amount of

variance is fixed. The fact that ∂
∂σ−2
ε
λ > 0 implies that more precise signals are associated with a

larger fraction of risk being released upon announcement at time 0. If we think of stock price as

reflecting agent’s belief about lnC1, then higher signal precision should be associated with larger
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stock market reactions upon the announcement of s. Clearly, the release of the signal s does not

change the total amount of risk, but affects the intertemporal distribution of it.

The second part of the above proposition is about the risk compensation at and after the an-

nouncement. We assume γ > 1, which reflects the condition of generalized risk sensitivity of (Ai and

Bansal (2018)). Under this condition, the announcement at time 0 is associated with a non-trivial

volatility of the stochastic discount factor: V ar [ln Λ−1,0], and in addition, ∂
∂σ−2
ε
V ar [ln Λ−1,0] > 0,

that is, higher precision of the information revealed at the announcement is associated with a

higher volatility of the announcement stochastic discount factor. Because the total volatility of

the stochastic discount factor, V ar [ln (Λ−1,0 × Λ0,1)] does not depend on the precision of informa-

tion, σ−2
ε , Equation (4) implies that a higher precision of the signal corresponds to a higher risk

compensation on date 0 but a lower risk compensation on date 1. Information quality affects not

only the intertemporal distribution of risk but also that of the risk compensation: when public

announcements are informative, the announcement premium is higher, but the risk premium going

forward will be lower.

Note that if γ = 1, that is, the representative agent has an expected utility, then the precise of

the signal, σ−2
ε will still affect V ar [E [lnC1|s]], but not the risk compensation at the announcement,

that is, V ar [ln Λ−1,0] in equation (4). The assumption γ > 1 reflects the condition of generalized

risk sensitivity (Ai and Bansal (2018)). In general, under the condition of generalized risk sen-

sitivity, the magnitude of announcement premium is increasing in the precision of signals. The

recursive preference with a unit intertemporal elasticity of substitution (IES) is a special case

where generalized risk sensitivity is equivalent to γ > 1.

4 A Dynamic Model

In this section, we develop a simple dynamic model with time-varying information quality. Our

purpose is to use a parsimonious model to demonstrate how stochastic shocks to the quality of in-

formation change the intertemporal distribution of risk and risk compensation and allow our model

to account for the stylized facts we document in Section 2. We shut down all other mechanisms

for time-varying risk premium by assuming homoscedasticity in all macroeconomic fundamentals

and constant elasticity of substitution (CES) preferences. We do not intend to argue that these
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other mechanisms are not important in driving variations in risk premiums in the data. Instead,

we abstract from other mechanisms of the time-varying risk premium for two reasons. First, it

allows us to highlight the mechanism of information-driven volatility. Second, we believe, at the

monthly or higher frequencies, time-varying information is much more likely to affect risk premium

than time-varying risk aversion or time-varying volatility, both of which are likely to vary at only

lower frequencies.

Preferences and endowment We consider an endowment economy where the representative

agent has a CES recursive preference with a risk aversion γ and an IES ψ. The aggregate endowment

follows a diffusion process of the form:

dYt
Yt

= θtdt+ σY dBY,t, (5)

where BY,t is a standard Brownian motion and {θt}t≥0 is a two-state Markov process with the state

space Θ = {θH , θL}, where θH > θL. The transition matrix for θt over a small interval ∆ is

 e−λH∆ 1− e−λH∆

1− e−λL∆ e−λL∆

 .
where intensity λH is the rate of transition from high to low state, and λL is the rate of transition

from low to high. We assume that the state variable θt is unobservable to investors. However,

information about θt continuously arrives into the financial markets. Investors observe two sources

of information about θt. First, the aggregate consumption itself contains information about θt.

Second, pre-scheduled macroeconomic announcements are made at time T, 2T, . . . , nT . We assume

that announcements carry a noisy signal of θt. The distribution of the signal is given as follows.

At the announcement at time nT , if θnT = θH ,

s = θH with prob νn

s = θL with prob 1− νn

,
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and if θ = θL,

s = θH with prob 1− νn

s = θL with prob νn

.

Here νn ∈
[
1
2 , 1
]
is a parameter that measures the information quality. When νn = 1, announce-

ments carry perfectly accurate information, and νn = 0.5 indicates that announcements are com-

pletely uninformative. For simplicity, we assume that ν1, ν2, . . . , νn are i.i.d. over time.

Asset prices We define πt = Pt (θt = θH) as the probability of θt = θH and θ̂t = Et [θt] to be

the posterior mean of θt. That is, θ̂t = πtθH + (1− πt) θL. The life-time utility of the representa-

tive agent can be written as a function of state variables of the form V
(
θ̂t, t, Yt

)
= H

(
θ̂t, t

)
Yt.

In Appendix 7.2, we show that the function H
(
θ̂t, t

)
satisfies PDEs with appropriate boundary

conditions. Given the value function, we can construct the pricing kernel M (t). The law of motion

of M (t) in the interior of (nT, (n+ 1)T ) can be written as

dM (t)

M (t)
= −r

(
θ̂, t
)
dt− σM

(
θ̂, t
)
dB̂Y,t (6)

where r
(
θ̂, t
)
is the risk free rate:

r (θ, t) = ρ+
1

ψ
θ − 1

2
γ

(
1 +

1

ψ

)
σ2Y +

1
ψ − γ

1− γ

Hθ (θ, t)

H (θ, t)
(θH − θ) (θ − θL)

+

(
1
ψ − γ

)(
1− 1

ψ

)
2 (1− γ)2

(
Hθ (θ, t)

H (θ, t)

)2 (θH − θ)2 (θ − θL)
2

σ2Y
, (7)

and σM

(
θ̂, t
)
is the market price of risk:

σM (θ, t) = γσY −
1
ψ − γ

1− γ

Hθ (θ, t)

H (θ, t)

(θH − θ) (θ − θL)

σY
. (8)

The aggregate stock market is the claim to a dividend process of the form:

dDt

Dt
=
[
ξ
(
θ̂t − θ̄

)
+ θ̄
]
dt+ σY dB̂Y,t, (9)

where ξ is the leverage parameter. The stock price is of the form p
(
θ̂t, t

)
Dt, where p

(
θ̂t, t

)
is the
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price-to-dividend ratio defined by

p
(
θ̂t, t

)
= Et

[� ∞

0

πt+s
πt

Dt+s

Dt
ds

]
. (10)

We provide the expression for the PDE together with the boundary conditions that determines the

function p
(
θ̂t, t

)
in Appendix 7.2. With the pricing kernel and the price-to-dividend ratio, the

market risk premium is given by the following proposition:

Proposition 2. (Equity premium)

In the interior of (nT, (n+ 1)T ), the instantaneous risk premium of the asset is given by:

Et

d
[
p
(
θ̂t, t

)
Dt

]
+Dtdt

p
(
θ̂t, t

)
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(
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)
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(
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(
θ̂t, t

)
p
(
θ̂t, t

)
(
θH − θ̂t

)(
θ̂t − θL

)
σY

+ ησY

 .
(11)

At an announcement time nT , the announcement premium is given by:

Et
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+
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−
)
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In our model,
H(θ̂+T ,T

+)

1
ψ

−γ
1−γ
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H(θ̂+T ,T+)

1
ψ

−γ
1−γ

 is the announcement stochastic discount factor. Note that the

value function H
(
θ̂, t
)
is increasing in θ̂. Under the assumption γ > 1

ψ , the term H
(
θ̂+T , T

+
) 1
ψ

−γ
1−γ

is negatively correlated with p
(
θ̂+T , T

+
)
. As a result, Cov

(
H
(
θ̂+T , T

+
) 1
ψ
−γ
, p
(
θ̂+T , T

+
))

< 0 and

the announcement premium is positive.

Comparative statics with respect to informativeness of announcements The key mech-

anism in our model is that higher informativeness of announcements is associated with a higher

expected returns and higher realized variance upon announcements, but lower expected returns

and lower realized variance in the post announcement period. This channel induces a negative

relationship between past realized variance and future expected returns. In this section, we plot
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policy functions from our calibrated model to illustrate this basic intuition of the information driven

volatility channel.

Figure 4: Expected returns and implied variance reduction upon announcements
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The top panel is the expected announcement-day return as a function of the information quality parameter ν, where
expected returns are measured in basis points. The bottom panel is the option implied variance reduction upon
announcements implied by our model.

In Figure 4, we plot the expected announcement day return (top panel) and the implied variance

reduction (bottom panel) as functions of the information quality parameter ν. Here, implied

variance reduction is defined as the difference between option-implied variance right before an

announcement at time T , IV −
T , and the the option implied variance right after the announcement

at time T , IV +
T . Because option implied variance is a forward looking measure of the variance of

stock market returns, the difference between the two is a measure of the market expectation of

the realized variance on the announcement day T . At ν = 0.5, the announcement is completely

uninformative, and the expected return at announcement and the implied variance reduction at

announcement are both zero. As ν increases from 0.5 to 1, the expected return and the implied

variance reduction upon announcement also rises monotonically. Consistent with the intuition in

the three period model, the expected return and the expected variance on announcement days are

both increasing functions of the expected informativeness of the announcement.

In Figure 5, we plot the model implied expected return during the 30-day period after the an-

nouncement (top panel), and the model implied average realized variance during the same period

(bottom panel) as a function of the information quality parameter, ν. Clearly, as the informa-

tiveness of announcements increases, the expected returns after announcements reduces and so

16



Figure 5: Expected returns and implied variance reduction upon announcements
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The top panel is the expected 30-day return during the post announcement period as a function of the information
quality parameter ν implied by our model. The bottom panel is the average 30-day realized variance during the post
announcement period implied by our model.

does the expected realized variance of the market return during the same period. More informa-

tive announcements resolve a larger fraction of uncertain about future consumption growth and

are associated with lower expected returns and lower realized variance in the post announcement

period.

5 Quantitative Results

Parameter values In this section, we calibrate our model and evaluate its implications on the

volatility-expected return relationship. We choose a discount rate ρ = 1.8%, a risk aversion γ = 10,

a IES ψ = 2 in line with the standard long-run risk literature. We set the volatility of consumption

growth σY = 3% to match the volatility of annual consumption growth in the U.S. in our sample

period from 1990-2015. We set the value of the two Markov states θH = 2.0%, θL = −0.8% and

the transition probabilities λH = 0.08 and λL = 0.26 as in Ai and Kiku (2013), who estimate these

parameters from aggregate consumption data. We choose a leverage parameter ξ = 2.
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Table 2: Calibrated Parameters

Panel A. Preferences

ρ Time discount rate 1.8%

ψ IES 2 γ Relative risk aversion 10

Panel B. Consumption and dividend dynamics

σY Endowment growth volatility 3%

λH θ transition rate (high to low) 0.08 λL θ transition rate (low to high) 0.26

θH High endowment growth state 0.020 θL Low endowment growth state -0.008

ξ leverage 2

Panel C: Information

νH High ann signal precision state 0.99 νL Low ann signal precision state 0.6
1
T

Frequency of announcements 8

This table displays the calibrated parameter in our model.

The parameters νH and νL govern the informativeness of the announcements. We set νH = 0.99

and νL = 0.60 so that our model matches the mean and standard deviation of implied variance

reduction on announcement days. Finally, we choose T = 1
8 so that there are eight announcements

per year in our model, matching the frequency of FOMC announcements in the data. All calibrated

parameters are listed in Table 2.

Basic statistics of announcement returns and volatility We list the asset pricing moments

in the data and in our model in Table 3. Our model produces an average level of the risk-free

rate of 1.28% per year, with a standard deviation of 0.48% per year, both moments are fairly

close to their data counterparts. The average equity market premium in the model is 6.334%

per year, and the standard deviation of market return is 16% per year. Our model produces a

significant announcement premium. The average announce-day return is 53 bps and the average

non-announcement day return is 1.5 bps. In the data, many other macroeconomic announcements

also generate a significant return on announcement days. With only eight announcements per year,

our model needs a slightly higher announcement-day return than the average FOMC announcement

premium to generate a comparable level of the equity risk premium as in the data.
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Table 3: Asset Pricing Moments

Panel A: Aggregate market returns Data Model

E [RM ]− rf Equity premium 7.46% 6.33%

Std [RM ] Vol of market return 18.5% 16%

E [rf ] Average risk-free rate 0.30% 1.28%

Std [rf ] Vol of risk-free rate 1.78% 0.48%

Panel B: Announcement returns Data Model

E [RA] A-day average return 26 bps 53 bps

E [RN ] NA-day average return 2 bps 1.5 bps

AC (RA) AC(1) of A-day return −0.01 −0.12

E
[
IV −

T − IV +
T

]
Av. IV reduction 2.1 3.6

Corr
(
RA, IV

−
T − IV +

T

)
Corr between A-day return and IV reduction 0.73 0.32

Corr (RA, RVT,T+1) Corr between A-day return and RV 0.12 0.10

This table displays the asset pricing moments in the data and implied by the model. The data in Panel A contains
the period of 1929.01-2019.12. The data in Panel B contains the period of 1994.09-2019.12.

Our model matches several features of the announcement-day returns in the data. First, the

announcement returns are slightly negatively correlated in the data and in the model. In our

model, when the previous announcement is more precise, the associated announcement premium is

larger. However, this also means that the uncertainty going forward will be lower, and therefore, the

premium for the next announcement will be smaller. A negative correlation between announcement

returns is another indication of the information-driven volatility channel at work.

Second, the implied variance drops sharply upon announcement. The average reduction of

implied variance is 2.14 (monthly bps squared) in the data with a t-statistics of 4.37. The same

moment in the model is 3.6 (monthly bps squared). In our model, the implied variance is a forward-

looking measure of variance. Because announcements are typically associated with a significant

response of the market valuation, the implied variance is high before announcements and low

afterwards. The drop in implied variance reflects the informativeness of the announcement. To

further illustrate this implied variance reduction associated with information revelation, in Table

4, we report the quantiles of the implied variance reduction in the data and that implied by our

model.
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Table 4: Implied Variance Reduction

Q5 Q25 Q50 Q75 Q95

Data -5.54 -0.26 1.14 3.88 10.00

Model -9.65 -1.00 2.06 3.54 8.65

This table displays the quantile of implied variance drop on announcement days in the data and that in the model.
The data contains the period of 1994.09-2019.12.

It is clear from the variance decomposition formula in Equation (1) that because V ar [E (CT |Xt)] >

0 implied variance will on average be lower after the announcements. If both CT and Xt are nor-

mally distributed, then V ar [CT |Xt] will be a constant, and implied variance reduction must always

be positive. In general, the variance decomposition only requires that the average drop in implied

variance to be positive. In the data, however, the 5th and the 25th percentiles of implied variance

drops are both negative. Our model with a two-state Markov chain captures these features of the

data as well. The average reduction of implied variance is unambiguously positive. However, there

is a significant fraction of observations with increases in the implied variance after announcements.

Testing the information driven volatility channel In this section, we conduct statistical

tests for the key implications of the information driven volatility channel, that is, more informative

announcements are associated with higher expected return and higher implied variance reduction

on announcement days but lower expected return and lower realized variance during the post

announcement periods.

To test the predictability of announcement day return by the informativeness of announce-

ments, we first develop a measure of announcement informativeness that uses only information

before announcements. Our measure of informativeness of announcements builds on the intuition

that more informative announcements are associated with higher implied variance reductions on

announcement days.1 We outline the two steps in the construction of the informativeness mea-

sure here and provide the details of the construction in the appendix. In the first step, we use

the term structure of option implied volatility to back out the announcement-day implied vari-

1Empirically, implied variance reduction on announcement days are highly correlated with the magnitude of
announcement day returns. However, we want to be cautious in interpreting this as evidence as the positive relation-
ship between expected announcement-day return and the informativeness of announcements, because it is well known
that realized returns are strongly negatively correlated with implied variance. Our contruction of the informativeness
measure avoids this type of look-ahead bias in predictability regressions.
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ance, AIV . Assume that right before an FOMC announcement, we observe the implied variance

for short maturity options, say options with 9 day to maturity, and the implied variance for long

maturity options, say options with 30 day to maturity. Assume also that all non-announcement

days have the same return variance, but the immediate announcement day has a different return

variance. Denote the announcement day return variance as AIV and the non-announcement day

implied variance as NIV . The term structure of implied variance therefore allows us to back out

the announcement-day implied variance:

IV9 = AIV + 8×NIV,

IV30 = AIV + 29×NIV.

In the second step, we construct our measure of informativeness, denoted Info, by normalizing

the above constructed AIV by the average realized variance during the past 21 days leading to the

announcement:

Infot−1 = AIVt−1 −RVt−1,

where we use t for the announcement day. The intuition is that if the implied variance for the

upcoming announcement day is significantly higher than the realized variance during the pre-

announcement period, it must be due to the fact that the market is expecting that the upcoming

announcement will be particularly informative.

Our first test of the model is a predictability regression of FOMC announcement-day return

and FOMC-day implied variance reduction on the informativeness measure constructed above. We

run the following OLS regression:

RFOMC
t = α+ β × Infot−1 + εt, (12)

and

IVt−1 − IVt = α+ β × Infot−1 + εt, (13)

where RFOMC
t is the announcement-day return, IVt−1 is the option implied variance on the day

before the announcement, IVt is the option implied variance on the announcement day, and Infot−1
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is the informativeness measure we construct using option prices on the day before the announcement

at time t − 1. We report the regression results in Table 5. As shown in the table, in the return

predictability regression, the regression coefficient on Infot−1 is positive and significant with a t

statistic of 4.70. The above regression has a R2 of 15.44% in the data and 21.12% in our model.

In addition, our measure of informativeness also has a strong predictive power on implied variance

reduction with a R2 of 22.20% in the data. These results strongly support the mechanism of

information driven volatility especially given that daily returns are notoriously hard to predict in

the data.

Table 5: Model implied predictability by informativeness measure

RFOMC
t IVt−1 − IVt

Data Infot−1 42.93 4.17
(4.70) (3.25)

R2 15.44% 22.20%

Infot−1 35.26 7.24
Model R2 21.2% 72.6%

This table presents the results of the return predictability regressions defined in (12) and the implied variance
reduction predictability regression defined in (13).

Our second set of tests are predictability regressions for post-announcement returns and post

announcement realized variances by the informativeness of announcement. Because our interest is

to predict the returns and realized variances after the announcement, we can use announcement-day

drops in implied variance, IVt−1 − IVt directly as the measure of the informativeness of announce-

ment instead of the ex ante measure of Infot−1. We consider the following regression specification:

RVt,t+∆ = α+ β1 [IVt−1 − IVt] + β2RVt−2,t−1 + β3IVt + ϵt,t+∆, (14)

for the realized variance predictability, and

Rt,t+∆ = α+ β1 [IVt−1 − IVt] + β2RVt−2,t−1 + β3IVt + ϵt,t+∆, (15)

for the realized return predictability. In the above regressions, RVt,t+∆ and Rt,t+∆are the re-
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alized variance and realized returns, respectively, from the announcement day t (not including

the announcement day itself) to ∆ days after the announcement day, for various choices of ∆:

∆ = 1, 2, 3, 4, 5, 21, 42 up to two months. We include variables that are known to predict realized

variances, such as the realized variance on the day before the announcement day, RVt−2,t−1, and the

implied variance on the announcement day, IVt, on the right hand side of the regression. Our main

interest is the regression coefficient on the measure of the informativeness of the announcement,

IVt−1 − IVt. We report our regression results in Table 6.

Table 6: Model Implied Return and Variance Predictability by IV Reduction

Number of days 1 2 3 4 5 21 42

RVt,t+∆ Data −0.07 −0.04 −0.02 −0.02 −0.02 −0.03 −0.01

(−4.21) (−3.52) (−1.53) (−1.81) (−1.93) (−3.32) (−0.98)

Model −0.25 −0.24 −0.24 −0.23 −0.23 −0.23 −0.23

R2 Data 0.81 0.76 0.62 0.64 0.67 0.52 0.42

Model 0.81 0.81 0.81 0.81 0.81 0.81 0.81

Rt,t+∆ Data −2.00 −2.16 −0.96 −1.21 −0.68 −0.26 −0.23

(−0.77) (−1.55) (−1.42) (−1.78) (−1.49) (−1.62) (−2.65)

Model −1.20 −1.00 −0.90 −0.80 −0.60 −0.06 −0.06

R2 Data 0.05 0.04 0.03 0.08 0.02 0.02 0.02

Model 0.12 0.12 0.11 0.11 0.10 0.10 0.10

This table presents the results of the realized variance predictability regression (14) and the return predictability
regression (15) in the data and those in our model. The 3-9 columns represent the horizon of returns (in percentage)
and variances on the left hand side of Equations (14) and (15), respectively, with ∆ = 1, 2, 3, 4, 5, 21, 42 days.

Consistent with the policy functions we plot in Figures 5, in our model, more informative

announcements are associated with lower realized variance and lower expected returns after an-

nouncements. As a result, the betas in both regressions, (14) and (15), from the model simulated

data are negative. Consistent with our model, these regressions show a similar pattern in the data.

The drops of implied variance on announcement days negatively predict post-announcement day

variances at 1-5 days horizon and this pattern extends to the one-month horizon, but dissipates

over time and becomes insignificant over the two-month horizon. This announcement-day drops

in implied variance can also negatively predict post-announcement day returns up to two-month

horizon. All of the above evidence confirms the basic mechanism of the information driven volatility

channel we illustrated in Figures 4 and 5.
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Volatility managed portfolios Moreira and Muir (2017) demonstrate that a volatility managed

portfolio, that is, a portfolio that takes a high leverage and invests more in the market portfolio

after low realized volatility and that reduces leverage after high realized volatility earns a higher

return than the market portfolio. Our model provides a simple explanation for this result: because

information driven volatility induces a negative relationship between past realized volatility and

future expected returns. In this section, we construct the volatility managed portfolio in our model

evaluate the ability of our model to quantitatively account for the return on the volatility managed

portfolio.

We simulate our model for 1000 months. We follow Moreira and Muir (2017) and compute a

cumulative return for each month denoted ft+1, where time is measured in months. For each t+1,

we use the daily return of the previous month to construct the realized volatility:

RV 2
t (f) =

1∑
d=1/30

ft+d − 1

30

1∑
d=1/22

ft+d

2

.

The buy-and-hold strategy is the market return constructed from the sequence of {ft+1}. The

volatility managed portfolio is constructed as

fσt+1 =
c

RV 2
t (f)

ft+1,

where the constant c is chosen so that managed portfolio
{
fσt+1

}
and the market portfolio have the

same unconditional standard deviation.

In our simulated model, the average monthly return of the buy-and-hold market portfolio is

0.46% and the average monthly return on the volatility managed portfolio is 0.606% per month.

This feature of our model matches quite well the volatility managed portfolio documented by

Moreira and Muir (2017). In addition, we run a CAPM regression of the volatility managed

portfolio returns on the buy-and-hold market returns. We obtain a CAPM alpha of 3.76% and a

beta of 0.70 at the annual level. Both numbers of close to their empirical counterparts in the data,

4.08% and 0.61, respectively.
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Variance risk premium predictability In this section, we report our model’s implications

on VRP return predictability regressions. Previous literature has documented a robust empirical

evidence on return predictability by the difference between option implied variance and realized

variance up to six-month horizons. The stochastic volatility models that were developed to address

this empirical phenomenon typically relied on high-frequency variations of the the volatility of

aggregate consumption, for example, Bollerslev, Tauchen, and Zhou (2009) and Drechsler and

Yaron (2011). Our model features homoscedastic shocks of macroeconomic fundamentals. However,

information driven volatility creates a wedge between implied and realized volatility. The difference

between implied and realized variance in our model reflects the informativeness of the upcoming

announcement. Because implied variance is a forward-looking measure of variance, it increases

when the upcoming announcement is expected to be informative. The difference between implied

and realized variance predicts returns because more informative announcements are associated with

higher realizations of announcement premiums.

Table 7: Return predictability by IV −RV

Number of days 21 42 63 84 105 126

IVt −RVt Data 0.03 0.04 0.08 0.13 0.10 0.08

(2.95) (1.67) (2.83) (5.59) (2.57) (1.87)

R2 (%) 1.62 1.81 4.47 9.39 3.99 2.34

IVt −RVt Model 0.03 0.05 0.05 0.05 0.05 0.06

This table presents the results of the return predictability regression (2) using U.S. stock market return data and
those using data simulated from the model . Columns 2 to 7 represent returns on the left hand side of (2) with
∆ = [21, 42, 63, 84, 105, 126] trading days. The regression includes returns and VRPs every 21 days during the period
of 1990.01.01-2019.12.31. Newey-West t-statistics with 1-6 lags are in parentheses.

In Table 7, we report the results of the return predictability regression (2). As in the data, in our

model, returns are predictable by the differences between IV and RV . The regression coefficient

of returns on IVt − RVt are significant up to the six month horizon in our model, despite the fact

that our model does not have a variance risk premium due to homoscedastic fundamental shocks.

Our purpose is not to argue for the absence of the variance risk premium. The level of VIX

implied variance in the data is clearly higher than the historical average of realized stock market

variance Both the variance premium channel and the information driven volatility channel may

contribute the above return predictability evidence in the data. The advantage of our model is that
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it does not rely on high frequency variations in the volatility of macroeconomic fundamentals.

6 Conclusion

In this paper, we present a model of information-driven volatility. Traditional models of stochastic

volatility typically imply a positive relationship between the realized variance of past returns and

the forward-looking future returns. However, empirical evidence often favors a negative relationship

between the two, which is exemplified by the evidence on volatility managed portfolio returns. We

develop a model of information-driven volatility. We show that when variations in stock market

volatility are driven by information, high realized variances of past return typically predict lower

future variances and lower future returns. We show that our model can account for several stylized

facts on the variance-expected return relationships in the data.

It is not our purpose to argue for the absence of stochastic volatility of macroeconomic funda-

mentals. We do believe that the stochastic volatility of macroeconomic fundamentals are important

and will affect the risk-return relationship in the long run. Our purpose is to demonstrate the the

information driven volatility channel is more likely to drive the volatility-return relationship over

high frequencies, and we present a simple equilibrium model to evaluate the quantitative relevance

of this channel. Given the different implications of information driven volatility and fundamental

driven volatility on the volatility-expected return relationship, it is important to identify the driving

forces of volatility shocks in empirical investigations of the volatility-expected return relationship.
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7 Appendix

7.1 The Two-Period Model

Below, we provide the proof for Proposition 1 of the paper.

Proof. Standard Bayesian updating implies that the posterior mean E [lnC1|s] = σ−2

σ−2+σ−2
ϵ
µ +

σ−2
ϵ

σ−2+σ−2
ϵ
s. In addition, V ar [E [lnC1|s]] = λσ2, and V ar [lnC1|s] = (1− λ)σ2 where λ = σ2

σ2+σ2
ϵ
,

which the variance decomposition formula in (1).

The expressions of the stochastic discount factor is also standard. The stochastic discount

factor that prices date-0 consumption goods in terms of date-−1 consumption goods is Λ−1,0 =

β
1−β

(
C0
C−1

)−1 (
V0
m−1

)1−γ
, and the stochastic discount that prices data-1 consumption goods in terms

of date 0 consumption goods is given by: Λ0,1 =
β

1−β

(
C1
C0

)−1 (
C1
m0

)1−γ
, where V0 = C1−β

0

(
E
[
C1−γ
1

]) β
1−γ

,

is the date-0 utility of the agent, m0 =
(
E
[
C1−γ
1

]) 1
1−γ

is the certainty equivalent of future at time

0 and m−1 =
(
E
[
V 1−γ
0

]) 1
1−γ

is the date-−1 certainty equivalent of future utility.

Therefore, V ar [ln Λ0,1] = γ2V ar [lnC1|s] = γ2 (1− λ)σ2. Note also, V ar [ln Λ−1,0] = (1− γ)2 V ar [lnV0],

where

lnV0 = (1− β) lnC0 +
β

1− γ
lnE

[
C1−γ
1

]
= (1− β) lnC0 + β

{
E [lnC1|s] +

1

2
(1− γ)V ar [lnC1|s]

}
.

This implies that V ar [ln Λ−1,0] = (1− γ)2 β2V ar [E [lnC1|s]] = (1− γ)2 β2λσ2. Given the expres-

sion for λ = σ2

σ2+σ2
ϵ
, Proposition 1 can be easily proved.

7.2 The Infinite Horizon Model

The filtering equations The intensity matrix of the continuous-time Markov chain is:

 −λH λH

λL −λL

 .
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Intuitively, λH is the rate of transition from high to low, and λL is the rate of transition from low

to high. That is, the transition matrix over a small interval ∆ is

 e−λH∆ 1− e−λH∆

1− e−λL∆ e−λL∆

 .
This Markov chain can be conveniently represented as integration with respect to Poisson pro-

cesses. In particular, let {Nj,t}t≥0 be a Poisson process with intensity λj , for j = H, L. Let I{x}

be the indicator function, that is,

I{x} (y) =

 1 if y = x

0 if y ̸= x

Then {θt} can be represented as the following compound Poisson process:

dθt = (θH − θL) η
(
θ−t
)T
dNt (16)

and η (θ), and N (t) are vector notations:

η (θ) =
[
−I{θH} (θ) , I{θL} (θ)

]T
, (17)

N (t) = [NHt, NLt]
T . (18)

Here we use the convention that {θt} is right-continuous with left limits, and use the notation

θ−t = lim
s→t,s<t

θs

To simplify notation, I will use Ij (θ) for I{θj} (θ) without causing any confusion. Nj,t is the counting

processes with intensity λj . That is,

dNj,t =

 1 with prob λjdt

0 with prob 1− λjdt
.
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Define πt = Pt (θt = θH), and θ̂t = Et [θt], that is, θ̂t = πtθH + (1− πt) θL, then

dπt = [λL − (λH + λL)πt] dt+ πt (1− πt) (θH − θL)
1

σY
dB̂Y,t, (19)

where B̂Y,t is the innovation process defined by:

dB̂Y,t =
1

σY

[
dYt
Yt

− θ̂tdt

]
. (20)

Note that the mapping between θ̂ and π is one-to-one. So we can equivalently use θ̂ as the state

variable. By definition, θ̂t = πtθH + (1− πt) θL. Using Ito’s lemma,

dθ̂t = (λH + λL)
(
θ̄ − θ̂t

)
dt+

(
θH − θ̂t

)(
θ̂t − θL

) 1

σY
dB̂Y,t, (21)

where θ̄ is the steady-state mean of θ:

θ̄ =
λLθH + λHθL
λL + λH

. (22)

Preference We can write down the value function for recursive preference: V
(
θ̂, t, Y

)
= H

(
θ̂, t
)
Y .

The representative consumer’s preference is specified by a pair of aggregators (f,A) such that:

dVt = [−f(Yt, Vt)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt (23)

We adopt the convenient normalizationA(V ) = 0 . Duffie and Epstein, and denote f̄ the normalized

aggregator. Under this normalization, f̄(Y, V ) is:

f̄(Y, V ) =
ρ

1− 1/ψ

Y 1−1/ψ − ((1− γ)V )
1−1/ψ
1−γ

((1− γ)V )
1−1/ψ
1−γ −1

(24)

The HJB for recursive utility is

f̄
(
Yt, V

(
θ̂, t, Y

))
+ L

[
V
(
θ̂, t, Y

)]
= 0. (25)
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Consider

V
(
θ̂t, t, Y

)
=

1

1− γ
H
(
θ̂t, t

)
Y 1−γ
t (26)

where

dYt
Yt

= θ̂tdt+ σY dB̂Y,t, (27)

dθ̂t = µ
(
θ̂t

)
dt+ σ

(
θ̂t

)( 1

σs
dB̂s,t +

1

σY
dB̂Y,t

)
, (28)

where µ (θ) = (λH + λL)
(
θ̄ − θ

)
, σ (θ) = (θH − θ) (θ − θL). Using generalized Ito’s formula, the

HJB equation is written as

0 =
1

(1− γ)H

{
Ht +Hθ [µθ,t + (1− γ)σθ,t] +

1

2
Hθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)}
+

ρ

1− 1
ψ

(
H

−
1− 1

ψ
1−γ − 1

)
+

(
θ̂t −

1

2
γσ2Y

)
, (29)

At the boundary,

H
(
π−T , T

)
= E

[
H
(
π+T , 0

)
| π−T , T

]
(30)

With this, we can write down the law of motion for the pricing kernel

dMt

Mt
=
df̄Y (Y, V )

fY (Y, V )
+ f̄V (Y, V ) dt (31)

where f̄Y (Y, V ) = ρH

1
ψ

−γ
1−γ Y −γ

t , and f̄V (Y, V ) = ρ
1
ψ
−γ

1− 1
ψ

H
−

1− 1
ψ

1−γ − ρ 1−γ
1− 1

ψ

. Applying Ito’s lemma, we

can derive the the pricing kernel in Equation ().

Learning on the boundary At the boundary, given the distribution of θ, π, we need to compute

the distribution of θ̂+T , or π
+
T . Applying Bayes’ rule,

P+ (θi|sj) =
P (sj |θi)P− (θi)∑
θi∈Θ P (sj |θi)P− (θi)

.
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That is, given that P− (θH) = π−, we have:

P+ (θH |sH) =
π−ν

π−ν + (1− π−) (1− ν)
; P+ (θL|sH) =

(1− π−) (1− ν)

π−ν + (1− π−) (1− ν)
= 1− P+ (θH |sH) ,

(32)

and

P+ (θH |sL) =
π− (1− ν)

π− (1− ν) + (1− π−) ν
; P+ (θL|sL) = 1− P+ (θH |sL) . (33)

Now, given P− (θH) = π−, we need to compute the distribution of π+. If we see sH , then,

π+ = π−ν
π−ν+(1−π−)(1−ν) , and if we see sL, π

+ = π−(1−ν)
π−(1−ν)+(1−π−)ν

. So π+ has only two possible

realizations. The probability of seeing sH is π−ν + (1− π−) (1− ν) and the probability of seeing

sL is π− (1− ν) + (1− π−) ν. Therefore, if we use π as the state variable, the boundary condition

for value function (see equation (30)) is

H
(
π−T , T

)
= E

[
H
(
π+T , 0

)
| π−T , T

]
=
[
π−ν +

(
1− π−

)
(1− ν)

]
H

(
π−ν

π−ν + (1− π−) (1− ν)
, 0

)
+
[
π− (1− ν) +

(
1− π−

)
ν
]
H

(
π− (1− ν)

π− (1− ν) + (1− π−) ν
, 0

)
.

= hsHH
(
π+sH , 0

)
+ hsLH

(
π+sL , 0

)
(34)

where hsH = [π−ν + (1− π−) (1− ν)], hsL = [π− (1− ν) + (1− π−) ν], π+sH = π−ν
π−ν+(1−π−)(1−ν) ,

and π+sL = π−(1−ν)
π−(1−ν)+(1−π−)ν

.

Note that our signal generates the “correct” result with probability ν and produces a wrong

signal with probability 1 − ν. In simulations, given π−, and given ν, we need to simulate π+. If

the true state is θH , then we set

π+ =


π+sH = π−ν

π−ν+(1−π−)(1−ν) with prob ν

π+sL = π−(1−ν)
π−(1−ν)+(1−π−)ν

with prob 1− ν.
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If the true state is θL, then we set

π+ =


π+sL = π−(1−ν)

π−(1−ν)+(1−π−)ν
with prob ν

π+sH = π−ν
π−ν+(1−π−)(1−ν) with prob 1− ν.

If we want to keep using θ̂ as the state variable, note that θ̂ = πθH + (1− π) θL = θL +

π (θH − θL), that is, we can recover π from θ̂: π = θ̂−θL
θH−θL . In addition, given π+, we can compute

θ̂+ = θL + π+ (θH − θL). Therefore,

hsH ≡ π−ν +
(
1− π−

)
(1− ν) =

θ̂ − θL
θH − θL

ν +
θH − θ̂

θH − θL
(1− ν) , (35)

hsL ≡ π− (1− ν) +
(
1− π−

)
ν =

θ̂ − θL
θH − θL

(1− ν) +
θH − θ̂

θH − θL
ν. (36)

Also,

θ̂+sH |π+
sH

= π−ν
π−ν+(1−π−)(1−ν)

= θL +
π−ν

π−ν + (1− π−) (1− ν)
(θH − θL) (37)

= θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL

)
ν +

(
θH − θ̂−

)
(1− ν)

, (38)

and

θ̂+sL |π+
sL

=
π−(1−ν)

π−(1−ν)+(1−π−)ν
= θL +

π− (1− ν)

π− (1− ν) + (1− π−) ν
(θH − θL) (39)

= θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL

)
(1− ν) +

(
θH − θ̂−

)
ν
. (40)

Therefore, if the underlying state is θT = θH , then we set

θ̂+T =


θ̂+sH = θL +

(θ̂−−θL)ν(θH−θL)
(θ̂−−θL)ν+(θH−θ̂−)(1−ν)

with prob ν

θ̂+sL = θL +
(θ̂−−θL)(1−ν)(θH−θL)

(θ̂−−θL)(1−ν)+(θH−θ̂−)ν
with prob 1− ν.

(41)
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If the true state is θL, then we set

θ̂+T =


θ̂+sL = θL +

(θ̂−−θL)(1−ν)(θH−θL)
(θ̂−−θL)(1−ν)+(θH−θ̂−)ν

with prob ν

θ̂+sH = θL +
(θ̂−−θL)ν(θH−θL)

(θ̂−−θL)ν+(θH−θ̂−)(1−ν)
with prob 1− ν.

(42)

The unconditional distribution of θ̂+T is

θ̂+T =


θL +

(θ̂−−θL)vT− (θH−θL)
(θ̂−−θL)vT−+(θH−θ̂−)(1−vT−)

w.p. θ̂−−θL
θH−θL vT− + θH−θ̂−

θH−θL (1− vT−)

θL +
(θ̂−−θL)(1−vT−)(θH−θL)

(θ̂−−θL)(1−vT−)+(θH−θ̂−)vT−
w.p. θ̂−−θL

θH−θL (1− vT−) + θH−θ̂−
θH−θL vT−

. (43)

It is straightforward to verify that if vT− = 1, then the signal is perfectly informative, and the

above becomes

θ̂+T =

 θH w.p. θ̂−−θL
θH−θL

θL w.p. θH−θ̂−
θH−θL

.

And if vT− = 0.5, then the signal does nothing and the above becomes θ̂+T = θ̂− with probability

one.

As a matter of notation, for any function f we denote

E
[
f
(
θ̂+T

)
|ν, θ̂−

]
=

[
θ̂− − θL
θH − θL

v +
θH − θ̂−

θH − θL
(1− v)

]
f

θL +

(
θ̂− − θL

)
v (θH − θL)(

θ̂− − θL

)
v +

(
θH − θ̂−

)
(1− v)


+

[
θ̂− − θL
θH − θL

(1− v) +
θH − θ̂−

θH − θL
v

]
f

θL +

(
θ̂− − θL

)
(1− v) (θH − θL)(

θ̂− − θL

)
(1− v) +

(
θH − θ̂−

)
v


(44)
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For example, we can rewrite

H
(
θ̂−, T

)
= hsHH

(
θ̂+sH , T

)
+ hsLH

(
θ̂+sL , T

)
(45)

=

[
θ̂− − θL
θH − θL

ν +
θH − θ̂−

θH − θL
(1− ν)

]
H

θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL

)
ν +

(
θH − θ̂−

)
(1− ν)

, 0


(46)

+

[
θ̂− − θL
θH − θL

(1− ν) +
θH − θ̂−

θH − θL
ν

]
H

θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL

)
(1− ν) +

(
θH − θ̂−

)
ν
, 0

 .

(47)

Asset Prices Specify the dividend growth rate as follows

dDt

Dt
=
[
ξ
(
θ̂t − θ̄

)
+ θ̄
]
dt+ ησY dB̂Y,t. (48)

Now the stock price can be solved as P
(
θ̂t, t,Dt

)
= p

(
θ̂t, t

)
D, where p

(
θ̂t, t

)
is the price-to-

dividend ratio, which is characterize by the form:

M (t)Dtdt+ L
[
M (t) p

(
θ̂t, t

)
Dt

]
= 0. (49)

Therefore, the PDE for p
(
θ̂t, t

)
is

ϖ
(
θ̂t, t

)
pj = pt + pθϱ

(
θ̂t, t

)
+

1

2
pθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)
+ 1 (50)

where

ϖ
(
θ̂t, t

)
= −θ̄ (1− ξ) + ρ− 1

2
γσ2Y

(
1

ψ
+ 1

)
+ γησ2Y −

(
ξ − 1

ψ

)
θ̂t −

1
ψ − γ

1− γ
σθ,t (η − 1)

Hθ

H

+

(
1
ψ − γ

)(
1− 1

ψ

)
2 (1− γ)2

(
Hθ

H

)2

σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(51)

ϱ
(
θ̂t, t

)
= µθ,t + (η − γ)σθ,t +

1
ψ − γ

1− γ

Hθ

H
σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(52)
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At the boundary,

p
(
π−T , T

)
= ET

 H (π+T , 0)
1
ψ

−γ
1−γ p

(
π+T , 0

)
ET
[
H
(
π+T , 0

)
| π−T

] 1
ψ

−γ
1−γ

 (53)

=
hsHH

(
π+sH , 0

) 1
ψ

−γ
1−γ p

(
π+sH , 0

)
+ hsLH

(
π+sL , 0

) 1
ψ

−γ
1−γ p

(
π+sL , 0

)
[
hsHH

(
π+sH , 0

)
+ hsLH

(
π+sL , 0

)] 1
ψ

−γ
1−γ

(54)

or in terms of θ̂,

p
(
θ̂−T , T

)
= ET

H
(
θ̂+T , 0

) 1
ψ

−γ
1−γ

p
(
θ̂+T , 0

)
ET
[
H
(
θ̂+T , 0

)] 1
ψ

−γ
1−γ

 (55)

=
hsHH

(
θ+sH , 0

) 1
ψ

−γ
1−γ p

(
θ+sH , 0

)
+ hsLH

(
θ+sL , 0

) 1
ψ

−γ
1−γ p

(
θ+sL , 0

)
[
hsHH

(
θ+sH , 0

)
+ hsLH

(
θ+sL , 0

)] 1
ψ

−γ
1−γ

(56)

where hsH = θ̂−θL
θH−θL ν+

θH−θ̂
θH−θL (1− ν) , hsL = θ̂−θL

θH−θL (1− ν)+ θH−θ̂
θH−θL ν.Also, θ̂

+
sH

= θL+
(θ̂−−θL)ν(θH−θL)

(θ̂−−θL)ν+(θH−θ̂−)(1−ν)
,

and θ̂+sL = θL +
(θ̂−−θL)(1−ν)(θH−θL)

(θ̂−−θL)(1−ν)+(θH−θ̂−)ν
.

Risk Premium Conjecture the cumulated return of the following form:

dRt
Rt

= µR,tdt+ σRY,tdB̂Y,t + σRs,tdB̂s,t (57)

The cumulative return can be computed as

dRt
Rt

=
1

p
(
θ̂t, t

)
Dt

[
Dtdt+ d

(
p
(
θ̂t, t

)
Dt

)]
=

1

p
dt+

d (pDt)

pDt
(58)

d
(
p
(
θ̂t, t

)
Dt

)
p
(
θ̂t, t

)
Dt

=

{
1

p

[
pt + pθµθ,t +

1

2
pθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)]
+ ξ

(
θ̂t − θ̄

)
+ θ̄ +

pθ
p
ησθ,t

}
dt

+

(
pθ
p

σθ,t
σY

+ ησY

)
dB̂Y,t +

pθ
p

σθ,t
σs

dB̂s,t (59)
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Therefore

µR,t =
1

p

[
1 + pt + pθµθ,t +

1

2
pθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)]
+ ξ

(
θ̂t − θ̄

)
+ θ̄ +

pθ
p
ησθ,t (60)

σRY,t =
pθ
p

σθ,t
σY

+ ησY (61)

σRs,t =
pθ
p

σθ,t
σs

(62)

Together with the expression of pricing kernel, the risk premium is therefore

dMt

Mt
= −rtdt− σMY,tdB̂Y,t − σMs,tdB̂s,t (63)

σMY,t = γσY −
1
ψ − γ

1− γ

Hθ

H

σθ,t
σY

. (64)

σMs,t = −
1
ψ − γ

1− γ

Hθ

H

σθ,t
σs

. (65)

Et
[
dRt
Rt

]
− rt = −Covt

[
dMt

Mt
,
dRt
Rt

]
(66)

µR,t − rt =

(
γσY −

1
ψ − γ

1− γ

Hθ

H

σθ,t
σY

)(
pθ
p

σθ,t
σY

+ ησY

)
−

1
ψ − γ

1− γ

Hθ

H

(
σθ,t
σs

)2 pθ
p

(67)

Computing returns On non-announcement days:

Rt,t+∆ =
p
(
θ̂t+∆, t+∆

)
Dt+∆ +

� t+∆
t Dsds

p
(
θ̂t, t

)
Dt

.

Note that Dt+∆ = Dte
� t+∆
t (ξθ̂s+θ̄(1−ξ)− 1

2
η2σ2

Y )ds+
� t+∆
t ησY dB̂Y,s . As an approximation,

Dt+∆

Dt
= eξ

1
2 [θ̂t+θ̂t+∆]∆+[θ̄(1−ξ)− 1

2
η2σ2

Y ]∆+ησY (B̂Y,t+∆−B̂Y )

and

� t+∆
t Dsds

Dt
=

1

2
∆
Dt+∆ +Dt

Dt
=

1

2
∆
(
1 + eξ

1
2 [θ̂t+θ̂t+∆]∆+[θ̄(1−ξ)− 1

2
η2σ2

Y ]∆+ησY (B̂Y,t+∆−B̂Y )
)
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On announcement day, assume that the announcement happens at the end of the day. First

calculate non-announcement return RT−∆,T as above. Note calculate

RA =
p
(
νT , θ̂

+
T , T

+
)

p
(
νT , θ̂

−
T , T

−
) , (68)

where θ̂+T is drawn from the distribution described in (43). The total return equals RT−∆,T ×RA.

7.3 Forward Looking Measures of Variance

7.3.1 Expressing variance as expectations

To compute implied variance, we need to compute

V art

[
ln
{
p
(
ντ , θ̂τ , τ

)
Dτ

}
− ln

{
p
(
νt, θ̂t, t

)
Dt

}]
= V art

[
lnp
(
ντ , θ̂τ , τ

)
+ lnDτ

]
. (69)

Note that Dτ = Dte
� τ
t (ξθ̂s+θ̄(1−ξ)−

1
2
η2σ2

Y )ds+
� τ
t ησY dB̂Y,s and therefore lnDτ = lnDt +

� τ
t (ξθ̂s +

θ̄ (1− ξ)− 1
2η

2σ2Y )ds+
� τ
t ησY dB̂Y,s. Therefore,

V art

[
lnp
(
ντ , θ̂τ , τ

)
+ lnDτ

]
= V art

[
lnp
(
ντ , θ̂τ , τ

)
+

� τ

t

(
ξθ̂s + θ̄ (1− ξ)− 1

2
η2σ2Y

)
ds+

� τ

t
ησY dB̂Y,s

]
.

= V art

[
ln p

(
ντ , θ̂τ , τ

)]
+ 2Covt

[
ln p

(
ντ , θ̂τ , τ

)
, δ (τ)− δ (t)

]
+ V art [δ (τ)− δ (t)] , (70)

where we denote

δ (t) =

t�

0

(
ξθ̂s + θ̄ (1− ξ)− 1

2
η2σ2Y

)
ds+

t�

0

ησY dB̂Y,s, (71)

or equivalently,

dδ (t) =

[
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

]
dt+ ησY dB̂Y,t. (72)
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Let’s compute the above step by step. We first consider the log return from t to τ :

ln
{
p
(
ντ , θ̂τ , τ

)
Dτ

}
− ln

{
p
(
νt, θ̂t, t

)
Dt

}
=lnp

(
ντ , θ̂τ , τ

)
− lnp

(
νt, θ̂t, t

)
+

τ�

t

(ξθ̂s + θ̄ (1− ξ)− 1

2
η2σ2Y )ds+

τ�

t

ησY dB̂Y,s. (73)

Then the log return in (73) can be written as:

ln
{
p
(
ντ , θ̂τ , τ

)
Dτ

}
− ln

{
p
(
νt, θ̂t, t

)
Dt

}
= lnp

(
ντ , θ̂τ , τ

)
− lnp

(
νt, θ̂t, t

)
+ δ (τ)− δ (t) . (74)

To compute the variance of the log return, we have:

V art

[
ln
{
p
(
ντ , θ̂τ , τ

)
Dτ

}
− ln

{
p
(
νt, θ̂t, t

)
Dt

}]
= V art

[
ln p

(
ντ , θ̂τ , τ

)]
+ 2Covt

[
ln p

(
ντ , θ̂τ , τ

)
, δ (τ)− δ (t)

]
+ V art [δ (τ)− δ (t)] , (75)

where we use the fact that lnp
(
νt, θ̂t, t

)
is known at time t. Note that the system is defined by two

Markov state variables,
(
θ̂, ν
)
, but δ (t) is NOT one of the state variables. This gives rise to some

complications in the computation of expectations, which we have to deal with separately.

The three terms in Equation (75) can be written as:

V art

[
ln p

(
ντ , θ̂τ , τ

)]
= Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
−
(
Et

[
ln p

(
ντ , θ̂τ , τ

)])2
, (76)

Covt

[
ln p

(
ντ , θ̂τ , τ

)
, δ (τ)− δ (t)

]
= Et

[
ln p

(
ντ , θ̂τ , τ

)
δ (τ)

]
− Et

[
ln p

(
ντ , θ̂τ , τ

)]
Et [δ (τ)] ,

(77)

and

V art [δ (τ)− δ (t)] = Et
[
δ2 (τ)

]
− (Et [δ (τ)])

2 . (78)

Decomposition

1. The functions ln p
(
ντ , θ̂τ , τ

)
and ln2 p

(
ντ , θ̂τ , τ

)
depends only on the value of the Markov

state variables
(
ν, θ̂, t

)
at time τ . Therefore, the terms Et

[
ln p

(
ντ , θ̂τ , τ

)]
and Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
can be computed using Lemma 2. Note if there is an announcement in between t and τ , then
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the PDE is not enough and we need the three step procedure.

2. The terms δ2 (τ), δ (τ), and ln p
(
ντ , θ̂τ , τ

)
δ (τ) depends on the entire path of the BM, and

cannot be computed using Lemma 2. We will need to derive the PDE for the expectations

Et
[
δ2 (τ)

]
, Et [δ (τ)], and Et

[
ln p

(
ντ , θ̂τ , τ

)
δ (τ)

]
separately. Below we first state a sequence

of Lemmas to compute the integrals.

3. In order to use the martingale method to derive an expression for the above expressions, it is

convenient to define a few integrals related to δ (t) as follows:

a1

(
ν, θ̂, t

)
= Et [δ (τ)− δ (t)] , (79)

a0

(
ν, θ̂, t

)
= Et

[
{δ (τ)− δ (t)}2

]
, (80)

and

a3

(
ν, θ̂, t

)
= Et

[
ln p

(
ντ , θ̂τ , τ

)
{δ (τ)− δ (t)}

]
. (81)

With the above definition of a0

(
ν, θ̂, t

)
, a1

(
ν, θ̂, t

)
, and a3

(
ν, θ̂, t

)
, it is not hard to show

that the implied variance can constructed as follows:

Lemma 1. The implied variance is given by:

V art

[
lnp
(
ντ , θ̂τ , τ

)
+ lnDτ

]
= Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
−
(
w
(
νt, θ̂t, t

))2
+ 2

[
a3

(
νt, θ̂t, t

)
− w

(
νt, θ̂t, t

)
a1

(
νt, θ̂t, t

)]
+ a0

(
νt, θ̂t, t

)
− a1

(
νt, θ̂t, t

)2
, (82)

where

w
(
νt, θ̂t, t

)
= Et

[
ln p

(
ντ , θ̂τ , τ

)]
. (83)

Proof. Note that three lines in (82) correspond to the three equations (76)-(78). The first line is
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obvious. The second line is:

Et

[
ln p

(
ντ , θ̂τ , τ

)
δ (τ)

]
− Et

[
ln p

(
ντ , θ̂τ , τ

)]
Et [δ (τ)]

=Et

[
ln p

(
ντ , θ̂τ , τ

)
{δ (τ)− δ (t)}

]
− Et

[
ln p

(
ντ , θ̂τ , τ

)]
Et [δ (τ)− δ (t)]

=a3

(
νt, θ̂t, t

)
− w

(
νt, θ̂t, t

)
a1

(
νt, θ̂t, t

)
.

Similarly, to compute equation (78), we need Et
[
δ2 (τ)

]
and (Et [δ (τ)])

2. We have

Et
[
δ2 (τ)

]
= δ2t + 2δtEt [δ (τ)− δ (t)] + Et

[
{δ (τ)− δ (t)}2

]
.

= δ2t + 2a1

(
νt, θ̂t, t

)
δt + a0

(
νt, θ̂t, t

)
.

Therefore, to compute (78), we have:

Et
[
δ2 (τ)

]
− (Et [δ (τ)])

2 = δ2t + 2a1

(
νt, θ̂t, t

)
δt + a0

(
νt, θ̂t, t

)
−
[
δ (t) + a1

(
νt, θ̂t, t

)]2
= a0

(
νt, θ̂t, t

)
− a1

(
νt, θ̂t, t

)2
, (84)

which completes our proof.

7.3.2 Computing integrals

Computing w
(
νt, θ̂t, t|τ

)
We first state a lemma that compute the time-t expectation of a payoff

delivered at time τ > t.

Lemma 2. Let Ψ
(
ντ , θ̂τ , τ

)
be a function of the Markov state variables, define

w
(
νt, θ̂t, t

)
= Et

[
Ψ
(
ντ , θ̂τ , τ

)]
.

Suppose 0 < t < τ < T . Then w
(
νt, θ̂t, t

)
is determined by the PDE Lw

(
νt, θ̂t, t

)
= 0 and the

boundary condition w
(
ν, θ̂, τ

)
= Ψ

(
ν, θ̂, τ

)
for all

(
ν, θ̂
)
.

Comment: Note for simplicity, we have written w
(
νt, θ̂t, t

)
as a function of w

(
νt, θ̂t, t

)
.

Perhaps a better way to write this is w
(
νt, θ̂t, t|τ

)
to emphasize that w

(
νt, θ̂t, t|τ

)
also depends

on τ . Numerically, we think about the computation where given τ , we use finite difference to
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compute
{
w
(
νt, θ̂t, t|τ

)}
t∈(0,τ)

.

The above lemma computes expectations of the form Et

[
Ψ
(
ντ , θ̂τ , τ

)]
only for τ < T . If

τ > T , which is often the case if we want to talk about implied variance across an announcement,

we need to deal with the announcement boundary separately, and we do it in three steps.

1. In the first step, we use the above lemma to compute

w
(
νT+ , θ̂T+ , T+

)
= ET+

[
Ψ
(
ντ , θ̂τ , τ

)]
. (85)

That is, for all values of
(
ν, θ̂
)
, we need to compute

w
(
ν, θ̂, T+

)
= E

[
Ψ
(
ντ , θ̂τ , τ

)
|νT+ = ν, θ̂T+ = θ̂, t = T+

]

2. In the next step, we compute the boundary condition:

w
(
νT− , θ̂T− , T−

)
= ET−

[
w
(
νT+ , θ̂T+ , T+

)]
. (86)

That is, for all values of
(
ν, θ̂
)
, we need to compute w

(
ν, θ̂, T−

)
= ET−

[
w
(
ν, θ̂T+ , T+

)
|θ̂T− = θ̂

]
.

This is a simple calculation that only uses the distribution of θ̂T+ given θ̂T− (see 37) and (39).

3. In the final step, we use the lemma to compute

w
(
νt, θ̂t, t

)
= Et

[
Ψ
(
νT− , θ̂T− , T−

)]
.

Remark 1. The integrals Et

[
ln p

(
ντ , θ̂τ , τ

)]
and Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
in Equations (79) and (80)

can be computed using Lemma 2.

Computing a1

(
νt, θ̂t, t|τ

)
Again, for a fixed τ, our purpose is to compute

{
a1

(
νt, θ̂t, t|τ

)}
t∈[0,τ ]

.

For simplicity, we will suppress τ whenever it does not cause any confusion. First, we derive a PDE

(together with a boundary condition at t = τ) that characterize a1

(
νt, θ̂t, t

)
. By definition,

a1

(
νt, θ̂t, t

)
+ δ (t) = Et [δ (τ)] ,
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which means that in the interior, we must have L
[
a1

(
νt, θ̂t, t

)
+ δ (t)

]
= 0. This give a PDE of

the form:

L
[
a1

(
νt, θ̂t, t

)]
+

[
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

]
= 0, (87)

together with the boundary condition a1

(
ντ , θ̂τ , τ

)
= 0.

Again, we need to deal with the announcement boundary separately. At T :

a1

(
νT− , θ̂T− , T−

)
+ δ

(
T−) = ET−

[
a1

(
νT+ , θ̂T+ , T+

)
+ δ

(
T+
)]
.

Because δ (t) is continuous, δ (T−) = ET− [δ (T+)] = δ (T+). a1

(
νT− , θ̂T− , T−

)
must also satisfy

the tower property. That is,

a1

(
νT− , θ̂T− , T−

)
= ET−

[
a1

(
νT+ , θ̂T+ , T+

)]
. (88)

We summarize the above results using the following lemma.

Lemma 3. Let a1

(
ν, θ̂, t|τ

)
be define as in Equation (79). Suppose 0 < t < τ < T , then a1

(
ν, θ̂, t

)
can be solved by the PDE (87) together with the boundary condition a1

(
ν, θ̂, τ

)
= 0 for all

(
ν, θ̂
)
.

If τ > T , we first compute a1

(
νT+ , θ̂T+ , T+

)
using the above PDE. In the second step, we use

(88) to compute a1

(
νT− , θ̂T− , T−

)
at the announcement boundary. With the boundary condition,

we apply the PDE again to solve for the entire path of the a1

(
ν, θ̂, t|τ

)
function.

Here, we note that a1

(
νt, θ̂t, t

)
has a closed form solution. Starting from the definition:

a1

(
θ̂t, t

)
= Et

[� τ

t

(
ξθ̂s + θ̄ (1− ξ)− 1

2
η2σ2Y

)
ds+

� τ

t
ησY dB̂Y,s

]
,

a1

(
θ̂t, t

)
= ξ

[� τ

t
Et

(
θ̂s

)
ds

]
+

[
θ̄ (1− ξ)− 1

2
η2σ2Y

]
(τ − t) .

Recall that

θ̂τ = θ̄ +
(
θt − θ̄

)
e−(λH+λL)(τ−t)

+ e−(λH+λL)(τ−t)
� τ−t

0
e(λH+λL)u

(
θH − θ̂t+u

)(
θ̂t+u − θL

)( 1

σs
dB̂s,t+u +

1

σY
dB̂Y,t+u

)
(89)
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Clearly, for s > t,

Et

(
θ̂s

)
= θ̄ +

(
θ̂t − θ̄

)
e−(λH+λL)(s−t),

and [� τ

t
Et

(
θ̂s

)
ds

]
= (τ − t) θ̄ +

(
θ̂t − θ̄

) 1

λH + λL

[
1− e−(λH+λL)(τ−t)

]
Therefore,

a1

(
θ̂t, t

)
= ξ

{
(τ − t) θ̄ +

(
θ̂t − θ̄

) 1

λH + λL

[
1− e−(λH+λL)(τ−t)

]}
+

[
θ̄ (1− ξ)− 1

2
η2σ2Y

]
(τ − t)

=

[
θ̄ − 1

2
η2σ2Y

]
(τ − t) +

ξ

λH + λL

[
1− e−(λH+λL)(τ−t)

] (
θ̂t − θ̄

)
.

Note that the above calculation applies only to the interior case because (89) applies to only the

interior and does not incorporate the possibility of an announcement boundary. However, because

a1

(
θ̂t, t

)
is linear, having an announcement boundary will actually not affect the above calculation.

Computing a0

(
νt, θ̂t, t|τ

)
Next, consider a0

(
νt, θ̂t, t

)
. Note that we can write Et

[
δ2 (τ)

]
as:

Et
[
δ2 (τ)

]
= δ2t + 2a1

(
νt, θ̂t, t

)
δt + a0

(
νt, θ̂t, t

)
. (90)

The fact that Et
[
δ2 (τ)

]
is a MG implies that in the interior, the follow condition must satisfy:

L
[
δ2t + 2a1

(
νt, θ̂t, t

)
δt + a0

(
νt, θ̂t, t

)]
= 0 (91)

together with the boundary condition a0

(
ντ , θ̂τ , τ

)
= 0 has to hold.

At the boundary,

ET−

[
δ2T+ + 2a1

(
θ̂+T , T

+
)
δT+ + a0

(
θ̂+T , T

+
)]

= δ2T+2ET−

[
a1

(
θ̂+T , T

+
)]
δT+ET−

[
a0

(
θ̂+T , T

+
)]
.

Again, because δ (t) is continuous, we must have

a0

(
ν, θ̂−T , T

−
)
= ET−

[
a0

(
θ̂+T , T

+
)]
.
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These conditions fully characterize a0

(
νt, θ̂t, t

)
. We summarize the above results in the following

lemma.

Lemma 4. Let a0

(
ν, θ̂, t|τ

)
be define as in Equation (80). Suppose 0 < t < τ < T , then a0

(
ν, θ̂, t

)
can be solved by the PDE (91) together with the boundary condition a0

(
ν, θ̂, τ

)
= 0 for all

(
ν, θ̂
)
.

If τ > T , we first compute a0

(
νT+ , θ̂T+ , T+

)
using the above PDE. In the second step, we use

(88) to compute a0

(
νT− , θ̂T− , T−

)
at the announcement boundary. With the boundary condition,

we apply the PDE again to solve for the entire path of the entire a0

(
ν, θ̂, t|τ

)
function.

Computing a3

(
νt, θ̂t, t|τ

)
We start by summarizing our result in the following lemma.

Lemma 5. Let a3

(
ν, θ̂, t|τ

)
be define as in Equation (81). Suppose 0 < t < τ < T , then a3

(
ν, θ̂, t

)
can be solved by the following PDE:

L
[
w
(
νt, θ̂t, t

)
δ (t) + a3

(
νt, θ̂t, t

)]
= 0, (92)

together with the boundary condition a3

(
ν, θ̂, τ

)
= 0 for all

(
ν, θ̂
)
.

If τ > T , we first compute a3

(
νT+ , θ̂T+ , T+

)
using the above PDE. In the second step, we

compute a0

(
νT− , θ̂T− , T−

)
at the announcement boundary by using

a3

(
νT− , θ̂T− , T−

)
= ET−

[
a3

(
ν+T , θ̂

+
T , T

+
)]
. (93)

With the boundary condition, we apply the PDE again to solve for the entire path of the entire

a3

(
ν, θ̂, t|τ

)
function.

Proof. By definition, a3

(
νt, θ̂t, t

)
= Et

[
ln p

(
ντ , θ̂τ , τ

)
{δ (τ)− δ (t)}

]
. Therefore,

a3

(
νt, θ̂t, t

)
+ Et

[
ln p

(
ντ , θ̂τ , τ

)
δ (t)

]

is a MG and must satisfy Equation (92) together with the boundary condition:

a3

(
ντ , θ̂τ , τ

)
= 0. (94)
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At the boundary T , the MG property implies

ET−

[
a3

(
ν+T , θ̂

+
T , T

+
)
+ w

(
ν+T , θ̂

+
T , T

+
)
δ
(
T+
)]

= a3

(
ν−T , θ̂

−
T , T

−
)
+ w

(
ν−T , θ̂

−
T , T

−
)
δ
(
T−) .

Because δ (T−) = δ (T+) and w
(
ν−T , θ̂

−
T , T

−
)
= ET−

[
w
(
ν+T , θ̂

+
T , T

+
)]

, we obtain the boundary

condition (93).

7.3.3 Details of PDE and Boundary Conditions

In this section, we provide the details of the functional forms of PDE. We need to take expectations

in two steps. First, we note that the law of motion of our MC state variable is

dθ̂t = (λH + λL)
(
θ̄ − θ̂t

)
dt+

(
θH − θ̂t

)(
θ̂t − θL

)( 1

σs
dB̂s,t +

1

σY
dB̂Y,t

)
.

Given the law of motion of θ̂,the δ (t) process is given by (72).

PDE for the w and w2 First, The PDE for the MG condition Lw
(
νt, θ̂t, t

)
= 0 can be written

as follows:

Lw
(
νt, θ̂t, t

)
= wt + wθµθ,t +

1

2
wθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)
= 0 (95)

The boundary condition for Et

[
ln p

(
ντ , θ̂τ , τ

)]
is, for all

(
ν, θ̂
)
,

w
(
ν, θ̂, τ

)
= ln p

(
ν, θ̂, τ

)
(96)

The boundary condition for Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
is, for all

(
ν, θ̂
)
,

w2

(
ν, θ̂, τ

)
= ln2 p

(
ν, θ̂, τ

)
. (97)
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PDE for a0 and a1. First, using (87), and PDE for a1 can be written as:

da1

(
θ̂t, t

)
=

[
∂

∂t
a1

(
θ̂t, t

)
+

∂

∂θ
a1

(
θ̂t, t

)
µθ,t +

1

2

∂2

∂θ2
a1

(
θ̂t, t

)
σ2θ,t

(
1

σ2s
+

1

σ2Y

)]
dt

+
∂

∂θ
a1

(
θ̂t, t

)
σθ,t

(
1

σs
dB̂s,t +

1

σY
dB̂Y,t

)
(98)

Therefore, using (91), we can write the PDE for a0 as:

2δ

(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+ η2σ2Y + 2δ

(
a1,t + a1,θµθ,t +

1

2
a1,θθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

))
+2a1

(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+ 2a1,θησθ,t +

(
a0,t + a0,θµθ,t +

1

2
a0,θθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

))
= 0.(99)

Because the above equation must hold for all δt, the coefficients on δt must both be zero.

0 = ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y +

∂

∂t
a1

(
θ̂t, t

)
+

∂

∂θ
a1

(
θ̂t, t

)
µθ,t +

1

2

∂2

∂θ2
a1

(
θ̂t, t

)
σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(100)

0 = 2a1

(
θ̂t, t

)(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+ 2

∂

∂θ
a1

(
θ̂t, t

)
ησθ,t + η2σ2Y

+
∂

∂t
a0

(
θ̂t, t

)
+

∂

∂θ
a0

(
θ̂t, t

)
µθ,t +

1

2

∂2

∂θ2
a0

(
θ̂t, t

)
σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(101)

with the boundary condition

a1

(
θ̂τ , τ

)
= 0 and a0

(
θ̂τ , τ

)
= 0. (102)

The PDE for a3. Now, we write the PDE associated with the MG condition (92):

0 = δ

(
wt + wθµθ,t +

1

2
wθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

))
+ w

(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+wθησθ,t +

∂

∂t
a3

(
νj , θ̂t, t

)
+

∂

∂θ
a3

(
νj , θ̂t, t

)
µθ,t +

1

2

∂2

∂θ2
a3

(
νj , θ̂t, t

)
σ2θ,t

(
1

σ2s
+

1

σ2Y

)

implies the following PDE

0 = w

(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+ wθησθ,t +

∂

∂t
a3

(
νj , θ̂t, t

)
+

∂

∂θ
a3

(
νj , θ̂t, t

)
µθ,t

+
1

2

∂2

∂θ2
a3

(
νj , θ̂t, t

)
σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(103)
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with boundary condition (94).

Implied volatility summary Using lemma 1, for t ̸= T , implied variance is

V art

[
lnp
(
θ̂τ , τ

)
+ lnDτ

]
= w2

(
θ̂t, t

)
−
(
w1

(
θ̂t, t

))2
+ 2

[
a3

(
θ̂t, t

)
− w1

(
θ̂t, t

)
a1

(
θ̂t, t

)]
+ a0

(
θ̂t, t

)
− a1

(
θ̂t, t

)2
.

The above formula warrants some explanation. Note that if t < T , then all terms of the above

equation are solved using the PDE in the interior. If t < T , we need to deal with the announcement

boundary separately for all involved functions, as stated in the lemmas above.

7.4 Announcement Return Predictability

Online Appendix

Numerical Solutions

Solve for H function HJB equation:

0 = Ht +Hθ [µθ,t + (1− γ)σθ,t] +
1

2
Hθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)
+
ρ (1− γ)

1− 1
ψ

(
H

1
ψ

−γ
1−γ −H

)

+(1− γ)

(
θ̂t −

1

2
γσ2Y

)
H (104)

(1− γ)

(
ρ

1− 1
ψ

− θ̂t +
1

2
γσ2Y

)
H = Ht +Hθ [µθ,t + (1− γ)σθ,t] +

1

2
Hθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)

+
ρ (1− γ)

1− 1
ψ

H

1
ψ

−γ
1−γ (105)

Use finite difference method and approximate the functionsH
(
θ̂t, t

)
at I discrete points in the space

dimensions, θ̂i, i = 1, 2, ..., I. Denote Hn
i = H

(
θ̂i, t

n
)
, where time dimension n = 0, 1, 2, ..., N .
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Denote

βi = (1− γ)

(
ρ

1− 1
ψ

− θ̂i +
1

2
γσ2Y

)
, (106)

un+1
i =

ρ (1− γ)

1− 1
ψ

(
Hn+1
i

) 1
ψ

−γ
1−γ . (107)

Use implicit method to update the value function,

βiH
n
i =

Hn+1
i −Hn

i

∆t
+ un+1

i +
1

2
∂θθH

n
i σ

2
θ,i

(
1

σ2s
+

1

σ2Y

)
+∂θ,FH

n
i [µθ,i + (1− γ)σθ,i]

+ + ∂θ,BH
n
i [µθ,i + (1− γ)σθ,i]

− . (108)

Use upwind scheme to approximate the derivatives ∂θH
n
i and ∂θθH

n
i ,

βiH
n
i =

Hn+1
i −Hn

i

∆t
+ un+1

i +
1

2

Hn
i+1 − 2Hn

i +Hn
i−1(

∆θ̂
)2 σ2θ,i

(
1

σ2s
+

1

σ2Y

)

+
Hn
i+1 −Hn

i

∆θ̂
[µθ,i + (1− γ)σθ,i]

+ +
Hn
i −Hn

i−1

∆θ̂
[µθ,i + (1− γ)σθ,i]

− . (109)

Collecting terms and rewrite HJB equation,

βiH
n
i =

Hn+1
i −Hn

i

∆t
+ un+1

i +Hn
i−1xi +Hn

i (yi − κj) +Hn
i+1zi (110)

where

xi = −
[µθ,i + (1− γ)σθ,i]

−

∆θ̂
+

1

2
(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(111)

yi = −
[µθ,i + (1− γ)σθ,i]

+

∆θ̂
+

[µθ,i + (1− γ)σθ,i]
−

∆θ̂
− 1(

∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(112)

zi =
[µθ,i + (1− γ)σθ,i]

+

∆θ̂
+

1

2
(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(113)

Rewrite in the matrix notation,

βHn = un+1 +An+1Hn +
Hn+1 −Hn

∆t
, (114)
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where An+1 =



y1 z1 0 · · · 0

x2 y2 z2 0
...

0 x3 y3 z3
...

...
. . .

. . .
. . .

. . .

0 · · · 0 xI yI


, and

Hn = Hn
i =



H1

H2

H3

...

HI


, β =



β1 0 · · ·

0 β2

β3
. . . 0

... βI


, un+1 = un+1

i,j =



u1

u2

u3
...

uI


.

The system can be written as

Bn+1Hn = bn+1, Bn+1 =

(
1

∆t
+ β

)
−An+1, bn+1 = un+1 +

1

∆t
Hn+1. (115)

The boundary condition is

H
(
νT , θ̂

−, T
)

= E
[
H
(
νT , θ

+
T , 0

)
| νT , θ−T , T

]
(116)

=

[
θ̂− − θL
θH − θL

ν +
θH − θ̂−

θH − θL
(1− ν)

]
H

θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL

)
ν +

(
θH − θ̂−

)
(1− ν)

, 0

(117)

+

[
θ̂− − θL
θH − θL

(1− ν) +
θH − θ̂−

θH − θL
ν

]
H

θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL

)
(1− ν) +

(
θH − θ̂−

)
ν
, 0

 .(118)

Solve for price-to-dividend ratio PDE for p
(
θ̂t, t

)
:

ϖ
(
θ̂t, t

)
pj = pt + pθϱ

(
θ̂t, t

)
+

1

2
pθθσ

2
θ,t

(
1

σ2s
+

1

σ2Y

)
+ 1 (119)
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where

ϖ
(
θ̂t, t

)
= −θ̄ (1− ξ) + ρ− 1

2
γσ2Y

(
1

ψ
+ 1

)
+ γησ2Y −

(
ξ − 1

ψ

)
θ̂t −

1
ψ − γ

1− γ
σθ,t (η − 1)

Hθ

H

+

(
1
ψ − γ

)(
1− 1

ψ

)
2 (1− γ)2

(
Hθ

H

)2

σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(120)

ϱ
(
θ̂t, t

)
= µθ,t + (η − γ)σθ,t +

1
ψ − γ

1− γ

Hθ

H
σ2θ,t

(
1

σ2s
+

1

σ2Y

)
(121)

Use finite difference method and approximate the functions p
(
θ̂t, t

)
at I discrete points in the

space dimensions, θ̂i, i = 1, 2, ..., I. Denote pni = p
(
θ̂i, t

n
)
, where time dimension n = 0, 1, 2, ..., N .

Denote

ϖn+1
i = −θ̄ (1− ξ) + ρ− 1

2
γσ2Y

(
1

ψ
+ 1

)
+ γησ2Y −

(
ξ − 1

ψ

)
θ̂i −

1
ψ − γ

1− γ
σθ,i (η − 1)

Hn+1
θ,i

Hn+1
i

+

(
1
ψ − γ

)(
1− 1

ψ

)
2 (1− γ)2

(
Hn+1
θ,i

Hn+1
i

)2

σ2θ,i

(
1

σ2s
+

1

σ2Y

)
(122)

ϱn+1
i = µθ,i + (η − γ)σθ,i +

1
ψ − γ

1− γ

Hn+1
θ,i

Hn+1
i

σ2θ,i

(
1

σ2s
+

1

σ2Y

)
(123)

Since −
1
ψ
−γ

1−γ σθ,i (η − 1) < 0,

(
1
ψ
−γ

)(
1− 1

ψ

)
2(1−γ)2 < 0, and

1
ψ
−γ

1−γ > 0, so that we approximate Hn+1
θ,i using

backward method for ϖn+1
i and forward method for ϱn+1

i . Backward: Hn+1
θ,i =

Hn+1
i −Hn+1

i−1

∆θ̂
gives

Hn+1
θ,i

Hn+1
i

=
1−Hn+1

i−1 /H
n+1
i

∆θ̂
. Forward: Hn+1

θ,i =
Hn+1
i+1 −Hn+1

i

∆θ̂
gives

Hn+1
θ,i

Hn+1
i

=
Hn+1
i+1 /H

n+1
i −1

∆θ̂
.

Use implicit method to update the value function,

ϖn+1
i pni =

pn+1
i − pni

∆t
+ 1 +

1

2
∂θθp

n
i σ

2
θ,i

(
1

σ2s
+

1

σ2Y

)
+∂θ,F p

n
i

(
ϱn+1
i

)+
+ ∂θ,Bp

n
i

(
ϱn+1
i

)−
. (124)

Use upwind scheme to approximate the derivatives ∂θp
n
i and ∂θθp

n
i ,

ϖn+1
i pni =

pn+1
i − pni

∆t
+ 1 +

1

2

pni+1 − 2pni + pni−1(
∆θ̂
)2 σ2θ,i

(
1

σ2s
+

1

σ2Y

)

+
pni+1 − pni

∆θ̂

(
ϱn+1
i

)+
+
pni − pni−1

∆θ̂

(
ϱn+1
i

)−
. (125)
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Collecting terms and rewrite the PDE,

ϖn+1
i pni =

pn+1
i − pni

∆t
+ 1 + pni−1x

n+1
i + pni y

n+1
i + pni+1z

n+1
i (126)

where

xn+1
i = −

(
ϱn+1
i

)−
∆θ̂

+
1

2
(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(127)

yn+1
i = −

(
ϱn+1
i

)+
∆θ̂

+

(
ϱn+1
i

)−
∆θ̂

− 1(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(128)

zn+1
i =

(
ϱn+1
i

)+
∆θ̂

+
1

2
(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(129)

Rewrite in the matrix notation,

ϖn+1pn = 1 +An+1pn +
pn+1 − pn

∆t
, (130)

The system can be written as

Bn+1pn = bn+1, Bn+1 =

(
1

∆t
+ϖn+1

)
−An+1, bn+1 = 1 +

1

∆t
pn+1. (131)

At the boundary,

p
(
νT , θ̂

−
T , T

)
=

hsHH
(
νT , θ

+
sH
, 0
) 1
ψ

−γ
1−γ p

(
νT , θ

+
sH
, 0
)
+ hsLH

(
νT , θ

+
sL
, 0
) 1
ψ

−γ
1−γ p

(
νT , θ

+
sL
, 0
)

[
hsHH

(
νT , θ

+
sH , 0

)
+ hsLH

(
νT , θ

+
sL , 0

)] 1
ψ

−γ
1−γ

(132)

where

hsH = π−ν +
(
1− π−

)
(1− ν) =

θ̂ − θL
θH − θL

ν +
θH − θ̂

θH − θL
(1− ν) ,

hsL = π− (1− ν) +
(
1− π−

)
ν =

θ̂ − θL
θH − θL

(1− ν) +
θH − θ̂

θH − θL
ν.
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and,

θ̂+sH = θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL

)
ν +

(
θH − θ̂−

)
(1− ν)

,

θ̂+sL = θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL

)
(1− ν) +

(
θH − θ̂−

)
ν
.

Implied Variance PDEs The PDEs are in general as the form of

0 =
wn+1
i − wni

∆t
+ un+1

i +
1

2

wni+1 − 2wni + wni−1(
∆θ̂
)2 σ2θ,i

(
1

σ2s
+

1

σ2Y

)

+
wni+1 − wni

∆θ̂
µ+θ,i +

wni − wni−1

∆θ̂
µ−θ,i. (133)

where un+1
i = 0 for ŵ = Et

[
ln p

(
ντ , θ̂τ , τ

)]
and Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
, whereas for a1, a0 and a3,

un+1
i = ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y (134)

un+1
i = 2an+1

1,i

(
ξθ̂i + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+ 2

an+1
1,i+1 − an+1

1,i

∆θ̂
ησθ,t + η2σ2Y (135)

un+1
i = ŵn+1

i

(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2Y

)
+
ŵn+1
i+1 − ŵn+1

i

∆θ̂
ησθ,t (136)

Therefore, rewrite

0 =
wn+1
i − wni

∆t
+ un+1

i + wni−1xi + wni yi + wni+1zi (137)

where

xi = −
µ−θ,i

∆θ̂
+

1

2
(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(138)

yi = −
µ+θ,i

∆θ̂
+
µ−θ,i

∆θ̂
− 1(

∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(139)

zi =
µ+θ,i

∆θ̂
+

1

2
(
∆θ̂
)2σ2θ,i( 1

σ2s
+

1

σ2Y

)
(140)
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Rewrite in the matrix notation,

0 = un+1 +An+1wn +
wn+1 − wn

∆t
, (141)

The system can be written as

Bn+1wn = bn+1, Bn+1 =
1

∆t
I−An+1, bn+1 = un+1 +

1

∆t
wn+1. (142)

with the boundary condition for Et

[
ln p

(
ντ , θ̂τ , τ

)]
is:

w
(
ν, θ̂, τ

)
= ln p

(
ντ , θ̂τ , τ

)
(143)

and boundary condition for Et

[
ln2 p

(
ντ , θ̂τ , τ

)]
is:

w
(
ν, θ̂, τ

)
= ln2 p

(
ντ , θ̂τ , τ

)
(144)

and left boundary conditions

a1

(
θ̂τ , τ

)
= 0, a0

(
θ̂τ , τ

)
= 0 and a3

(
ν, θ̂τ , τ

)
= 0. (145)
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