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1 Introduction

Leading consumption-based asset pricing models with stochastic volatility, such as the habit

model of Campbell and Cochrane (1999), the long-run risk model of Bansal and Yaron (2004),

and the rare disaster model of Barro (2006) and Gabaix (2012), predict a robust positive

relationship between past realized volatility and future expected returns. Empirically, many

authors (e.g., Nelson (1991) and Glosten, Jagannathan, and Runkle (1993)) find a negative

relationship between the two. More recently, Moreira and Muir (2017) demonstrate that

the above negative relationship can be used to construct a volatility-managed portfolio that

earns a higher average return than the market portfolio. In this paper, we develop a model

with information-driven volatility. We show that information-driven volatility induces a neg-

ative relationship between past realized volatility and future expected returns. We provide

empirical evidence for the information-driven volatility channel and demonstrate that our

model can account for several volatility-related asset pricing puzzles.

There are two main motivations for our theory of information-driven volatility. First,

high-frequency financial market fluctuations, such as those at a monthly, daily, or hourly fre-

quency, are more likely to be driven by information rather than by the volatility of macroe-

conomic fundamentals. Standard consumption-based asset pricing models — such as Bansal,

Kiku, Shaliastovich, and Yaron (2014) in the context of the long-run risk model and Wachter

(2013) in the context of the rare disaster model — typically generate time-varying volatility

of returns by assuming time-varying volatility of macroeconomic fundamentals. While these

models can explain quite well asset pricing moments at lower frequencies (annual frequencies

and above), the volatility of macroeconomic fundamentals in the data typically does not

change substantially at high frequencies and is unlikely to explain high-frequency financial

market volatilities. In contrast, information about the macroeconomy arrives continuously

at financial markets and affects the stock return volatility at high frequencies.

Second, recent empirical evidence and theoretical work establish that significant risk

compensation is associated with informational events on financial markets. Consistent with

Savor and Wilson (2013) and Ai and Bansal (2018), we show that roughly 70% of the stock

market risk premium during the 1961-2021 period is realized on a small number of days

with significant macroeconomic announcements. Lucca and Moench (2015) find a similar

pattern for FOMC announcements. Ai and Bansal (2018) demonstrate that expected utility

models are inconsistent with the announcement premium, and the existence of such implies

that investor preferences must satisfy generalized risk sensitivity (GRS). As we will show

in this paper, under expected utility, information-driven volatility is irrelevant for risk com-

pensation. We propose a concept of strong generalized risk sensitivity and demonstrate that
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under this condition, information-driven volatility induces a negative relationship between

past realized volatility and future expected returns.

Our theory of information-driven volatility has two main theses. First, more precise

public information about macroeconomic fundamentals is associated with a higher stock

market reaction and a higher realized volatility upon the arrival of the information and a

lower volatility afterward. Second, more precise public information about macroeconomic

fundamentals is associated with higher stock market risk compensation upon the arrival of

the information and lower risk compensation afterward.

To understand the first thesis, the link between the informativeness of public information

and volatility, consider the following variance decomposition identity:

Var [θT ] = Var [E (θT |st)] +E[Var (θT |st)]. (1)

We interpret θT as macroeconomic fundamentals such as state variables that govern the

dynamics of aggregate consumption and aggregate productivity, the value of which will

be realized at the terminal time T . We interpret st as a public signal revealed at time

t < T that is informative about θT . One example of such public signals is a macroeconomic

announcement. The above formula then decomposes the total variance of macroeconomic

fundamentals, Var [θT ], into the variance realized on the announcement day t, Var [E (θT |st)],
and the variance that will realize after the announcement at time T , E [Var (θT |st)].

Traditional models of stochastic volatility generate time-varying volatility of returns by

time-varying volatility of macroeconomic fundamentals, Var [θT ]. Because the volatility of

macroeconomic fundamentals such as that of the aggregate consumption and that of aggre-

gate productivity is positively autocorrelated over time, high past realized volatility predicts

high expected future volatility and therefore high expected future returns.

Given that the volatility of macroeconomic fundamentals does not change substantially

at high frequencies, now consider the exercise of varying the informativeness of the signal

st by holding the total variance Var [θT ] fixed. A more accurate signal st triggers a larger

response by investors regarding their conditional expectations about future cash flow, which

is captured by the term Var [E (θT |st)] and is associated with a higher realized volatility in

financial markets upon the arrival of information. The variance decomposition identity (1)

then implies that such a high realized variance, Var [E (θT |st)], must be associated with a

lower expected future variance, E [Var (θT |st)].
While the relationship between volatility and information is merely a consequence of

the variance decomposition identity, (1), how information affects risk compensation depends

on investors’ risk preferences. Ai and Bansal (2018) demonstrate that information-induced

3



volatility requires risk compensation if and only if investors’ preferences satisfy GRS. In this

paper, we extend the Ai and Bansal (2018) result and show that under strong GRS, more pre-

cise information is associated with a higher expected return upon the informational event and

a lower expected return afterward. Intuitively, GRS requires the certainty-equivalent func-

tional to satisfy a concavity condition; that is, it must be increasing in second-order stochastic

dominance. The concept of strong GRS imposes a lower bound on the Arrow-Pratt measure

of absolute risk aversion of the certainty-equivalent functional and is a stronger concavity

requirement. Our main theorem implies that under strong GRS, higher information-driven

volatility is associated not only with lower future expected volatility but also with lower

future expected returns.

To empirically test the above implications of the information-driven volatility theory and

assess their quantitative importance, we calibrate a continuous-time asset pricing model with

time-varying informativeness of macroeconomic announcements. We conduct several tests of

the information-driven volatility channel in the data and replicate these tests in our model.

In the data, FOMC announcements are the most identifiable events that reveal informa-

tion about the macroeconomy. To test the mechanism of information-driven volatility, we

first develop a measure of the informativeness of FOMC announcements based on the option-

implied variance. Using this measure, we show that higher informativeness predicts a larger

FOMC announcement-day return and a larger implied variance reduction on announcement

days. In addition, higher informativeness also predicts a lower expected return and a lower

stock return variance after the announcement.

To provide additional evidence for the information-driven volatility channel, using the

stock market jump data constructed by Baker, Bloom, Davis, and Sammon (2021), we show

that news-triggered stock market jumps negatively predict future market volatility and future

stock returns, whereas there is no significant negative relationship between realized volatility

and future expected returns on days without significant causes of news.

We calibrate our model and demonstrate that it matches well with conventional asset

pricing moments and stock market dynamics around macroeconomic announcements. We

replicate the above statistical tests of the information-driven volatility in our calibrated

model to demonstrate the consistency between our model and data and the quantitative

significance of the information-driven volatility channel.

Furthermore, we show that our model provides an explanation for the variance risk pre-

mium predictability without relying on high-frequency variations in the volatility of macroe-

conomic fundamentals. As shown by Bollerslev, Tauchen, and Zhou (2009), in the data, the

difference between implied variance and realized variance has strong predictive powers for fu-

ture returns for up to three to six months. They provide an explanation for this predictability
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based on high-frequency variations in the volatility of aggregate consumption. Our model as-

sumes a homoscedastic consumption growth process; however, the difference between implied

variance and realized variance predicts returns because it reflects the informativeness of the

upcoming informational event: holding the past realized volatility constant, the anticipation

of the arrival of highly informative news is associated with both high implied variance right

before the news and larger risk compensation upon the arrival of the news.

Our results should not be interpreted as dismissing the role of the volatility of macroe-

conomic fundamentals in affecting stock market dynamics. In fact, our calibrated model

features low-frequency movements in the volatility of macroeconomic fundamentals and ex-

hibits an overall positive autocorrelation of stock market volatilities, as in the data. We

emphasize the importance of identifying the driving force of volatility in understanding the

volatility-expected return relationship in the data. The volatility of macroeconomic funda-

mentals varies at low frequencies and determines the long-run relationship between volatility

and expected returns. Information arrives at the stock market continuously and is more likely

to be responsible for the relationship between past realized volatility and future expected

returns at higher frequencies.

Related literature This paper is closely related to the literature on generalized risk sen-

sitivity and macroeconomic announcements. From an empirical perspective, pre-scheduled

macroeconomic announcements are the most salient informational events that are associated

with significant realizations of the equity risk premium and volatility. The literature that

documents a significant macroeconomic announcement premium — for example, Savor and

Wilson (2013, 2014), Lucca and Moench (2015), and Cieslak, Morse, and Vissing-Jorgensen

(2019) — provides strong empirical support for the information-driven volatility mechanism

emphasized in this paper. From a theoretical point of view, Ai and Bansal (2018) establish

that the existence of the macroeconomic announcement premium implies that preferences

must satisfy generalized risk sensitivity. We extend the theorem of generalized risk sensitiv-

ity of Ai and Bansal (2018) and provide conditions under which more precise announcements

are associated with a higher expected return upon the announcement and a lower expected

return afterward.

Our main theoretical result relates to the literature on non-expected utility analysis in

economics and finance — for example, the recursive preference of Kreps and Porteus (1978)

and Epstein and Zin (1989), the robust control preference of Hansen and Sargent (2005,

2008), and the related multiplier preference of Strzalecki (2011). The long-run risk model

of Bansal and Yaron (2004), Bansal (2007), and Hansen, Heaton, and Li (2008) builds

on recursive preferences. Borovicka and Stachurski (2020) provide necessary and sufficient
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conditions for the existence and uniqueness of recursive utility, and Borovicka and Stachurski

(2021) study the stability of equilibrium in asset pricing models. Epstein and Schneider

(2010) provide a review of asset pricing studies with ambiguity-averse preferences. Ju and

Miao (2012) study the asset pricing implications of the smooth ambiguity preference, and

Routledge and Zin (2010) focus on a model with the disappointment aversion. Skiadas

(2009) provides an excellent textbook treatment of asset pricing theory based on recursive

preferences.

Our model builds on the literature on learning and information in financial markets in

general. David (1997) and David (2008) develop learning models to study equity market

risk compensation. Veronesi (2000) and Ai (2010) study how information quality affects the

aggregate stock market risk premium. Pastor and Veronesi (2009b) develop a learning model

to study the relationship between technological innovations and stock market valuations.

David and Veronesi (2013) estimate a regime-switching model with learning. Bansal and

Shaliastovich (2010, 2011) and Shaliastovich (2015) develop models in which learning results

in asset price jumps. Pastor and Veronesi (2009a) provide an excellent review of the literature

on learning and financial markets. Different from the above papers, we provide theoretical

conditions under which the time-varying informativeness of macroeconomic news affects risk

compensation and evaluate its quantitative importance.

Our paper is related to the vast empirical literature on the expected return volatility

relationship. Both Nelson (1991) and Glosten, Jagannathan, and Runkle (1993) document

empirical evidence that is supportive of a negative relationship between past realized volatil-

ity and future expected returns. Harvey (1989) finds mixed evidence of a time-varying

relationship between expected excess returns and conditional variances. Consistent with our

theory, Harrison and Zhang (1999) find a negative relationship and sometimes mixed evi-

dence for the relationship between past realized volatility and future expected returns over

short horizons, but a positive relationship over horizons longer than a year. More recently,

Moreira and Muir (2017) demonstrate a positive average return on their volatility-managed

portfolio relative to the market return, and their evidence is also consistent with a negative

relationship between past realized volatility and future expected returns. Lochstoer and

Muir (2022) develop a model of extrapolative expectations of volatility shocks to explain the

variance risk premium predictability and the negative relationship between volatility and ex-

pected returns. We provide a rational explanation of the negative relationship between past

realized volatility and future expected returns based on strong generalized risk sensitivity.

Several recent papers provide empirical evidence that is consistent with the information-

driven volatility channel emphasized in this paper. Baker, Bloom, Davis, Kost, Sammon,

and Viratyosin (2020) document that higher news clarity is associated with lower realized
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volatility in the future. Zhang and Zhao (2020) provide evidence that in periods when

public information is imprecise, the realized macroeconomic announcement premium is low.

Chaudhry (2021) shows that announcement days are typically associated with uncertainty

reductions and lower expected returns afterward.

Our paper is also related to the literature on the variance risk premium predictability.

Bollerslev, Tauchen, and Zhou (2009) document the predictability of stock market returns by

the difference between the implied and realized variance, and develop a model of the variance

risk premium predictability based on stochastic volatility in the volatility of macroeconomic

fundamentals. Drechsler and Yaron (2011) develop a model with stochastic volatility and

stochastic jumps to quantitatively explain the variance risk premium predictability. Eraker

and Wang (2015) estimate a non-linear diffusion model and study the variance risk premium

predictability. Zhou (2018) provides a thorough review of this literature. The above literature

has interpreted the difference between the implied and realized variance as the difference

between variance under the risk-neutral measure and that under the physical measure hence

defined as the variance risk premium. We show that the difference between the implied and

realized variance can predict returns without assuming high-frequency variations in volatility.

In our model, the difference between the two reflects the informativeness of the upcoming

announcement, which predicts returns through the information-driven volatility channel.

The rest of the paper is organized as follows. Section 2 summarizes the stylized facts

between the realized variance and expected returns. Section 3 presents the main theorem

of the paper and demonstrates that under the assumption of strong GRS, more informative

announcements are associated with higher expected returns upon announcements and lower

expected returns afterward. Section 4 develops a dynamic model to account for the stylized

facts, and Section 5 presents the quantitative results. Section 6 concludes.

2 Motivating Facts for Information-Driven Volatility

In this section, we present two facts on volatility and stock market returns that motivate

the development of our theory of information-driven volatility. The first fact motivates

information as the main driver of financial market volatility, and the second fact motivates

information as the main determinant of risk compensation.

1. The volatility of macroeconomic fundamentals does not exhibit significant variation at

higher than monthly frequencies.

In Figure 1, we plot the time series of monthly consumption growth (solid line) and

monthly stock market returns (dashed line) in the top panel. In the bottom panel,
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Figure 1: Macroeconomic volatility and stock market volatility
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The top panel is the monthly consumption growth rates (solid line) and the total stock market index returns
(dashed line) during 1960.02-2019.12. The bottom panel is the estimated conditional volatility of the two
series from a GARCH(1,1) model during the same sample period.

we plot the estimated conditional volatility of the two time series from a GARCH

(1,1) model. Compared to stock market returns, the variations in consumption growth

are much smaller. The estimated conditional volatility of stock returns exhibits sharp

variations over the monthly horizon, whereas that of aggregate consumption growth is

virtually flat by comparison.

The above observation highlights the fact that variations in the volatility of macroeco-

nomic fundamentals are unlikely to explain the high-frequency movements in financial

market volatility. Information is much more likely to be the main driver of financial

market volatility at high frequencies.

2. A large fraction of the equity premium is realized on a small fraction of trading days

with significant macroeconomic announcements.

Table 1 reports the average excess market returns on macroeconomic announcement

days and non-announcement days from 1961 to 2021.1 In this period, on average, 48

trading days per year have significant macroeconomic announcements. At the daily

1As in Ai and Bansal (2018), we focus on a relatively small set of pre-scheduled macroeconomic an-
nouncements that are released at monthly frequencies or lower. Within this category, we select the top five
announcements ranked by investor attention from Bloomberg users. This procedure yields, on average, 48
announcement days per year for 1961-2021.
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level, the average stock market excess return is 14.05 basis points (bps) on announce-

ment days and 1.28 bps on days without major macroeconomic announcements. As a

result, the cumulative excess stock market return on the 30 announcement days aver-

ages 6.75% per year, accounting for about 73% of the annual equity premium (9.29%).

The above fact not only highlights the importance of information in determining equity

market risk compensation but also motivates a GRS-based asset pricing model to ex-

plain the joint dynamics of information and asset returns. As shown in Ai and Bansal

(2018), the existence of the macroeconomic announcement premium implies that in-

vestors’ preferences must satisfy generalized risk sensitivity. As we will demonstrate in

this paper, under a condition slightly stronger than GRS, which we call strong GRS,

information-driven volatility induces a negative relationship between realized volatility

and expected returns.

Table 1: Macroeconomic Announcement Premium

# of days p.a. Daily prem. Prem. p.a. t-stat

Market 247 3.76 bps 9.29% 2.61

Ann 48 14.05 bps 6.75% 4.06

Non-Ann 199 1.28 bps 2.54% 0.81

This table documents the average excess return of the U.S. stock market during the 1961-2021 period. The
column “# days p.a.” is the average number of trading days per annum. The second column is the daily
market equity premium on all days, announcement days, and days without announcements. The column
“premium p.a.” is the cumulative excess market returns within a year, computed by multiplying the daily
premium by the number of event days and converting it into percentage points.

3 Information-Driven Volatility and Risk Premium

Our theory of information-driven volatility has two main theses. First, more precise infor-

mation is associated with higher realized stock return volatility upon the informational event

and lower volatility afterward. Second, more precise information is associated with a higher

realization of the risk premium upon the informational event and a lower expected return

afterward. The first thesis is simply an implication of the variance decomposition formula

in (1) and does not depend on any assumptions on preferences and technology. The second

thesis requires an equilibrium model. In this section, we extend the Ai and Bansal (2018)

model to prove a general result between information-driven volatility and the risk premium.

We demonstrate that the second thesis holds true under a condition that is slightly stronger

than GRS, which we call strong GRS.
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We consider a continuous-time endowment economy and allow aggregate consumption to

be an arbitrary diffusion process such that the representative agent’s utility is well defined.

We use discrete time to illustrate the timing of events and the information structure but

study its continuous-time limit to provide a sharp theoretical result. To fix ideas, we think

of information as macroeconomic announcements, but our result applies to any event that

carries information about the macroeconomy.

We assume that at time 0, the representative investor anticipates an announcement at

time t = ∆, where ∆ > 0. Here, 0 is a notationally convenient normalization and can be

interpreted as any calendar time. We compare two economies that differ in the informative-

ness of the announcement at time t: an economy with a vague announcement, where st = η,

and an economy with an informative announcement, where st = (η, ε) contains an addi-

tional signal ε. We also assume that investors’ information at time T = 2∆ is represented

by the state variable θT , which contains more information than (η, ε).2 The above setup

implies that the only difference between the vague announcement economy and the informa-

tive announcement economy is that the additional ε is announced earlier in the informative

announcement economy at time t but later in the vague information economy at time T . By

time T , investors in both economies have the same information θT . In what follows, we call

the return earned from time 0 to t the announcement return and the return earned from t

to T the post-announcement return.

The variance decomposition formula (1), together with Jensen’s inequality, implies that

Var (E [θT | η, ε]) ≥ Var (E [θT | η]) , (2)

and

E [Var (θT | η, ε)] ≤ E [Var (θT | η)] . (3)

Because the stock market price is determined by investors’ beliefs about fundamentals,

Equation (2) can be interpreted as the variance in the announcement return is higher in

the informative announcement economy relative to that in the vague announcement econ-

omy. Equation (3) can be interpreted as the variance in the post-announcement return is

on average lower in the informative announcement economy relative to that in the vague

announcement economy. In what follows, we show that under strong GRS, an analogous

comparison also holds for expected returns.

Let Vτ denote the representative investors’ utility at time τ . As in Ai and Bansal (2018),

2Formally, the three information sets, η, (η, ε), and θT are ranked by informativeness in the sense of
Blackwell (1953). Using Blackwell (1953)’s notation for the “more informative than” relationship, θT ⊃
(η, ε) ⊃ η.
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we consider intertemporal preferences that are represented by a pair of aggregators {u, I}
so that utility can be computed recursively as:

Vτ =
(
1− e−ρ∆

)
u (Cτ ) + e−ρ∆I [Vτ+∆] , (4)

where I converts continuation utility V into its certainty equivalent, ρ is the subjective

discount rate, and C is aggregate consumption. We also assume that I has the following

representation: I [V ] = φ−1 {E [φ (V )]}, where φ is a strictly increasing and three times

continuously differentiable function and φ−1 refers to the inverse function of φ. As shown in

Ai and Bansal (2018), several important classes of non-expected utility can be represented

in this form, such as the recursive utility of Kreps and Porteus (1978) and Epstein and Zin

(1989), the robust control preference of Hansen and Sargent (2008), and the second order

expected utility of Ergin and Gul (2009).

We illustrate the information structure for the vague announcement economy (panel A)

and the informative announcement economy (panel B) in Table 2. Under our assumption of

preferences, the stochastic discount factor that prices the (t, st)-state-contingent payoff into

time-0 consumption units is given by

SDF0,t (0, st) = e−ρt
u′ (Ct)

u′ (C0)

φ′ [Vt (st)]

φ′ ◦ φ−1 {E [φ ◦ Vt (st)]}
, (5)

where the symbol “◦” stands for the function composition. The above expression allows

st = (η, ε) for the case of the informative announcement economy and st = η for the case

of the vague announcement economy. Here, we use the notation Vt (st) to emphasize that

time-t utility depends on investors’ information. The stochastic discount factor that prices

the (T, sT )-state-contingent payoff into (t, st) consumption units is given by

SDFt,T (st, sT ) = e−ρ(T−t)u
′ (CT )

u′ (Ct)

φ′ [VT (sT )]

φ′ ◦ φ−1 {E [φ ◦ VT (sT )| st]}
. (6)

To provide a sharp theoretical result, we consider the continuous time limit as ∆ → 0.

We denote s+ = lim∆→0 s∆. We denote the stochastic discount factors as SDF+ (0−, s+) =

lim∆→0 SDF0,∆ (0, s∆) and SDF++ (s+, θT ) = lim∆→0 SDF∆,2∆ (s∆, θT ). We compare the

risk premium in the vague announcement and informative announcement economies by com-

paring the entropy of the stochastic discount factors. We define the entropy of a stochastic

discount factor as H (SDF ) = −E [lnSDF ]. The term H (SDF ) can be used to compare

the variability of stochastic discount factors and expected returns because, as shown in

Bansal and Lehmann (1997) and Backus, Chernov, and Zin (2014), no arbitrage implies that
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Table 2: Information Structure

Panel A: Vague announcement

Time 0 t T

Info 0 st = η θT

Utility
V0 =

(
1− e−ρ∆

)
u (C0)

+ e−ρ∆φ−1 {E [φ ◦ Vt(η)]}
Vt(η) =

(
1− e−ρ∆

)
u (Ct)

+ e−ρ∆φ−1 {E [φ ◦ VT (θT )| η]}
VT (θT )

SDF e−ρt u
′(Ct)
u′(C0)

φ′[Vt(η)]
φ′◦φ−1{E[φ◦Vt(η)]} e−ρ(T−t) u

′(CT )
u′(Ct)

φ′[VT (θT )]
φ′◦φ−1{E[φ◦VT (θT )|η]}

Panel B: Informative announcement

Time 0 t T

Info 0 st = (η, ε) θT

Utility
V0 =

(
1− e−ρ∆

)
u (C0)

+ e−ρ∆φ−1 {E [φ ◦ Vt(η, ε)]}
Vt(η, ε) =

(
1− e−ρ∆

)
u (Ct)

+ e−ρ∆φ−1 {E [φ ◦ VT (θT ) | η, ε]}
VT (θT )

SDF e−ρt u
′(Ct)
u′(C0)

φ′[Vt(η,ε)]
φ′◦φ−1{E[φ◦Vt(η,ε)]} e−ρ(T−t) u

′(CT )
u′(Ct)

φ′[VT (θT )]
φ′◦φ−1{E[φ◦VT (θT )|η,ε]}

This table illustrates the timing, information set, continuation utility, and SDF in the vague announcement
economy (panel A) and informative announcement economy (panel B), respectively.

H (SDF ) ≥ E [lnR] for any risky return R, and the equality can be achieved by the growth

optimal portfolio if markets are complete.

To establish our main result, we need a condition that is slightly stronger than GRS.

The theorem of generalized risk sensitivity in Ai and Bansal (2018) demonstrates that the

announcement premium is positive if and only if the certainty-equivalent functional I sat-

isfies generalized risk sensitivity. Under the representation I [V ] = φ−1 ◦ E [φ (V )], GRS is

equivalent to the concavity of φ.3 Here, we are interested in the conditions under which more

informative announcements are associated with a higher announcement premium, which re-

quire a concept we will call strong GRS.

Definition 1. (Strong GRS)

An intertemporal preference represented by the aggregator {u, I}, where I has the represen-

tation I [V ] = φ−1 ◦ E [φ (V )] and φ is a strictly increasing and three-times continuously

3See Observation (ii) in Section 4.3 under the Subsection “Generalized Risk Sensitivity and Uncertainty
Aversion” in Ai and Bansal (2018).
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differentiable function, is said to satisfy strong generalized risk sensitivity if φ satisfies

−φ
′′

φ′
≥

√
1

2

max {φ′′′, 0}
φ′

. (7)

The above condition has an intuitive interpretation. Note that −φ′′

φ′
is the Arrow-Pratt

measure of the absolute risk aversion of φ. If φ′′′ ≤ 0, then the above condition simply requires

φ to be concave and is equivalent to GRS. In most applications, φ′′′ > 0; for example, the

constant elasticity of substitution (CES) function φ (x) = 1
1−γx

1−γ. The above condition

then imposes a lower bound on the Arrow-Pratt measure of absolute risk aversion for φ. In

this sense, this condition is stronger than the concavity of φ, or equivalently, the requirement

of GRS. It is easy to show that the CES example satisfies condition (7) if and only if γ > 1,

and the negative exponential example, φ (x) = −e−αx, satisfies the above condition for all

α > 0.

The following proposition summarizes our main result on information-driven volatility

and the risk premium. We provide details of the proof in Appendix 7.1.

Proposition 1. (Information-driven volatility and risk premium)

Suppose {u, I} satisfy strong generalized risk sensitivity. The entropy of the announcement

SDF is higher in the informative announcement economy relative to the vague announcement

economy; that is,

H
[
SDF+

(
T−, (η, ε)

)]
≥ H

[
SDF+

(
T−, η

)]
, (8)

but the entropy of the post-announcement SDF is lower:

H
[
SDF++ ((η, ε) , θT )

]
≤ H

[
SDF++ (η, θT )

]
. (9)

Under additively separable expected utility, (8) and (9) hold with equality. That is, the

informativeness of announcements does not affect the announcement and post-announcement

SDFs.

The above proposition formalizes the idea that the announcement SDF is more volatile in

the informative announcement economy relative to the vague announcement economy. At the

same time, the post-announcement SDF is less volatile compared to the vague announcement

economy. In other words, more informative announcements are associated with a higher risk

premium upon the announcement but a lower risk premium afterward.

In summary, the basic mechanism of our theory of information-driven volatility is the

relationship between the informativeness of announcements and volatility and expected re-

turns. When the announcement at time 0+ is more informative, it triggers a stronger stock
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market response upon the announcement and therefore a higher realized volatility. Under

strong GRS, this high realized volatility is also associated with a high average return. How-

ever, because the informative announcement resolves more uncertainty, the stock market

volatility going forward is lower and the expected returns going forward are lower. Strong

GRS is important for expected return dynamics because under the expected utility, the in-

formativeness of announcements does not affect the risk premium. In the next section, we

build on the above intuition to develop a quantitative model to study the joint dynamics of

expected returns and stock market volatility.

4 A Dynamic Model

In this section, we develop a dynamic model with time-varying informativeness of announce-

ments. Our model provides a quantitative benchmark for us to replicate the empirical

tests for the information-driven volatility channel that we develop in the next section, and

to assess the relevance of this mechanism in affecting stock market return predictability.

To provide a realistic model for stock market volatility dynamics, our setup incorporates

both low-frequency variations in fundamental volatility and high-frequency movements in

information-driven volatility. The presence of fundamental volatility allows our model to

capture the well documented positive autocorrelation of realized volatility of stock returns

in the data. The presence of information-driven volatility allows our model to explain the

puzzling relationship between realized volatility and expected returns in the data and to

highlight the important distinction between fundamental-driven volatility and information-

driven volatility. We provide details of the model solutions and derivations in Appendix

7.2.

Preferences and endowment We consider an endowment economy where the represen-

tative agent has a Duffie and Epstein (1992a) recursive preference with time discount rate ρ,

constant risk aversion γ, and constant intertemporal elasticity of substitution (IES) ψ. This

preference has the representation I [V ] = φ−1 ◦E [φ (V )] with φ (x) = 1
1−γ

[(
1− 1

ψ

)
x
] 1−γ

1−1/ψ
.4

It is straightforward to show that it satisfies strong GRS if and only if γ > 1 > 1
ψ

. This

parameterization coincides with standard long-run risk calibrations and will be assumed

throughout this section.

4See Section S.2 in “Supplement to Risk Preferences and the Macroeconomic Announcement Premium”
in Ai and Bansal (2018).
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We assume that aggregate endowment follows a diffusion process of the form

dYt
Yt

= θtdt+ σY dBY,t, (10)

where BY,t is a standard Brownian motion and {θt}t≥0 is a two-state Markov process with

the state space Θ = {θH , θL}, where θH > θL. The transition probability for θt over an

infinitesimal interval ∆ is given by[
e−λH∆ 1− e−λH∆

1− e−λL∆ e−λL∆

]
, (11)

where the intensity λH is the rate of transition from a high state to low state, and λL is the

transition probability from low to high.

Information quality and announcements We assume that the latent state variable θt

is unobservable to investors. However, information about θt continuously arrives at finan-

cial markets. Investors observe two sources of information about θt. First, the aggregate

endowment (10) itself contains information about θt. Second, pre-scheduled macroeconomic

announcements are made at time T, 2T, . . . , nT for n = 1, 2, . . ..5 We assume that the an-

nouncement at time nT carries a noisy signal sn about θnT , which reveals the true value of

θt with probability νn. The distribution of the signal is given as follows: if θnT = θH , that

is, the true state is the high growth state,

sn = θH with prob. νn

sn = θL with prob. 1− νn
, (12)

and if θ = θL, that is, the true state is the low growth state,

sn = θH with prob. 1− νn
sn = θL with prob. νn

. (13)

Here νn ∈
[

1
2
, 1
]

is the key parameter in our model that measures the information quality,

or the time-varying informativeness of announcements. When νn = 1, announcements carry

perfectly accurate information because the signal reveals the true state with probability

one. And νn = 0.5 indicates that announcements are completely uninformative. Namely,

5Our benchmark model matches the quantitative results based on FOMC announcements, which are
pre-scheduled and periodically announced. However, our information-volatility theory does not rely on the
assumption of fixed announcements. Instead, we show that if we allow announcements to be an unexpected
Poisson process, our results still hold.
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the announcement discloses the true state with half probability, whereas with another half

probability, the information is entirely wrong. For simplicity, we assume that ν1, ν2, . . . , νn

are i.i.d. over time.

Because θt is not observable, equilibrium prices and quantities are functions of investors’

posterior beliefs about θt. Thanks to the assumption of a two-state Markov chain, the

posterior distribution can be fully summarized by the posterior probability of θt = θH ,

πt = Pt (θt = θH). Given πt, we define θ̂t = Et [θt] to be the posterior mean of θt (i.e.,

θ̂t = πtθH + (1− πt) θL). Because πt and θ̂t have a one-to-one relationship, we find it more

convenient to use θ̂t as the state variable that summarizes the posterior distribution. In the

interior of ((n− 1)T, nT ) without announcements, investors update their beliefs based on

the observed consumption process (10). The posterior mean of θt satisfies

dθ̂t = (λH + λL)
(
θ̄ − θ̂t

)
dt+

(
θH − θ̂t

)(
θ̂t − θL

) 1

σY
dB̂Y,t, (14)

where θ̄ = λLθH+λHθL
λL+λH

is the steady-state mean of θt, and B̂Y,t is the innovation process

defined by dB̂Y,t = 1
σY

(
dYt
Yt
− θ̂tdt

)
, which indicates the surprises from the difference between

observed and expected consumption growth.

Right after observing the announcement sn at nT , n = 1, 2, . . ., investors update their

beliefs using Bayes’ rule. In our model, equilibrium prices are functions of two Markov

state variables
(
θ̂t, t mod T

)
, where θ̂t is investors’ posterior mean for θt, and t mod T —

the remainder when time t is divided by the length of the announcement cycle T — is the

number of time periods since the last announcement. To simplify notation, we focus on one

representative announcement cycle, [0, T ]. We use T for the announcement time and T− and

T+ for the instant before and after the announcement, respectively. In this paper, 0 should

be understood as right after the announcement T+, and T should be understood as right

before the announcement T−. This convention allows us to use
(
θ̂t, t
)

as the Markov state

variables in the following sections.

In Appendix 7.2.1, we show that given the prior belief θ̂−T before the announcement, the

posterior distribution of θ̂+
T after the announcement follows

θ̂+
T =


θL +

(θ̂−T −θL)ν(θH−θL)

(θ̂−T −θL)ν+(θH−θ̂−T )(1−ν)
w.p.

θ̂−T −θL
θH−θL

ν +
θH−θ̂−T
θH−θL

(1− ν)

θL +
(θ̂−T −θL)(1−ν)(θH−θL)

(θ̂−T −θL)(1−ν)+(θH−θ̂−T )ν
w.p.

θ̂−T −θL
θH−θL

(1− ν) +
θH−θ̂−T
θH−θL

ν
. (15)

The informativeness ν not only influences the posterior mean of investors’ beliefs about the

latent growth rate but also governs the probability of observing an accurate signal about

the underlying state. For example, it is straightforward to verify that if ν = 1, the signal is
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perfectly informative, and the above becomes θ̂+ =

{
θH w.p. θ̂−−θL

θH−θL
θL w.p. θH−θ̂−

θH−θL

. And if ν = 0.5,

the signal is absolutely uninformative and θ̂+ = θ̂− with probability one.

Asset prices We assume that the aggregate stock market is the claim to the following

dividend process:
dDt

Dt

=
[
ξ
(
θ̂t − θ̄

)
+ θ̄
]
dt+ σY dB̂Y,t + ωtdBω,t, (16)

where ξ is the leverage on expected consumption growth, and dBω,t is a Brownian motion

uncorrelated with the consumption shock dBY,t or θt. Here, we allow the idiosyncratic

volatility ωt in the dividend growth rate to be time varying and assume that it follows a two-

state Markov chain with state space {ωH , ωL}, where ωH > ωL. The transition matrix over a

small interval ∆ is

[
e−κH∆ 1− e−κH∆

1− e−κL∆ e−κL∆

]
, where κH (κL) denotes the rate of transition

from a high (low) to low (high) state of dividend idiosyncratic volatility. This specification

allows our model to capture the low-frequency movements in fundamental volatility and

generate a positive autocorrelation in realized stock market volatility, which is an important

feature of the data.

The lifetime utility of the representative agent can be written as a function of state

variables: V
(
θ̂t, t, Yt

)
= 1

1−γH(θ̂t, t)Y
1−γ
t . As a result, changes in beliefs about θt are

immediately reflected through the variations in the continuation utility H(θ̂t, t). We show

the solutions of the value function in Lemma 1 in Appendix 7.2.1. Given the value function,

we can construct the pricing kernel Mt. The law of motion of Mt in the interior of (0, T )

without announcements can be written as

dMt

Mt

= −r
(
θ̂t, t
)
dt− σM

(
θ̂t, t
)
dB̂Y,t, (17)

where the risk-free rate r(θ̂t, t) and the market price of risk σM(θ̂t, t) are given in Equations

(68) and (69) in Appendix 7.2.2.

Denote p(θ̂t, t) as the price-to-dividend ratio so that the stock price is given by p(θ̂t, t)Dt.

By definition, the stock price is the discounted future cash flow:

p
(
θ̂t, t
)
Dt = E

[ˆ ∞
0

Mt+s

Mt

Dt+sds | θ̂t, t
]
. (18)

We provide the expression for the partial differential equations (PDE) together with the

boundary conditions that determine the solution of p(θ̂t, t) in Appendix 7.2.2. With the

pricing kernel and the price-to-dividend ratio, the market risk premium is given by the
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following proposition.

Proposition 2. (Equity premium)

In the interior of (0, T ), the instantaneous risk premium is given by

Et

d
[
p
(
θ̂t, t
)
Dt

]
+Dtdt

p
(
θ̂t, t
)
Dt

− r (θ̂t, t) dt = σM

(
θ̂t, t
)pθ

(
θ̂t, t
)

p
(
θ̂t, t
) σθ

(
θ̂t

)
σY

+ σY

 , (19)

where σθ

(
θ̂t

)
=
(
θH − θ̂t

)(
θ̂t − θL

)
1
σY

and pθ
p

= ∂p(θ̂t,t)/∂θ̂t

p(θ̂t,t)
. At announcement T , the

announcement premium is given by

ET−

p
(
θ̂+
T , T

+
)

p
(
θ̂−T , T

−
)
− 1 =

(
ET−

[
H
(
θ̂+
T , T

+
)]) 1

ψ
−γ

1−γ ET−
[
p
(
θ̂+
T , T

+
)]

ET−

H (θ̂+
T , T

+
) 1
ψ
−γ

1−γ
p
(
θ̂+
T , T

+
) − 1. (20)

where θ̂+
T is drawn from the distribution in Equation (15).

In Appendix 7.2.2, we show that
H(θ̂+

T ,T
+)

1
ψ
−γ

1−γ

{ET− [H(θ̂+
T ,T

+)]}
1
ψ
−γ

1−γ

is the announcement stochastic

discount factor. Note that under the parameter restriction γ > 1, the value function H(θ̂t, t)

is decreasing in θ̂t while the price-to-dividend ratio p(θ̂t, t) is an increasing function of θ̂t.

Under the assumption γ > 1/ψ, the preference satisfies GRS, the term H(θ̂+
T , T

+)
1
ψ
−γ

1−γ will be

negatively correlated with p(θ̂+
T , T

+). As a result, Cov

[
H(θ̂+

T , T
+)

1
ψ
−γ

1−γ , p(θ̂+
T , T

+)

]
< 0 and

the announcement requires positive risk compensation. This gives rise to the macroeconomic

announcement premium we observe in the data (Savor and Wilson, 2013). Mathematically,

upon announcements, investors’ beliefs jump from θ̂−T to θ̂+
T according to Equation (15). The

value function and price-to-dividend ratio are simultaneously affected as they are all functions

of θ̂t. Intuitively, investors require compensation for risk because the arrival of information

over a short time interval creates significant variations in the continuation utility. The risk

premium realizes upon the resolution of uncertainty. If γ = 1/ψ, investors’ utility function

becomes an additively separable CRRA utility. The announcement stochastic discount factor

equals one; therefore, the information contained in the announcement will not be priced.

Finally, we define the implied variance of the stock return at time t with maturity τ − t
as the expected variance of the log return from t to τ , where the expiration date τ ≥ t and
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h = τ − t is the day to maturity:

IVt,τ

(
θ̂t, t
)

= Vart

[
ln
[
p
(
θ̂τ , τ

)
Dτ

]
− ln

[
p
(
θ̂t, t
)
Dt

]]
. (21)

Because the log price ln
[
p
(
θ̂t, t
)
Dt

]
is known at time t, we can simply write IVt,τ

(
θ̂t, t
)

=

Vart

[
ln
[
p
(
θ̂τ , τ

)
Dτ

]]
. We present solutions to our model-implied variance in Lemmas 4

and 5 in Appendix 7.2.3.

Comparative statics with respect to informativeness of announcements In this

section, we use the policy functions from the above model to illustrate the two main theses

of our theory of information-driven volatility, as highlighted in Section 3. We provide the

formulas for the policy functions in Appendix 7.2.4.

Our parameterization satisfies γ > 1 > 1/ψ, which implies strong GRS. This condition

guarantees that the announcement premium in (20) is not only positive but also increasing in

the informativeness of announcements, as we demonstrated in Proposition 1. In Figure 2, we

plot the announcement premium in the top panel and the implied variance reduction in the

bottom panel as functions of the information quality ν. Instead of plotting the variance of

announcement return, we plot the implied variance reduction as the latter is a market-price-

based measure of the variance of announcement return, which we also use in our empirical

exercises.

Figure 2: Expected Returns and Implied Variance Reduction upon Announcements
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The top panel is the expected announcement return as a function of the information quality ν, where
expected returns are measured in basis points. The bottom panel is the option-implied variance reduction
upon announcements (in percentage squared) implied by our model as a function of informativeness ν.

The implied variance reduction in Figure 2 is defined as follows. Using Equation (21), the

implied variance at time T+ with expiration τ right after an announcement is IV +
T,τ

(
θ̂+
T , T

+
)

=
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Var
[

ln
[
p
(
θ̂τ , τ

)
Dτ

]∣∣∣ θ̂+
T

]
, and the implied variance before the announcement and after the

value of ν is revealed is IV −T,τ

(
θ̂−T , T

−, ν
)

= Var
[

ln
[
p
(
θ̂τ , τ

)
Dτ

]∣∣∣ θ̂−T , ν]. We define the

implied variance reduction upon the announcement as the difference between the implied

variance before and after the announcement,

∆IVT = IV −T,τ

(
θ̂−T , T

−, ν
)
− IV +

T,τ

(
θ̂+
T , T

+
)
. (22)

In Appendix 7.2.3, we show that ∆IVT can be used to compute the variance of the announce-

ment return: E
[
∆IVT |ν, θ̂−T , T−

]
= Var

(
lnp
(
θ̂+
T , T

+
)
− lnp

(
ν, θ̂−T , T

−
)
|ν, θ̂−T , T−

)
.

As shown in Figure 2, at ν = 0.5, the announcement is completely uninformative. The

expected announcement return and the implied variance reduction upon the announcement

are both zero. As ν increases from 0.5 to 1, the expected return and the implied variance

reduction rise monotonically. Consistent with the intuition in Proposition 1, the expected

return and expected variance on announcement days are both increasing functions of the

informativeness of the announcement. Because of the monotonic relationship between the

informativeness ν and the implied variance reduction ∆IVT , the latter provides a market-

price-based measure of the informativeness of announcements, which we use to exploit in the

empirical exercises in the following section.

Figure 3: Future Expected Returns and Implied Variance after Announcements
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The top panel is the expected 30-day return (annual percentage) during the post-announcement period as a
function of the information quality ν implied by our model. The bottom panel is the 30-day implied variance
(annual percentage) after the announcement implied by our model.

The second implication of our theory of information-driven volatility is that more infor-

mative announcements are associated with a lower expected return and a lower volatility

during the period after the announcement. In Figure 3, we plot the model-implied expected

return during the 30-day period after the announcement (top panel), and the 30-day implied
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variance during the same period (bottom panel) as a function of the information quality ν.

Clearly, as the informativeness of announcements increases, the expected return after the an-

nouncement in the future is reduced as is the expected variance of the market return during

the same period. More informative announcements resolve a larger fraction of uncertainty

about future consumption growth and are associated with lower expected returns and lower

expected variance after the announcement going forward.

5 Quantitative Results

In this section, we first calibrate our model and demonstrate that it can quantitatively match

a broad set of moments — especially announcement-related moments — of the aggregate

market. We then develop empirical tests for the information-driven volatility channel and

replicate these tests in our model. Finally, we show that our model provides an explana-

tion for the variance risk premium return predictability without assuming high-frequency

variations in the volatility of macroeconomic fundamentals.

Parameter values We choose a discount rate ρ = 1.5%, a risk aversion γ = 20, an IES

ψ = 2, and a leverage parameter ξ = 3, in line with the standard long-run risk literature.

We set the volatility of consumption growth σY = 3% to match the volatility of annual

consumption growth in the U.S. in our sample period from 1929.01-2019.12. We calibrate

the value of the two Markov states θH = 4.4%, θL = −1.7% and the transition probabilities

to match the mean, standard deviation, and autocorrelation of the aggregate consumption

data. For simplicity, we assume λH = λL. We set the dividend volatility parameters ωH

and ωL and the transition probabilities κH = 0.06 and κL = 0.025 by estimating a regime-

switching model of dividend growth rates. We provide details for the data sources and

estimation procedures in Appendix 7.3 and 7.4.

Most of our quantitative and empirical results target FOMC announcements in the data

for two reasons. First, as documented by Lucca and Moench (2015), FOMC announcements

require significant risk compensation. Second, compared to other macroeconomic announce-

ments, the informativeness of FOMC announcements is more likely to vary over time because

these announcements typically reflect the Federal Reserve’s contingent response to macroe-

conomic conditions. In contrast, other macro announcements, such as the unemployment

report or the publication of the producer price index, typically provide a given statistic of the

macroeconomy, and their informativeness is likely to be relatively constant over time. In our

calibration, the parameters νH and νL govern the informativeness of the announcements. We

set νH = 0.999 and νL = 0.60 so that our model matches the mean and standard deviation
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Table 3: Calibrated Parameters

Panel A. Preferences

ρ Time discount rate 0.015 γ Relative risk aversion 20

ψ IES 2

Panel B. Consumption and dividend dynamics

σY Endowment growth volatility 0.03 ξ Leverage 3

θH High endowment growth state 0.044 θL Low endowment growth state −0.017

λH θ transition prob. (high to low) 0.8 λL θ transition prob. (low to high) 0.8

ωH High dividend idiosyncratic vol. 0.14 ωL Low dividend idiosyncratic vol. 0.04

κH ω transition prob. (high to low) 0.06 κL ω transition prob. (low to high) 0.025

Panel C: Information

νH High informativeness of ann. 0.999 νL Low informativeness of ann. 0.6
1
T Frequency of announcements 8

This table displays the calibrated annual parameters in our model.

of the implied variance reduction on FOMC announcement days. We choose T = 1
8

so that

there are eight announcements per year in our model, matching the frequency of FOMC

announcements in the data. All calibrated parameters are listed in Table 3.

Basic statistics of model-implied unconditional moments We list the asset pricing

moments in the data and the corresponding statistics for our calibrated model in Table 4.

We simulate our continuous-time model at daily frequencies and aggregate it quantitively to

appropriate frequencies to compare with the data.

Our model matches well with both the return and volatility moments in the data. The

average equity market premium in the model is 5.69% per year, and the volatility of annual

market return is 12%. Our model generates an average level of 0.42% for the risk-free

rate, with a standard deviation of 0.92% per year. Both moments are close to their data

counterparts in the data. Our model also captures the dynamics of consumption and dividend

growth in the data. The first two moments and autocorrelation of consumption growth in

the data (model) are 1.74% (1.33%), 2.72% (3.36%), and 0.38 (0.36). The model-based

mean, volatility, and autocorrelation of dividend growth are 1.24%, 9.12%, and 0.35, which

are fairly close to 1.55%, 10.66%, and 0.17 in the data. Our model produces a significant

announcement premium. The average announcement-day return is 29 bps, and the average

non-announcement day return is 1 bps, which are very close to the same moments (26 bps

and 2 bps) reported in the data.

Several key moments in the data are particularly important in assessing the quantitative

importance of the information-driven volatility channel. First, as we explain earlier, changes

22



Table 4: Asset Pricing Moments

Panel A: Aggregate market moments Data Model

E [R]− rf Equity premium 7.46% 5.69%

Std [R] Vol of market return 18.55% 12.03%

E [rf ] Average risk-free rate 0.26% 0.42%

Std [rf ] Vol of risk-free rate 1.08% 0.92%

E [dY/Y ] Consumption growth rate 1.74% 1.33%

Std [dY/Y ] Vol of consumption growth rate 2.72% 3.36%

AC [dY/Y ] AC(1) of consumption growth rate 0.38 0.36

E [dD/D] Dividend growth rate 1.55% 1.24%

Std [dD/D] Vol of dividend growth rate 10.66% 9.12%

AC [dD/D] AC(1) of dividend growth rate 0.17 0.35

Corr (dY/Y, dD/D) Corr b.t. consumption and dividend 0.43 0.64

AC [RV ] AC(1) of RV 0.65 0.79

Panel B: Announcement moments Data Model

E
[
RA
]

A-day average return 26 bps 29 bps

E
[
RN
]

NA-day average return 2 bps 1 bps

E [∆IVT ] Av. IV reduction on A-days 2.14 4.18

Std [∆IVT ] Std. of IV reduction on A-days 8.86 4.87

This table displays the asset pricing moments in the data and those implied by the model. The data in panel
A include the period 1929.01-2019.12. The data in panel B include the period 1994.09-2019.12.

in fundamental-driven volatility and information-driven volatility both affect the dynamics

of stock return volatility. Fundamental-driven volatility induces a positive autocorrelation of

return volatility, and information-driven volatility induces a negative autocorrelation. The

autocorrelation of stock market return volatility in the data therefore provides an upper

bound on how strong the information-driven volatility channel can be: a large magnitude

of information-driven volatility may result in a counterfactually negative auto-correlation

of return volatility. Thanks to the stochastic volatility in dividend growth, our calibration

matches the autocorrelation of stock market return volatility quite well. The first-order

autocorrelation of realized volatility of annual stock market returns is 0.65 in the data, and

the same moment is 0.79 in our model.

Second, our model successfully matches moments of the implied variance reduction on

announcement days. As we remarked earlier, ∆IVT provides a market-based measure of the

informativeness of announcements. In Table 4, the implied variance reduction is significantly

positive on announcement days and averages 2.14 (monthly percentage squared) in the data.

Our model features a similar magnitude for the implied variance reduction and a standard

deviation similar to that as in the data.
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Table 5: Implied Variance Reduction

Q5 Q25 Q50 Q75 Q95

Data −5.54 −0.26 1.14 3.88 10.00

Model −0.29 0.24 1.82 7.07 14.63

This table displays the quantile of the 30-day implied variance drop on announcement days in the data and
in the model. The data include the period 1994.09-2019.12. Implied variance reductions are in monthly
percentage squared units.

Although our calibration is fairly simple, it matches well a key feature of the implied

variance reduction in the data: the implied variance typically drops right after announce-

ments but occasionally increases. In Table 5, we tabulate the histogram of ∆IVT in the

data and in our model. Consistent with the data, our model shows a similar pattern of a

positive reduction on average but an occasional increase in the fifth percentile. In our model,

the implied variance is mainly determined by investors’ posterior variance about the latent

variable θt. Below, we illustrate the above pattern of the implied variance reduction using

the variance decomposition identity.

First, an average positive reduction in the implied variance after announcements is a

general property of Bayesian updating. Because Var [E (θT |st)] ≥ 0, Equation (1) implies

that Var [θT ] ≥ E [Var (θT |st)]. That is, on average, the conditional variance must decline

after the arrival of information. Second, the possibility of increases in the implied variance

after announcements requires a deviation from the Gaussian distribution. Under the Kalman

filter with Gaussian distribution, Var (θT |st) is deterministic and does not depend on the re-

alization of st. In this case, we must have Var [θT ] ≥ Var (θT |st); that is, the implied variance

can only reduce after the announcement st. In general, however, Var [θT ] ≥ E [Var (θT |st)]
allows the possibility of Var [θT ] < Var (θT |st) for some realizations of st. In our setup of a

two-state Markov chain, signals are wrong with probability 1 − ν (see Equations (12) and

(13)). A surprise signal that is very far from investors’ prior belief about θt may trigger an

increase in the posterior variance and therefore an increase in the implied variance of stock

returns.

Testing the information-driven volatility channel This section conducts several sta-

tistical tests for the two main implications of our theory of information-driven volatility. We

first present these tests using U.S. stock market return data and then replicate them with

the simulated data from our model.

Our first set of tests are on the relationships between the informativeness of announce-

ments and the mean and volatility of announcement returns as illustrated in Figure 2. The
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test requires a return predictability regression using some measure of the informativeness of

FOMC announcements. We cannot use the implied variance reduction directly, as it requires

knowledge of the implied variance after the announcement.6 An ideal measure of informa-

tiveness should only use ex-ante information before announcements and be a good predictor

for the implied variance reduction after announcements.

Our construction of the informativeness measure is based on the following intuition.

Suppose the implied variance reflects realized return variances induced by the arrival of in-

formation, and suppose FOMC announcement days have more information arrivals relative

to non-announcement days. Denote the variance of information on the upcoming announce-

ment day as Info and the variance of information on non-announcement days as InfoN .

Before the announcement at time T −1, suppose we observe an implied variance with 9 days

to maturity (IVT−1,T+8) and another implied variance with 30 days to maturity (IVT−1,T+29).

The two market-implied variances then allow us to back out the two unknowns, Info and

InfoN :

IVT−1,T+8 = Info+ 8× InfoN, (23)

IVT−1,T+29 = Info+ 29× InfoN. (24)

Empirically, we make two modifications to the above simple construction. First, we find

that normalizing the implied variance on the left-hand side of (23) and (24) by the realized

variance with the same maturity yields a more effective measure of informativeness. This is

intuitive because a high implied variance may result from either a period of heightened fun-

damental volatility or the anticipation of more informative events in the future. Normalizing

by realized variance allows us to control for the fundamental volatility. Given the nature

of the stochastic volatility in dividend growth, this correction also yields a better measure

of informativeness in our model. Second, whenever we have more than two maturities for

the implied variance, we use all available maturities by finding an Info and InfoN that

minimize the mean squared error of equations similar to (23) and (24) constructed from all

maturities between 7 and 180 calendar days.

In Table 6, we present the results of the following two regressions on the informativeness

measure constructed above:

RA
t = α + β × Infot−1 + εt, (25)

6In fact, it is well-known that the implied variance and stock returns are strongly negatively correlated.
This ex post negative correlation may simply be a result of the “leverage” effect and may have nothing to
do with the relationship between informativeness and the announcement premium.
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and

∆IVt = α + β × Infot−1 + εt, (26)

where RA
t is the announcement-day return, earned from the beginning of the announcement

day to the end of the announcement day; ∆IVt = IVt−1,t+29−IVt,t+30 is the difference between

the 30-day option-implied variance (VIX index squared) on the day before the announcement

and that on the announcement day; and Infot−1 is the informativeness measure we construct

using option prices on the day before the announcement at time t− 1.

Table 6: Announcement return and IV reduction predictability by informativeness

RAt ∆IVt

Infot−1 Data 65.04 6.32

(4.70) (3.25)

R2 (%) 15.44 22.20

νt Model 22.22 3.98

This table presents the results of the return predictability regressions defined in (25) and the implied variance
reduction predictability regression defined in (26). The data include the period 1996.01-2019.12. The bottom
panel is the model-implied regression coefficients of the informativeness of announcements νt. Informativeness
in both the data and the model, Infot−1 and νt, is normalized by the mean and standard deviation. Returns
are in daily basis points; implied variance reductions are in monthly percentage squared units. Newey-West
t-statistics are in parentheses.

First, our measure of informativeness has strong predictive power for the implied variance

reduction on announcement days. The coefficient is significantly positive with a t-statistic

of 3.25 and an R2 of 22.20%. This result indicates that Infot−1 is an effective measure of

the informativeness of the upcoming announcement perceived by the market.

Second, as shown in Table 6, in the return predictability regression, the regression coef-

ficient on Infot−1 is positive and significant with a t-statistic of 4.70. The above regression

has an impressive R2 of 15.44%, especially given that daily returns are notoriously hard to

be predicted in the data. This evidence shows that more informative announcements are

associated with a higher risk premium upon the announcement and provides an empirical

support for Proposition 1.

In the model, we run exactly the same regressions as in the data. Our model has a

precise measurement of informativeness: νt, which captures the information quality of the

announcements. The announcement return and implied variance reduction are defined in

Equations (20) and (22), respectively. Our model produces significantly positive regression

coefficients of 22.22 and 3.98 in predicting the announcement returns and implied variance
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reduction upon the announcements, which are close to the counterparts in the data. These

results are consistent with what we illustrated using policy functions in Figure 2 that higher

informativeness is associated with higher expected returns and higher expected variance

upon the arrival of information.

Our second set of tests are predictability regressions for post-announcement returns and

the post-announcement realized variance by the informativeness of the announcement. Be-

cause we are interested in predicting the returns and realized variance after the announce-

ment, we can directly use the announcement-day drops in the implied variance ∆IVt instead

of the ex-ante measure of Infot−1 as the measure of informativeness. We consider the fol-

lowing regression specifications:

RVt,t+h = α + β1∆IVt + β2RVt−2,t−1 + εt,t+h (27)

for the realized variance predictability and

Rt,t+h − rf = α + β1∆IVt + β2RVt−2,t−1 + εt,t+h (28)

for the realized excess return predictability. In the above regressions, RVt,t+h and Rt,t+h

are the realized variance and realized returns, respectively, from announcement day t (not

including the announcement day itself) to h days after the announcement, for various choices

of h: h = 1, 2, 3, 4, 5, 30, 60 up to two months.7 We control for RVt−2,t−1, the realized

variance on the day before announcement days, as a measure of the level of uncertainty

before the announcement.8 Our main interest is the regression coefficients on the measure

of the informativeness of the announcement, ∆IVt. We conduct the same regressions in the

model and report our regression results in Table 7.9

Consistent with the policy functions we plot in Figure 3, in our model, more informative

announcements are associated with a lower realized variance and lower expected returns af-

ter the announcements going forward. As a result, the betas in both regressions, (27) and

(28), are negative in the model-simulated data. Consistent with the model, these regressions

show a similar pattern in the data. The drops in the implied variance on announcement days

negatively predict post-announcement day variances at horizons of 1-5 days. This pattern

extends to the one-month horizon but dissipates over time and becomes insignificant over the

two-month horizon. The announcement-day drop in implied variance can also negatively pre-

dict post-announcement day returns up to the two-month horizon. The decreasing patterns

7Note that h indicates the number of calendar days. In the data, we use [1, 2, 3, 4, 5, 21, 42] trading days.
8In the Online Appendix, we show that our predictability results remain true if we also include the implied

variance on the announcement day, IVt, in regressions (27) and (28).
9We provide expressions for Rt,t+h and RVt,t+h in our model in the Online Appendix.
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Table 7: Model-Implied Return and Variance Predictability by IV Reduction

Number of days 1 2 3 4 5 30 60

RVt,t+h Data −0.12 −0.08 −0.05 −0.05 −0.05 −0.07 −0.04

(−3.83) (−3.43) (−2.41) (−2.57) (−2.70) (−4.15) (−2.54)

R2 (%) 65.30 58.80 44.94 43.63 43.70 33.16 23.61

RVt,t+h Model −0.03 −0.03 −0.03 −0.03 −0.03 −0.03 −0.04

Rt,t+h − rf Data −2.55 −2.02 −1.08 −1.26 −0.61 −0.19 −0.30

(−1.03) (−1.62) (−1.92) (−2.08) (−1.61) (−1.25) (−2.03)

R2 (%) 4.55 3.83 3.13 7.83 1.66 1.09 1.73

Rt,t+h − rf Model −0.56 −0.48 −0.34 −0.25 −0.31 −0.16 −0.23

This table presents the results of the realized variance predictability regression (27) and the excess return
predictability regression (28) in the data and the model. The columns 3-9 represent the horizon of returns
and variances on the left-hand side of Equations (27) and (28), respectively, with h = 1, 2, 3, 4, 5, 30, 60
calendar days. The data include the period 1994.09-2019.12.We normalized the right-hand side variables
in the model. Returns and realized variances are in daily basis points. Implied variance reductions are in
monthly percentage squared units. Newey-West t-statistics are in parentheses.

of predictabilities over time further establish that information-driven volatility is crucial in

explaining the expected return and variance, especially in the short run over higher fre-

quencies. All of the above evidence confirms the basic mechanism of the information-driven

volatility we illustrate in Figures 2 and 3.

Additional tests for the information-driven volatility channel In searching for ma-

jor events with large public information releases about the economy, we identify informa-

tional days on which the S&P 500 Index daily returns (close to close) are above 2.5% or

below −2.5%. According to Baker, Bloom, Davis, and Sammon (2021), all these informa-

tional days are well matched with at least one type of news.10 In our 30-year sample, we

have 295 informational days in total. We then classify a month as “informational” if at least

one of the trading days within this month is an informational day. This procedure identifies

95 months as informational months and allows us to provide an additional test for the model

implication that informational events are followed by lower future expected returns. We run

the following regression:

Rt,t+h − rf = α + βRVt−h,t + εt,t+h, (29)

10In Baker, Bloom, Davis, and Sammon (2021), the categories for news causes are Macroeconomic News
& Outlook, Corporate Earnings & Outlook, Sovereign Military & Security Actions, Government Spending,
Commodities, and so on.
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where h = 30 so that RVt−h,t is the realized variance in the current month and Rt,t+h is the

return in the future month.11

In the model, because the announcement is pre-scheduled eight times per year, the in-

formational month is naturally the month with one announcement. We again run the same

regressions as in the data and report the regression results in Table 8.

Table 8: Monthly Return Predictability by Monthly Realized Variance

Full Sample Informational Month t The Rest

Rt,t+h − rf Data −0.16 −0.25 −0.07

(−2.11) (−4.12) (−0.22)

R2 (%) 1.48 4.91 0.01

Rt,t+h − rf Model −0.04 −0.03 0.05

This table presents the results of the monthly return predictability regression (29). The columns 1-3 represent
the monthly returns (in percentages) and realized variances on the left-hand side of Equation (29) for different
samples with h = 30 within a month. The data include the period 1990.01-2019.12. Returns are in annual
percentage points and realized variances are in monthly percentage squared units. Newey-West t-statistics
are in parentheses.

The first column in Table 8 uses all of the months available in our sample. We find a

significantly negative relationship between the current month’s realized variance and the next

month’s return. This finding is consistent with that of Nelson (1991), Glosten, Jagannathan,

and Runkle (1993), and Moreira and Muir (2017). The second and the third column split our

sample into two subsamples. The second column reports a version of regression (29) that uses

only the realized variance in informational months to predict the returns in the next month.

The negative relationship is much stronger and has a much higher degree of significance, with

a t-statistic of −4.12 and an R2 of 4.91%. The third column reports the same regression

where realized variance is computed only in the subsample of non-informational months. The

regression coefficient β is not statistically significant. The above results provide additional

support for the information-driven volatility mechanism emphasized by our model. Because

informational months are months with large information releases, they drive the negative

relationship between past realized variance and future expected returns.

We report the same regression results using model-simulated data in the last row of Table

8. In our model, we interpret informational months as those with FOMC announcements.

Our model exhibits a similar pattern as the data. The informational months are associated

with a significant negative relationship between realized variance and future expected returns

11Unlike pre-scheduled FOMC announcements, these informational days are typically not anticipated by
the market. We therefore cannot use these days to test the relationship between informativeness and the
expected returns on the informational days.
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whereas the non-informational months are not.

We next present a more rigorous test by repeating the realized variance predictability

regression in Equation (27) and the return predictability regression in Equation (28) using

the above identified informational days. In this analysis, the RVt,t+h and Rt,t+h are the

realized variance and realized returns, respectively, from informational day t (not including

the informational day itself) to h days after the informational day, and ∆IVt is the implied

variance reduction on informational days. We report our regression results in Table 9.

Table 9: Expected Return and Variance Predictability by IV Reduction around Jump Days

Number of days 1 2 3 4 5 21 42

RVt,t+h −0.06 −0.06 −0.05 −0.05 −0.04 −0.03 −0.02

(−3.59) (−4.41) (−5.05) (−4.53) (−4.20) (−2.63) (−2.35)

R2 (%) 37.12 41.56 41.08 40.32 39.45 37.49 34.26

Rt,t+h − rf −1.05 −1.07 −0.46 −0.51 −0.58 −0.09 −0.00

(−3.93) (−6.09) (−3.14) (−3.62) (−4.71) (−1.69) (−0.05)

R2 (%) 3.88 7.20 2.19 3.62 6.07 3.27 4.65

This table presents the results of the realized variance predictability regression (27) and the return pre-
dictability regression (28) in the data. The columns 3-9 represent the horizon of returns (in percentages)
and variances on the left-hand side of Equations (27) and (28), respectively, with h = 1, 2, 3, 4, 5, 21, 42
trading days. The data include the period 1990.01-2019.12. Returns and realized variances are in daily basis
points. Implied variance reductions are in monthly percentage squared units. Newey-West t-statistics are in
parentheses.

The predictability regression results in Table 9 again provide consistent support for our

information-driven volatility mechanism. The drops in the implied variance on informational

days significantly negatively predict post-informational day variances and returns at horizons

of 1-5 days. Overall, our analysis on informational days echoes the analysis on FOMC

announcement days. Through the information-driven volatility channel, the informational

event days of higher informativeness usually predict lower risk as a result of the variance

decomposition formula and a lower risk premium on subsequent days because investors’

preferences satisfy strong GRS in our model.

Variance risk premium predictability In this section, we report our model’s implica-

tions on variance risk premium (VRP) return predictability. Previous literature has doc-

umented robust empirical evidence on return predictability by the difference between the

option-implied variance and the realized variance up to six-month horizons. The stochastic

volatility models developed to address this empirical phenomenon (e.g., Bollerslev, Tauchen,

and Zhou (2009) and Drechsler and Yaron (2011)) typically relied on large high-frequency
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variations in the volatility of aggregate consumption.

Our model of information driven volatility provides an alternative explanation for the

above facts without assuming high-frequency variations in consumption volatility. The

information-driven volatility in our model creates a wedge between the implied and realized

variance because the implied variance before the announcement includes investors’ expec-

tations about the upcoming announcements, whereas the past realized variance does not.

Therefore, the difference between the implied and realized variance in our model immediately

reflects the informativeness of the upcoming announcement. Because the implied variance is

a forward-looking measure of variance, it increases when the upcoming announcement is ex-

pected to be informative. The difference between the implied and realized variance predicts

returns because more informative announcements are associated with higher realizations of

announcement premiums.

Table 10: Return Predictability by Variance Risk Premium

Number of calendar days 1 30 60 90 120 150 180

IVt,t+30 −RVt−30,t Data 30.21 4.14 5.64 4.27 5.71 3.60 2.93

(2.68) (1.44) (3.42) (2.83) (3.05) (2.68) (2.35)

R2 (%) 7.58 0.72 2.55 2.11 4.36 2.32 1.67

IVt,t+30 −RVt−30,t Model 12.02 1.77 1.06 0.65 0.51 0.43 0.38

This table shows the results of the return predictability regression (30) using U.S. stock market return data
and those using data simulated from the model. Columns 2 to 7 represent returns on the left-hand side of
(30) with h = [1, 30, 60, 90, 120, 150, 180] calendar days ([1, 21, 42, 63, 84, 105, 126] trading days in the data)
including the upcoming announcement day. The regression includes returns and VRPs for every announce-
ment day during the period 1994.09-2019.12. Newey-West t-statistics with 1-6 lags are in parentheses. We
normalize the VRP in both the data and the model. Returns are in daily basis points for one-day-ahead
forecasts, are in annualized percentages for 30 or more days, and VRPs are in monthly percentage squared
units.

In Table 10, we report the results of the return predictability regression:

Rt,t+h − rf = α + β [IVt,t+30 −RVt−30,t] + εt,t+h, (30)

where Rt,t+h is the cumulative market return from time t to time t + h. Here, t denotes

one day before the announcement so that Rt,t+1 indicates the announcement-day return.

We use IVt,t+30 to denote the forward-looking 30-day implied variance (VIX index squared)

at time t, and RVt−30,t is the past 30-day realized variance. The regression coefficients

are statistically significant and increase up to six months. As in the data, in our model,

returns are predictable by the differences between IV and RV . The regression coefficients

of returns on VRP are significant up to the six-month horizon in our model as well. Note
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that the return predictability is strongest for the announcement-day return because the

announcement premium immediately reflects the risk compensation required by the strong

GRS through our information-driven volatility channel.

6 Conclusion

In this paper, we present a model of information-driven volatility. Traditional asset pricing

models of stochastic volatility typically rely on high-frequency variations in the volatility of

macroeconomic fundamentals, which lack strong empirical support. We believe that informa-

tion is more likely to be responsible for high-frequency variations in financial market volatility

than the volatility of macroeconomic fundamentals. We extend the theoretical analysis of Ai

and Bansal (2018) and develop the concept of strong generalized risk sensitivity. We show

that under this condition, the informativeness of macroeconomic news not only affects fi-

nancial market volatility but also expected returns. Based on the above insights, we present

a quantitative asset pricing model and demonstrate that the information-driven volatility

channel can resolve several prominent volatility-related asset pricing puzzles, including the

negative relationship between past realized volatility and future expected returns.
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7 Appendix

7.1 Information-Driven Volatility and Risk Premium

Proof. We denote V + (s+) = lim∆→0 V∆ (s∆), and V ++ (θT ) = lim∆→0 V2∆ (θT ). Taking the

continuous-time limit of the utility recursion (4), V + (s+) and V ++ (θT ) are related by:

V +
(
s+
)

= φ−1
{
E
[
φ ◦ V ++ (θT )

∣∣ s+
]}
. (31)

Because Ct is a continuous function of time, we obtain the continuous-time limit of the SDF

in (5) and (6) as:

SDF+
(
0−, s+

)
=

φ′ (V + (s+))

φ′ ◦ φ−1 (E [φ ◦ V + (s+)])
, (32)

and

SDF++
(
s+, θT

)
=

φ′ {V ++ (θT )}
φ′ ◦ φ−1E [φ ◦ V ++ (θT )| s+]

. (33)

We first prove Eq. (8). To save notation, we denote Φ = φ′ ◦ φ−1 and use (32) to write

the SDF in the informative announcement economy and that in the vague announcement

economy as:

SDF+
(
0−, (η, ε)

)
=

Φ (φ ◦ V + (η, ε))

Φ (E [φ ◦ V + (η, ε)])
; SDF+ (0, η) =

Φ (φ ◦ V + (η))

Φ (E [φ ◦ V + (η)])
. (34)

Eq. (31) implies that φ ◦ V + (s+) = E [φ ◦ V ++ (θT )| s+]. Because V ++ (θT ) are the same

in the vague announcement economy and in the informative announcement economy, by

law of iterated expectations, E [φ ◦ V + (η)] = E [φ ◦ V + (η, ε)] and the denominators in (34)

equal each other: Φ (E [φ ◦ V + (η, ε)]) = Φ(E [φ ◦ V + (η)]). To prove inequality (8), that is,

−E [lnSDF+ (0, (η, ε))] ≥ −E [lnSDF+ (0, η)], we only need to show−E [ln Φ (φ ◦ V + (η, ε))] ≥
−E [ln Φ (φ ◦ V + (η))]. To apply Jensen’s inequality, it is enough to establish the concavity

of ln Φ. Taking the first and the second order derivatives of ln Φ, we have:

∂

∂x
ln Φ (x) =

∂

∂x
lnφ′ ◦ φ−1 (x) =

φ′′ [φ−1 (x)]

{φ′ [φ−1 (x)]}2 ,

and

∂2

∂x2
ln Φ (x) =

1

{φ′ [φ−1 (x)]}2

{
φ′′′
[
φ−1 (x)

]
φ′
[
φ−1 (x)

]
− 2

(
φ′′
[
φ−1 (x)

])2
}
.

It is straightforward to show that condition (7) is equivalent to d
dx

[
φ′′

(φ′(x))2

]
≤ 0, which is
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equivalent to φ′′′φ′ − 2 (φ′′)2 ≤ 0. This establish the concavity of ln Φ.

We next prove Eq. (9). Given the utility recursion φ ◦ V + (s+) = E [φ ◦ V ++ (θT )| s+], it

convenient to the post-announcement SDF as:

SDF++ ((η, ε) , θT ) =
φ′ {V ++ (θT )}

Φ [φ ◦ V + (η, ε)]
, , SDF++ (η, θT ) =

φ′ {V ++ (θT )}
Φ [φ ◦ V + (η)]

. (35)

Because V ++ (θT ) are the same in the vague announcement economy and the informative

announcement economy, it is enough to show

E
[
ln Φ

{
φ ◦ V + (η, ε)

}]
≤ E

[
ln Φ

{
φ ◦ V + (η)

}]
. (36)

Given the concavity of ln Φ, Jensen’s equality implies that for all η,

E
[
ln Φ

{
φ ◦ V + (η, ε)

}∣∣ η] ≤ ln Φ
{
E
[
φ ◦ V + (η, ε)

∣∣ η]} = ln Φ
(
φ ◦ V + (η)

)
, (37)

where the second equality uses the utility recursion (31). Taking unconditional expectation

on both sides of (37), we obtain (36).

7.2 The Infinite-horizon Model Solutions

7.2.1 Preferences and beliefs

In this subsection, we start by deriving the posterior belief of a representative agent with

two sources of information. We first solve for learning from the observable consumption

using optimal filtering. Then we derive belief updating upon the announcements. Finally,

we present solutions to the value functions and the associated boundary conditions at the

announcement.

Learning in the interior: optimal filtering The two-state Markov chain process can be

conveniently represented as an integration with respect to a Poisson process. In particular,

let {Nj,t}t≥0 be a Poisson process with intensity λj, for j = H, L. Let I{x} be an indicator

function, that is,

I{θj} (θt) =

{
1 if θt = θj

0 if θt 6= θj
, (38)

Then {θt} can be represented as the following compound Poisson process:

dθt = (θH − θL) η
(
θ−t
)
dNt (39)
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and η (θ), and N (t) are vectors:

η (θt) =
[
−I{θH} (θt) , I{θL} (θt)

]
, and N (t) = [NH,t, NL,t]

> . (40)

Here we use the convention that {θt} is right-continuous with left limit, and use the notation

θ−t = lims→t,s<t θs. And Nj,t is the counting processes with intensity λj. That is,

dNj,t =

1 with prob. λjdt

0 with prob. 1− λjdt
. (41)

For example, if the true state is the high growth state θ−t = θH , and the transition from

high state to low state happens, i.e., dNH,t = 1. Then η (θt) = [−1, 1] gives rise to dθt =

(θH − θL)
(
−I{θH} (θt) dNH,t + I{θL} (θt) dNL,t

)
= θL − θH . Therefore, θ+

t = θ−t + dθt = θL.

Applying optimal filtering (see Chapter 9 of Liptser and Shiryaev (2001)), we could obtain

dπt = [λL − (λH + λL)πt] dt+ πt (1− πt) (θH − θL)
1

σY
dB̂Y,t, (42)

where B̂Y,t is the innovation process defined in the main text. Note that the mapping between

θ̂t and πt is one-to-one, so we can equivalently use θ̂t as the state variable. By definition,

θ̂t = πtθH + (1− πt) θL. This recovers πt from θ̂t

πt =
θ̂t − θL
θH − θL

. (43)

Applying Ito’s lemma, we get Eq.(14) in the main text.

Learning upon the announcements At the announcement, investors observe a noisy

signal sn where the distribution is given as

P (sH |θH) = ν, P (sL|θH) = 1− ν

P (sH |θL) = 1− ν, P (sL|θL) = ν.

Here we denote sj as investors receive a signal of θj upon the announcement. Given the prior

distribution P− (θH) = π−, we need to compute the posterior distribution of π+. Applying

Bayes’ rule,

P+ (θi|sj) =
P (sj|θi)P− (θi)∑
θi∈Θ P (sj|θi)P− (θi)

.
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That is, given that P− (θH) = π−,

P+ (θH |sH) =
π−ν

π−ν + (1− π−) (1− ν)
; P+ (θL|sH) = 1− P+ (θH |sH) =

(1− π−) (1− ν)

π−ν + (1− π−) (1− ν)
,(44)

P+ (θH |sL) =
π− (1− ν)

π− (1− ν) + (1− π−) ν
; P+ (θL|sL) = 1− P+ (θH |sL) =

(1− π−) ν

π− (1− ν) + (1− π−) ν
.(45)

This is equivalent to say, if we see sH , then, π+ = π−ν
π−ν+(1−π−)(1−ν)

, and if we see sL, π+ =
π−(1−ν)

π−(1−ν)+(1−π−)ν
. So π+ only has two possible realizations: the probability of seeing sH and

the probability of seeing sL. Denote hsH and hsL as the probability of seeing sH and sL after

the announcement, respectively,

hsH = P (sH |θH)P− (θH) + P (sH |θL)P− (θL) = π−ν +
(
1− π−

)
(1− ν) (46)

hsL = P (sL|θH)P− (θH) + P (sL|θL)P− (θL) = π− (1− ν) +
(
1− π−

)
ν. (47)

For notational convenience, we denote

π+
sH

=
π−ν

π−ν + (1− π−) (1− ν)
and π+

sL
=

π− (1− ν)

π− (1− ν) + (1− π−) ν
(48)

as the probability of θ+ = θH after the announcement if we see sH and sL, respectively.

Note that our signal generates the “correct” result with probability ν and produces a

“wrong” signal with probability 1 − ν. That is to say, the conditional distribution of π+ is

given as follows. If the true state is θH , then π+ =

π+
sH

w.p. ν

π+
sL

w.p. 1− ν
, and if the true state

is θL, π+ =

π+
sL

w.p. ν

π+
sH

w.p. 1− ν
.

Since the mapping between θ̂t and πt is one-to-one, we could instead use θ̂ as the state

variable. Substituting Eq.(43) back, we can derive the probability of seeing sH and sL after

the announcement respectively as

hsH =
θ̂− − θL
θH − θL

ν +
θH − θ̂−

θH − θL
(1− ν) , (49)

hsL =
θ̂− − θL
θH − θL

(1− ν) +
θH − θ̂−

θH − θL
ν. (50)

Also, given π+ =
{
π+
sH
, π+

sL

}
, we can compute θ̂+ = θL +π+ (θH − θL) using Eq.(48). There-
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fore, with probability hsH and hsL , the posterior mean becomes

θ̂+
sH

= θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL
)
ν +

(
θH − θ̂−

)
(1− ν)

, (51)

θ̂+
sL

= θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL
)

(1− ν) +
(
θH − θ̂−

)
ν
. (52)

Here θ̂+
sH

and θ̂+
sL

indicate the posterior mean of θ̂+ after the announcement if we observe sH

and sL, respectively.

In summary, the conditional distribution of θ̂+ is: if the underlying state is θH , θ̂+ =θ̂+
sH

w.p. ν

θ̂+
sL

w.p. 1− ν
. If the true state is θL, then θ̂+ =

θ̂+
sL

w.p. ν

θ̂+
sH

w.p. 1− ν
. The unconditional

distribution of θ̂+ after the announcement follows: θ̂+ =

{
θ̂+
sH

w.p. hsH
θ̂+
sL

w.p. hsL
.

To summarize the evolution of θ̂ (from prior mean θ̂−to posterior mean θ̂+) , we provide

the following two graphs. In both graphs, we can observe the prior mean θ̂−and the noisy

signal s. The first graph highlights the intermediate step where we list the two cases of

true unobservable state θ with the associated conditional distributions, while the equivalent

second graph omits the intermediate step and uses unconditional distributions instead.

sH = θH −→ θ̂+
sH

θH

sL = θL −→ θ̂+
sL

θ̂−

sL = θL −→ θ̂+
sL

θL

sH = θH −→ θ̂+
sH

θ̂
−−θL

θH
−θL

θH−θ̂−θH−θL

ν

1− ν

ν

1− ν

sH = θH −→ θ̂+
sH

θ̂−

sL = θL −→ θ̂+
sL

hsH

hsL

.
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As a matter of notation, for any function f , we denote

f
(
ν, θ̂−, T

)
= E

[
f
(
θ̂+, 0

)
|ν, θ̂−, T

]
= hsHf

(
θ̂+
sH
, 0
)

+ hsLf
(
θ̂+
sL
, 0
)

(53)

=

[
θ̂− − θL
θH − θL

ν +
θH − θ̂−

θH − θL
(1− ν)

]
f

θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL
)
ν +

(
θH − θ̂−

)
(1− ν)

, 0


+

[
θ̂− − θL
θH − θL

(1− ν) +
θH − θ̂−

θH − θL
ν

]
f

θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL
)

(1− ν) +
(
θH − θ̂−

)
ν
, 0

 .

(54)

The value function of the representative agent The representative consumer’s pref-

erence is specified by a pair of aggregators (f,A) such that:

dVt = [−f(Yt, Vt)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt (55)

for some square-integrable process σV (t). We adopt the convenient normalization A(Vt) =

0 (Duffie and Epstein, 1992b), and denote f̄ as the normalized aggregator. Under this

normalization, for ψ 6= 1, f̄(Yt, Vt) is,

f̄(Yt, Vt) =
ρ

1− 1/ψ

Y
1−1/ψ
t − ((1− γ)Vt)

1−1/ψ
1−γ

((1− γ)Vt)
1−1/ψ
1−γ −1

. (56)

The Hamilton-Jacobi-Bellman (HJB) equation for the recursive utility is

f̄
(
Yt, V

(
θ̂, t, Y

))
+ L

[
V
(
θ̂, t, Y

)]
= 0, (57)

where L is the infinitesimal generator defined as

L (Vt) = lim
∆→0

1

∆
Et [Vt+∆ − Vt] . (58)

Consider the following homogeneous form of

V
(
θ̂t, t, Yt

)
=

1

1− γ
H
(
θ̂t, t
)
Y 1−γ
t (59)
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where

dYt
Yt

= θ̂tdt+ σY dB̂Y,t, (60)

dθ̂t = µθ,tdt+
σθ,t
σY

dB̂Y,t, (61)

where µθ,t = (λH + λL)
(
θ̄ − θ̂t

)
, σθ,t =

(
θH − θ̂t

)(
θ̂t − θL

)
. The following lemma summa-

rizes the solution to the value function. We provide details for numerical solutions in the

Online Appendix.

Lemma 1. In the interior (0, T ), H
(
θ̂t, t
)

satisfies the following HJB equation

0 =
1

(1− γ)H

{
Ht +Hθ [µθ,t + (1− γ)σθ,t] +

σ2
θ,t

2σ2
Y

Hθθ

}
+

ρ

1− 1
ψ

(
H−

1− 1
ψ

1−γ − 1

)
+

(
θ̂t −

1

2
γσ2

Y

)
. (62)

where we use notations Ht = ∂H(θ̂t,t)
∂t

, Hθ = ∂H(θ̂t,t)

∂θ̂t
, and Hθθ = ∂2H(θ̂t,t)

∂θ̂2
t

.

Assume the informativeness of the announcement ν takes m values, i.e., ν1, ν2, ν3, . . . , νm

with the associated probabilities q1, q2, q3, . . . , qm. Then the boundary condition at the an-

nouncement satisfies

H̃
(
ν, θ̂−, T

)
= E

[
H
(
θ̂+, 0

)
| ν, θ̂−, T

]
= hsHH

(
θ̂+
sH
, 0
)

+ hsLH
(
θ̂+
sL
, 0
)
, (63)

and H
(
θ̂−, T

)
= E

[
H̃
(
ν, θ̂−, T

)
|θ̂−, T

]
=

m∑
j=1

qjH̃
(
νj, θ̂

−, T
)
, (64)

where hsH , hsL, θ̂+
sH

, and θ̂+
sL

are defined in Eqs. (49) to (52).

Proof. The form of value function implies: f̄(Y, V ) = ρ

1− 1
ψ

Y 1−γ
(
H1−

1− 1
ψ

1−γ −H
)

. Using Ito’s

lemma, we have

L
[
V
(
θ̂t, t, Yt

)]
Y 1−γ
t

=
L
[
H
(
θ̂t, t
)
Y 1−γ
t

]
(1− γ)Y 1−γ

t

= H

(
θ̂t −

1

2
γσ2

Y

)
+

1

1− γ

(
Ht +Hθµθ,t +

1

2σ2
Y

Hθθσ
2
θ,t

)
+Hθσθ,t.(65)

Therefore, HJB equation is written as Eq.(62).
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The boundary condition upon the announcement satisfies

H
(
θ̂−, T

)
= E

[
E
[
H
(
θ̂+, 0

)
| ν, θ̂−, T

]
|θ̂−, T

]
. (66)

To understand the above boundary condition, we provide the timeline and the two steps in

the table below.

Table 11: Continuation Utility

Time T (or T−) 0 (or T+ )

don’t know ν draw ν, know ν after announcement

Information set
{
θ̂−, T

} {
ν, θ̂−, T

} {
ν, θ̂+, 0

}
Continuation utility H

(
θ̂−, T

)
H̃
(
ν, θ̂−, T

)
H
(
θ̂+, 0

)
Step1: H̃

(
ν, θ̂−, T

)
= E

[
H
(
θ̂+, 0

)
| ν, θ̂−, T

]
Step2: H

(
θ̂−, T

)
= E

[
H̃
(
ν, θ̂−, T

)
|θ̂−, T

]

Step 1, we draw the i.i.d. random variable ν. Because investors know the distributions of

ν so that they could update their beliefs about the associated realized values and probabilities

of θ̂+ according to (15) conditioning on each ν. It is useful to denote this intermediate

step as H̃
(
ν, θ̂−, T

)
= E

[
H
(
θ̂+, 0

)
| ν, θ̂−, T

]
, where E

[
H
(
θ̂+, 0

)
| ν, θ̂−, T

]
is defined in

(54). In this step, we calculate the expected value of the continuation utility right after the

announcement conditional on the information set
{
ν, θ̂−, T

}
, as defined in Eq. (63).

Step 2, we compute the unconditional expectation by integrating over all possible real-

izations of ν to get Eq. (64). This step allows us to derive the expected value function based

on the information set
{
θ̂−, T

}
right before the announcement. If, for example, ν only takes

only two values, νH and νL with probability q and 1− q. Then,

H
(
θ̂−, T

)
= E

[
H̃
(
ν, θ̂−, T

)
|θ̂−, T

]
= qH̃

(
νH , θ̂

−, T
)

+ (1− q) H̃
(
νL, θ̂

−, T
)
. (67)

7.2.2 Asset Prices

In this subsection, we first derive the pricing kernel for the representative investor. We then

derive the risk-free rate and the partial differential equation (PDE) for the price-to-dividend

ratio with the boundary condition at the announcement. Finally, we calculate the cumulative

return and the risk premium.
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Pricing kernel and the risk-free rate We first provide proof for the law of motion of

the pricing kernel Mt, which satisfies the stochastic differential equation (SDE) of Eq. (17),

and

r
(
θ̂t, t
)

= ρ+
1

ψ
θ̂t −

1 + 1
ψ

2
γσ2

Y +
( 1
ψ
− γ)(1− 1

ψ
)

2 (1− γ)2

(
Hθ

H

)2 σ2
θ,t

σ2
Y

+

1
ψ
− γ

1− γ
Hθ

H
σθ,t, (68)

σM

(
θ̂t, t
)

= γσY −
1
ψ
− γ

1− γ
Hθ

H

σθ,t
σY

, (69)

where σθ,t = (θH − θ̂t)(θ̂t− θL), and we use notations Hθ
H

= ∂H(θ̂t,t)/∂θ̂t

H(θ̂t,t)
and Hθθ

H
=

∂2H(θ̂t,t)/∂θ̂2
t

H(θ̂t,t)
.

Proof. The pricing kernel is defined as

dMt

Mt

=
df̄Y (Y, V )

f̄Y (Y, V )
+ f̄V (Y, V ) dt, (70)

where f̄Y (Y, V ) = ρH
1
ψ
−γ

1−γ Y −γ, and f̄V (Y, V ) = ρ
1
ψ
−γ

1− 1
ψ

H−
1− 1

ψ
1−γ −ρ 1−γ

1− 1
ψ

. Applying Ito’s lemma,

df̄Y (Y, V )

f̄Y (Y, V )
=

d[H
1
ψ
−γ

1−γ Y −γt ]

H
1
ψ
−γ

1−γ Y −γt

=

{
−γθ̂t +

1

2
γ (γ + 1)σ2

Y +

1
ψ
− γ

1− γ

(
Ht

H
+
Hθ

H
µθ,t

)

+
1

2


(

1
ψ
− γ
)(

1
ψ
− 1
)

(1− γ)2

(
Hθ

H

)2

+

1
ψ
− γ

1− γ
Hθθ

H

 σ2
θ,t

σ2
Y

−γ
1
ψ
− γ

1− γ
Hθ

H
σθ,t

}
dt+

(
−γσY +

1
ψ
− γ

1− γ
Hθ

H

σθ,t
σY

)
dB̂Y,t. (71)

Matching the drift and diffusion of Eq.(17), we can get (69) and the risk-free rate

rt = −
1
ψ
− γ

(1− γ)H

[
Ht +Hθµθ,t +

1

2

(
1
ψ
− 1

1− γ
H2
θ

H
+Hθθ

)
σ2
θ,t

σ2
Y

− γHθσθ,t

]

+γθ̂t −
1

2
γ (γ + 1)σ2

Y − ρ
1
ψ
− γ

1− 1
ψ

H−
1− 1

ψ
1−γ + ρ

1− γ
1− 1

ψ

. (72)
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Using the HJB equation to simplify rt by multiplying 1
ψ
− γ on both sides of (62),

0 =

1
ψ
− γ

(1− γ)H

{
Ht +Hθ [µθ,t + (1− γ)σθ,t] +

1

2
Hθθ

σ2
θ,t

σ2
Y

}

+
ρ
(

1
ψ
− γ
)

1− 1
ψ

(
H−

1− 1
ψ

1−γ − 1

)
+

(
θ̂t −

1

2
γσ2

Y

)(
1

ψ
− γ
)
, (73)

and adding up with (72), we get the instantaneous risk-free rate in the main text.

Price-to-dividend ratio We show the solution for p(θ̂t, t) in the following lemma. We

provide details for numerical solutions in the Online Appendix.

Lemma 2. In the interior (0, T ), the price-to-dividend ratio p(θ̂t, t) satisfies the PDE of

$
(
θ̂t, t
)
p = pt + pθ%

(
θ̂t, t
)

+
1

2
pθθ

σ2
θ,t

σ2
Y

+ 1, (74)

where we use notations pt = ∂p(θ̂t,t)
∂t

, pθ = ∂p(θ̂t,t)

∂θ̂t
, pθθ = ∂2p(θ̂t,t)

∂θ̂2
t

, and

$
(
θ̂t, t
)

= (ξ − 1) θ̄ + ρ− 1

2
γσ2

Y (
1

ψ
+ 1) + γσ2

Y − (ξ − 1

ψ
)θ̂t +

( 1
ψ
− γ)(1− 1

ψ
)

2(1− γ)2

(
Hθ

H

)2 σ2
θ,t

σ2
Y

%
(
θ̂t, t
)

= µθ,t + (1− γ)σθ,t +

1
ψ
− γ

1− γ
Hθ

H

σ2
θ,t

σ2
Y

, (75)

with the boundary condition at the announcement satisfying

p̃
(
ν, θ̂−T , T

)
= E

 H
(
θ̂+
T , 0
) 1

ψ
−γ

1−γ p
(
θ̂+
T , 0
)

E
[
H
(
θ̂+
T , 0
)∣∣∣ ν, θ̂−T , T]

1
ψ
−γ

1−γ

∣∣∣∣∣∣∣∣∣ ν, θ̂
−
T , T



=
hsHH

(
θ̂+
sH
, 0
) 1
ψ
−γ

1−γ
p
(
θ̂+
sH
, 0
)

+ hsLH
(
θ̂+
sL
, 0
) 1
ψ
−γ

1−γ
p
(
θ̂+
sL
, 0
)

[
hsHH

(
θ̂+
sH
, 0
)

+ hsLH
(
θ̂+
sL
, 0
)] 1

ψ
−γ

1−γ

, (76)

and p
(
θ̂−T , T

)
= E

 H̃
(
ν, θ̂−T , T

) 1
ψ
−γ

1−γ
p̃
(
ν, θ̂−T , T

)
E
[
H̃
(
ν, θ̂−T , T

)
|θ̂−T , T

] 1
ψ
−γ

1−γ

∣∣∣∣∣∣∣∣∣ θ̂
−
T , T

 =

∑m
j=1 qjH̃

(
νj, θ̂

−
T , T

) 1
ψ
−γ

1−γ
p̃
(
νj, θ̂

−
T , T

)
[∑m

j=1 qjH̃
(
νj, θ̂

−
T , T

)] 1
ψ
−γ

1−γ

,(77)
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where hsH , hsL, θ̂+
sH

, and θ̂+
sL

are defined in Eqs.(49) to (52).

Proof. The present value relationship (18) implies

MtDtdt+ L
[
Mtp(θ̂t, t)Dt

]
= 0. (78)

This gives
L[Mtp(θ̂t,t)Dt]
Mtp(θ̂t,t)Dt

+ 1

p(θ̂t,t)
= 0. Applying Ito’s lemma and using Eqs.(16) and (17),

L
[
Mtp(θ̂t, t)Dt

]
Mtp(θ̂t, t)Dt

= −rt +
1

p

(
pt + pθµθ,t +

1

2
pθθ

σ2
θ,t

σ2
Y

)
+ξ
(
θ̂t − θ̄

)
+ θ̄ +

pθ
p
σθ,t − σM,t

(
σY +

pθ
p

σθ,t
σY

)
. (79)

Put in rt from Eq. (68) would give the PDE for p(θ̂t, t).

We next solve the boundary condition. Another way to write Eq. (70) is: Mt =

fY (Yt, Vt) e
´ t
0 fV (Ys,Vs)ds. From this formula, we could derive the announcement SDF as

H(θ̂+
T ,0)

1
ψ
−γ

1−γ

E[H(θ̂+
T ,0)|θ̂−T ,T ]

1
ψ
−γ

1−γ

.

The intuition is as follows. Upon the announcement, Yt is continuous while the continuation

utility H(θ̂t, t) jumps when new information about θ̂t arrives because of generalized risk sen-

sitivity in preferences (Ai and Bansal, 2018). Therefore, using the announcement SDF, the

boundary condition for p(θ̂t, t) is

p
(
θ̂−T , T

)
= E

 H(θ̂+
T , 0)

1
ψ
−γ

1−γ p(θ̂+
T , 0)

E
[
H(θ̂+

T , 0)
∣∣∣ θ̂−T , T]

1
ψ
−γ

1−γ

∣∣∣∣∣∣∣∣∣ θ̂
−
T , T

 . (80)

We again understand the above boundary condition in two steps. First, conditioning on a

given ν, the distribution of θ̂+
T is given by Eqs.(49)-(52). This intermediate step p̃

(
ν, θ̂−T , T

)
can be computed in Eq.(76). Next, we compute the unconditional expectation by averaging

over all possible realizations of ν, as shown in Eq.(77).

Risk premium Here we provide proof for Proposition 2. For notational convenience,

denote µR,t = E
[
d(p(θ̂t,t)Dt)+Dtdt

p(θ̂t,t)Dt

]
as the expected return and σR,t as the instantaneous

return volatility. We show the following lemma holds.

47



Lemma 3. The cumulated return takes the following form

dRt

Rt

= µR,tdt+ σR,tdB̂Y,t + ωtdBi,t, (81)

where

µR,t =
1

p

(
1 + pt + pθµθ,t +

1

2
pθθ

σ2
θ,t

σ2
Y

)
+ ξ

(
θ̂t − θ̄

)
+ θ̄ +

pθ
p
σθ,t, (82)

σR,t =
pθ
p

σθ,t
σY

+ σY . (83)

Proof. The cumulative return can be computed as

dRt

Rt

=
d
(
p
(
θ̂t, t
)
Dt

)
+Dtdt

p
(
θ̂t, t
)
Dt

=
1

p
dt+

d (pDt)

pDt

. (84)

Applying Ito’s lemma and using (16),

d
(
p
(
θ̂t, t
)
Dt

)
p
(
θ̂t, t
)
Dt

=

[
1

p

(
pt + pθµθ,t +

1

2
pθθ

σ2
θ,t

σ2
Y

)
+ ξ

(
θ̂t − θ̄

)
+ θ̄ +

pθ
p
σθ,t

]
dt

+

(
pθ
p

σθ,t
σY

+ σY

)
dB̂Y,t + ωtdBi,t. (85)

Together with the expression of the pricing kernel (17), the risk premium is therefore

µR,t − rt = −Covt

[
dMt

Mt

,
dRt

Rt

]
= σM,tσR,t =

(
γσY −

1
ψ
− γ

1− γ
Hθ

H

σθ,t
σY

)(
pθ
p

σθ,t
σY

+ σY

)
, (86)

which corresponds to Eq.(19) in Proposition 2.

Upon the announcement, since dividend flow is continuous, the announcement premium

is given by
(
E
[
p
(
θ̂+
T , 0
)
/p
(
θ̂−T , T

)
| θ̂−T , T

]
− 1
)

. Using the boundary condition of the

price-to-dividend ratio (80), we can therefore obtain Eq.(20).
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7.2.3 Forward Looking Measure of Implied Variance

In this session, we compute the model implied variance defined in Eq.(21). We first simplify

the log return. The law of motion of dividend from Eq.(16) implies

lnDτ = lnDt +

ˆ τ

t

(
ξθ̂s + θ̄ (1− ξ)− 1

2
σ2
Y −

1

2
ω2
s

)
ds+

ˆ τ

t

(
σY dB̂Y,s + ωsdBω,s

)
.(87)

For simplicity, we define

δ (t) =

ˆ t

0

(
ξθ̂s + θ̄ (1− ξ)− 1

2
σ2
Y

)
ds+

ˆ t

0

σY dB̂Y,s, (88)

or equivalently,

dδ (t) =

[
ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y

]
dt+ σY dB̂Y,t. (89)

Therefore, the log return could be simplified as

ln
{
p
(
θ̂τ , τ

)
Dτ

}
−ln

{
p
(
θ̂t, t
)
Dt

}
= lnp

(
θ̂τ , τ

)
−lnp

(
θ̂t, t
)

+δ (τ)−δ (t)+

ˆ τ

t

(
−1

2
ω2
sds+ ωsdBω,s

)
.

(90)

Then the implied variance could be decomposed as

IVt,τ = Vart

[
ln p

(
θ̂τ , τ

)]
+ 2Covt

[
ln p

(
θ̂τ , τ

)
, δ (τ)− δ (t)

]
+Vart [δ (τ)− δ (t)] + Vart

[
−
ˆ τ

t

1

2
ω2
sds+

ˆ τ

t

ωsdBω,s

]
, (91)

where we use the fact that lnp
(
θ̂t, t
)

is known at time t, and dBω,t is uncorrelated with

others. The four terms in Eq.(91) can be further decomposed into:

Vart

[
ln p

(
θ̂τ , τ

)]
= Et

[
ln2 p

(
θ̂τ , τ

)]
−
(
Et
[
ln p

(
θ̂τ , τ

)])2

, (92)

Covt

[
ln p

(
θ̂τ , τ

)
, δ (τ)− δ (t)

]
= Et

[
ln p

(
θ̂τ , τ

)
(δ (τ)− δ (t))

]
−Et

[
ln p

(
θ̂τ , τ

)]
Et [(δ (τ)− δ (t))] , (93)

Vart [δ (τ)− δ (t)] = Et
[
{δ (τ)− δ (t)}2]− Et [δ (τ)− δ (t)]2 , (94)

Vart

[
−
ˆ τ

t

1

2
ω2
sds+

ˆ τ

t

ωsdBω,s

]
= Et

[(
−
ˆ τ

t

1

2
ω2
sds+

ˆ τ

t

ωsdBω,s

)2
]

−
(
Et
[
−
ˆ τ

t

1

2
ω2
sds+

ˆ τ

t

ωsdBω,s

])2

. (95)

49



The first term on the right hand side of the last equation above is equivalent to

1

4
Et

[(ˆ τ

t

ω2
sds

)2
]

+ Et

[(ˆ τ

t

ωsdBω,s

)2
]
− Et

[(ˆ τ

t

ω2
sds

)(ˆ τ

t

ωsdBω,s

)]

=
1

4
Et

[(ˆ τ

t

ω2
sds

)2
]

+ Et
[ˆ τ

t

ω2
sds

]
,

where we applied Ito’s isometry for Et
[(´ τ

t
ωsdBω,s

)2
]

= Et
[´ τ
t
ω2
sds
]
. As a result, Eq. (95)

can be simplified to

Vart

[
−1

2

ˆ τ

t

ω2
sds+

ˆ τ

t

ωsdBω,s

]
=

1

4
y (ωt, t) + g (ωt, t)−

1

4
g2 (ωt, t) . (96)

where g (ωt, t) = Et
[´ τ
t
ω2
sds
]

and y (ωt, t) = Et
[(´ τ

t
ω2
sds
)2
]
. Using simplified notations

defined above, we show the following lemma holds. We provide details for numerical solutions

in the Online Appendix.

Lemma 4. For 0 ≤ t ≤ τ , the implied variance is given by

IVt,τ

(
θ̂t, ωt, t

)
= w2

(
θ̂t, t
)
− w1

(
θ̂t, t
)2

+ 2
[
a3

(
θ̂t, t
)
− w1

(
θ̂t, t
)
a1

(
θ̂t, t
)]

+a2

(
θ̂t, t
)
− a1

(
θ̂t, t
)2

+
1

4
y (ωt, t) + g (ωt, t)−

1

4
g2 (ωt, t) , (97)

where

w1

(
θ̂t, t
)

= Et
[
ln p

(
θ̂τ , τ

)]
, (98)

w2

(
θ̂t, t
)

= Et
[
ln p2

(
θ̂τ , τ

)]
, (99)

a1

(
θ̂t, t
)

= Et [δ (τ)− δ (t)] , (100)

a2

(
θ̂t, t
)

= Et
[
{δ (τ)− δ (t)}2] , (101)

a3

(
θ̂t, t
)

= Et
[
ln p

(
θ̂τ , τ

)
{δ (τ)− δ (t)}

]
, (102)

and g (ωt, t) = Et
[´ τ
t
ω2
sds
]

and y (ωt, t) = Et
[(´ τ

t
ω2
sds
)2
]

have the following closed form

solutions

g (ωH , t) =
κHω

2
L + κLω

2
H

κH + κL
(τ − t) + κH

ω2
H − ω2

L

(κH + κL)2

[
1− e−(κH+κL)(τ−t)] , (103)

g (ωL, t) =
κHω

2
L + κLω

2
H

κH + κL
(τ − t)− κL

ω2
H − ω2

L

(κH + κL)2

[
1− e−(κH+κL)(τ−t)] . (104)
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y (ωH , t) =
(ω2

HκL + κHω
2
L) 2

(κH + κL) 2
(τ − t)2 +

2κH (ω2
H − ω2

L)
(
1− e−(κH+κL)(τ−t)) (κHω

2
H − 2ω2

HκL − κHω2
L)

(κH + κL) 4

+
2κH (ω2

H − ω2
L)
[
−e−(κH+κL)(τ−t) (κHω

2
H − κLω2

L) + 2ω2
HκL + κHω

2
L − κLω2

L

]
(κH + κL) 3

(τ − t) ,(105)

y (ωL, t) =
(ω2

HκL + κHω
2
L) 2

(κH + κL) 2
(τ − t)2 +

2κL (ω2
H − ω2

L)
(
1− e−∆(κH+κL)

)
(−2κHω

2
H + ω2

HκL − κLω2
L)

(κH + κL) 4

+
2κL (ω2

H − ω2
L)
[
κHω

2
H + e−(κH+κL)(τ−t) (κHω

2
H − κLω2

L)− ω2
HκL − 2κHω

2
L

]
(κH + κL) 3

(τ − t) . (106)

Note that all of them also depend on the expiration date τ , but we dropped τ to save

notations. We first solve for g (ωt, t) and y (ωt, t), where ωt ∈ {ωH , ωL} is a two-state Markov

chain. We construct the martingale

Et
[ˆ τ

0

ω2
sds

]
= Et

[ˆ τ

t

ω2
sds

]
+ Et

[ˆ t

0

ω2
sds

]
= g (ωt, t) +

ˆ t

0

ω2
sds. (107)

Because Et
[
Et
[´ τ

0
ω2
sds
]]

= Et
[´ τ

0
ω2
sds
]
, Et

[´ τ
0
ω2
sds
]

is a martingale, we have

L [g (ωt, t)] + ω2
t = 0, (108)

with the boundary condition g (ωτ , τ) = 0. The above can be written as

ω2
H +

∂

∂t
g (ωH , t) + κH [g (ωL, t)− g (ωH , t)] = 0, (109)

ω2
L +

∂

∂t
g (ωH , t) + κL [g (ωH , t)− g (ωL, t)] = 0, (110)

which further gives Eqs.(103) and (104) in Lemma 4.

We use the same methodology to solve for y (ωt, t). Denote z (t) =
´ t

0
ω2
sds,

Et

[(ˆ τ

0

ω2
sds

)2
]

= Et

[(ˆ t

0

ω2
sds

)2

+

(ˆ τ

t

ω2
sds

)2

+ 2

(ˆ t

0

ω2
sds

)(ˆ τ

t

ω2
sds

)]
= z (t)2 + y (ωt, t) + 2z (t) g (ωt, t) . (111)

Because Et
[(´ τ

0
ω2
sds
)2
]

is a martingale, we have

0 = L
{
z (t)2 + y (ωt, t) + 2z (t) g (ωt, t)

}
= 2z (t) z′ (t) + Ly (ωt, t) + 2z (t)Lg (ωt, t) + 2z′ (t) g (ωt, t) . (112)
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Note that z′ (t) = ω2
t , the above condition can be written as

2z (t)
[
ω2
t + Lg (ωt, t)

]
+ Ly (ωt, t) + 2ω2

t g (ωt, t) = 0. (113)

Because z (t) is a random variable and can take any values, for the above to hold, we must

have (108) and

Ly (ωt, t) + 2ω2
t g (ωt, t) = 0, (114)

together with the boundary condition y (ωτ , τ) = 0. Clearly, the above implies the following

ODEs of y (ωt, t) function

∂

∂t
y (ωH , t) + κH [y (ωL, t)− y (ωH , t)] + 2ω2

Hg (ωH , t) = 0 (115)

∂

∂t
y (ωL, t) + κL [y (ωH , t)− y (ωL, t)] + 2ω2

Lg (ωL, t) = 0. (116)

which further gives Eqs.(105) and (106) in Lemma 4.

Next, we solve for wj

(
θ̂t, t
)

, j = 1, 2, and aj

(
θ̂t, t
)

where j = 1, 2, 3 separately. In

general, there are two cases. In the first case, τ < T so that there will be no announcement

before expiration τ . We construct martingales and use martingale property to determine the

PDE and the associated boundary condition for each variable. In the second case, τ ≥ T ,

and the forward-looking implied variance will cover one announcement before expiration. If

so, we solve wj

(
θ̂t, t
)

and aj

(
θ̂t, t
)

using backward induction in three steps: after, upon,

and before the announcement. We summarize the results in the following lemma.

Lemma 5. If 0 ≤ t ≤ τ < T , there is no announcement before expiration. The PDEs for

wj

(
θ̂t, t
)
, j = 1, 2 and aj

(
θ̂t, t
)
, j = 1, 2, 3 are

0 =
∂

∂t
wj

(
θ̂t, t
)

+
∂

∂θ̂
wj

(
θ̂t, t
)
µθ,t +

1

2

∂2

∂θ̂2
wj

(
θ̂t, t
) σ2

θ,t

σ2
Y

, (117)

0 =
∂

∂t
a1

(
θ̂t, t
)

+
∂

∂θ̂
a1

(
θ̂t, t
)
µθ,t +

1

2

∂2

∂θ̂2
a1

(
θ̂t, t
) σ2

θ,t

σ2
Y

+ ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y ,(118)

0 = 2a1

(
θ̂t, t
)(

ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y

)
+ 2

∂

∂θ̂
a1

(
θ̂t, t
)
σθ,t + σ2

Y

+
∂

∂t
a2

(
θ̂t, t
)

+
∂

∂θ̂
a2

(
θ̂t, t
)
µθ,t +

1

2

∂2

∂θ̂2
a2

(
θ̂t, t
) σ2

θ,t

σ2
Y

, (119)

0 = w1

(
θ̂t, t
)(

ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y

)
+

∂

∂θ̂
w1

(
θ̂t, t
)
σθ,t +

∂

∂t
a3

(
θ̂t, t
)

+
∂

∂θ̂
a3

(
θ̂t, t
)
µθ,t +

1

2

∂2

∂θ̂2
a3

(
θ̂t, t
) σ2

θ,t

σ2
Y

, (120)
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with the associated boundary conditions of

w1

(
θ̂τ , τ

)
= ln p

(
θ̂τ , τ

)
and w2

(
θ̂τ , τ

)
= ln p2

(
θ̂τ , τ

)
, (121)

a1

(
θ̂τ , τ

)
= 0, a2

(
θ̂τ , τ

)
= 0 and a3

(
θ̂τ , τ

)
= 0. (122)

If 0 ≤ t < T ≤ τ , there will be an announcement before expiration. For t ∈ [T+, τ ], we

use the above PDEs and boundary conditions (121) and (122) to compute wj

(
θ̂T+ , T+

)
and

aj

(
θ̂T+ , T+

)
. For t ∈ [T−, T+], we update the boundary condition according to

wj(θ̂
−
T , T

−) =
m∑
s=1

qsw̃j(νs, θ̂
−
T , T

−), w̃j(ν, θ̂
−
T , T

−) = hsHwj(θ̂
+
sH
, T+) + hsLwj(θ̂

+
sL
, T+),(123)

aj(θ̂
−
T , T

−) =
m∑
s=1

qsãj(νs, θ̂
−
T , T

−), ãj(ν, θ̂
−
T , T

−) = hsHaj(θ̂
+
sH
, T+) + hsLaj(θ̂

+
sH
, T+).(124)

For t ∈ [t, T−], we use the PDEs again with the above boundary conditions (123) and (124).

Proof. Case 1: IV for 0 ≤ t ≤ τ < T : no announcement before expiration.

wj

(
θ̂t, t
)

is a martingale because Et
[
wj

(
θ̂t, t
)]

= Et
(
Et
[
ln pj

(
θ̂τ , τ

)])
= wj

(
θ̂t, t
)

for

t ≤ τ , where j = 1, 2, using law of iterated expectations. Therefore, wj

(
θ̂t, t
)

is determined

by the PDE

Lw1

(
θ̂t, t
)

= 0 and Lw2

(
θ̂t, t
)

= 0, (125)

which further determines Eq.(117) with the boundary condition at time τ described in (121).

Similarly, Et [δ (τ)] = a1

(
θ̂t, t
)

+ δ (t) is a martingale. Therefore we must have the PDE

L
[
a1

(
θ̂t, t
)

+ δ (t)
]

= 0. (126)

together with the boundary condition a1

(
θ̂τ , τ

)
= Eτ [δ (τ)− δ (τ)] = 0. Using the law of

motion of θ̂t from (61), δt from (89) and aj

(
θ̂t, t
)

, j = 1, 2, 3 from below

daj

(
θ̂t, t
)

=

(
∂aj
∂t

+
∂aj

∂θ̂
µθ,t +

1

2

∂2aj

∂θ̂2

σ2
θ,t

σ2
Y

)
dt+

∂aj

∂θ̂

σθ,t
σY

dB̂Y,t, (127)

Eq. (126) immediately gives (118).
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Next, consider a2

(
θ̂t, t
)

. Note that

Et
[
δ2 (τ)

]
= Et

[
(δ(τ)− δ(t) + δ(t))2]

= δ(t)2 + 2a1

(
θ̂t, t
)
δ(t) + a2

(
θ̂t, t
)
. (128)

The fact that Et [δ2 (τ)] is a martingale implies that

L
[
δ(t)2 + 2a1

(
θ̂t, t
)
δ(t) + a2

(
θ̂t, t
)]

= 0, (129)

together with the boundary condition a2

(
θ̂τ , τ

)
= Eτ

[
{δ (τ)− δ (τ)}2] = 0. This gives

2δt

(
ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y

)
+ 2δt

(
∂a1

∂t
+
∂a1

∂θ̂
µθ,t +

1

2

∂a2
1

∂θ̂2

σ2
θ,t

σ2
Y

)
+ σ2

Y

+2a1

(
ξθ̂t + θ̄ (1− ξ)− 1

2
η2σ2

Y

)
+ 2

∂a1

∂θ̂
σθ,t +

(
∂a2

∂t
+
∂a2

∂θ̂
µθ,t +

1

2

∂a2
2

∂θ̂2

σ2
θ,t

σ2
Y

)
= 0.(130)

Because the above equation must hold for all δt, matching the coefficient on δt and the rest,

we obtain Eq.(118) and (119).

Last, we compute a3

(
θ̂t, t
)

. By definition, Et
[
ln p

(
θ̂τ , τ

)
δ (τ)

]
= a3

(
θ̂t, t
)

+Et
[
ln p

(
θ̂τ , τ

)
δ (t)

]
is also a martingale. Therefore,

L
[
w1

(
θ̂t, t
)
δ (t) + a3

(
θ̂t, t
)]

= 0, (131)

with the boundary condition a3

(
θ̂τ , τ

)
= Eτ

[
ln p

(
θ̂τ , τ

)
{δ (τ)− δ (τ)}

]
= 0. Further,

0 = δt

(
∂w1

∂t
+
∂w1

∂θ̂
µθ,t +

1

2

∂w2
1

∂θ̂2

σ2
θ,t

σ2
Y

)
+ w1

(
ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y

)
+
∂w1

∂θ̂
σθ,t +

∂a3

∂t
+
∂a3

∂θ
µθ,t +

1

2

∂a2
3

∂θ2

σ2
θ,t

σ2
Y

,

we finally obtain Eq.(120).

Case 2: IV for τ ≥ T : one announcement before expiration.

Case 1 computes the expectations only for τ < T . If τ ≥ T , which is often the case if

we want to talk about implied variance across an announcement, we need to deal with the

announcement boundary separately, and we do it in three steps backward induction: we start

from T+, go back to (T−, ν), and go back to T− without knowing ν. Note that the output

in each step will be the input for the next step.

Step 1: from T+ → τ , we use the PDEs and boundary conditions (121) in Lemma 5 to
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calculate wj

(
θ̂T+ , T+

)
, j = 1, 2 and aj

(
θ̂T+ , T+

)
, j = 1, 2, 3.

Step 2: from T− → T+, we calculate the boundary conditions. Because δ (t) is a

stochastic integral, it must be continuous. We have δ (T−) = ET− [δ (T+)] = δ (T+). Using

Eqs.(125), (126), (129) and (131), the martingale property implies

w1

(
θ̂−T , T

−
)

= ET−
[
w1

(
θ̂+
T , T

+
)]

and w2

(
θ̂−T , T

−
)

= ET−
[
w2

(
θ̂+
T , T

+
)]

a1

(
θ̂T− , T

−
)

+ δT− = ET−
[
a1

(
θ̂T+ , T+

)
+ δT+

]
⇒ a1

(
θ̂−T , T

−
)

= ET−
[
a1

(
θ̂+
T , T

+
)]
, (132)

ET−
[
δ2
T+ + 2a1

(
θ̂+
T , T

+
)
δT+ + a2

(
θ̂+
T , T

+
)]

= δ2
T− + 2ET−

[
a1

(
θ̂+
T , T

+
)]
δT− + ET−

[
a2

(
θ̂+
T , T

+
)]

⇒ a2

(
θ̂−T , T

−
)

= ET−
[
a2

(
θ̂+
T , T

+
)]
, (133)

ET−
[
w1

(
θ̂+
T , T

+
)
δT+ + a3

(
θ̂+
T , T

+
)]

= w1

(
θ̂−T , T

−
)
δT− + a3

(
θ̂−T , T

−
)

⇒ a3

(
θ̂−T , T

−
)

= ET−
[
a3

(
θ̂+
T , T

+
)]
. (134)

Then we follow the procedures in the proof of Lemma 1 to compute the boundary condition

wj

(
θ̂−T , T

−
)

= E
[
E
[
wj

(
θ̂+
T , T

+
)
|ν, θ̂−T , T

−
]
|θ̂−T , T

−
]
, j = 1, 2; (135)

aj

(
θ̂−T , T

−
)

= E
[
E
[
aj

(
θ̂+
T , T

+
)
|ν, θ̂−T , T

−
]
|θ̂−T , T

−
]
j = 1, 2, 3, (136)

which correspond to Eqs.(123) and (124) in Lemma 5.

Step 3: from t → T−, we use the PDEs in Step 1 to solve the entire paths with the

boundary conditions wj

(
θ̂−T , T

−
)

and aj

(
θ̂−T , T

−
)

obtained from Step 2.

Implied variance reduction upon the announcement With the implied variance from

Lemma 4, we could calculate the implied variance reduction upon the announcement. Right

after the announcement, the IV is

IVT+,τ

(
θ̂+
T , T

+
)

= w2

(
θ̂+
T , T

+
)
− w1

(
θ̂+
T , T

+
)2

+ a2

(
θ̂+
T , T

+
)
− a1

(
θ̂+
T , T

+
)2

+2
[
a3

(
θ̂+
T , T

+
)
− w1

(
θ̂+
T , T

+
)
a1

(
θ̂+
T , T

+
)]

+ g
(
ω+
T , T

+
)
,(137)
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Right before the announcement, conditional on a given informativeness ν, the IV is

˜IV T−,τ

(
ν, θ̂−T , T

−
)

= E
[
IVT+,τ

(
θ̂+
T , T

+
)
|ν, θ̂−T , T

−
]

= w̃2

(
ν, θ̂−T , T

−
)
− w̃1

(
ν, θ̂−T , T

−
)2

+ ã2

(
ν, θ̂−T , T

−
)
− ã1

(
ν, θ̂−T , T

−
)2

+2
[
ã3(ν, θ̂−T , T

−)− w̃1(ν, θ̂−T , T
−)ã1(ν, θ̂−T , T

−)
]

+ g
(
ω−T , T

−) . (138)

Therefore, the implied variance reduction is defined as

∆IVT = ˜IV T−,τ

(
ν, θ̂−T , T

−
)
− IVT+,τ

(
θ̂+
T , T

+
)
, (139)

which corresponds to Eq.(22) in the main text. Note that the first term denotes the IV before

the announcement. It is captured by the conditional expectation of IV after the announce-

ment, conditional on information right before the announcement at T− and the distribution

of ν. Instead of using unconditional expectation before the announcement, we use condi-

tional expectation because it immediately reflects investors’ belief updating conditional on

the informativeness ν. The conditional expectation better measures information-induced

changes in implied variance.

7.2.4 Policy functions

In all of the computations below, we plot policy functions for different choices of ν ∈ [0.5, 1].

We assume that θ̂−T = θ̄ = λLθH+λHθL
λL+λH

. Given θ̂−T = θ̄ and given a ν, the distribution of θ̂+
T is

given by Eq.(15), or equivalently, Eqs.(49) to (52).

Announcement premium Define the return earned upon the announcement as RA =
p(θ̂+

T ,0)
p̃(ν,θ̂−T ,0)

. For a given ν, the announcement premium in the model is

E
[
RA
∣∣ ν, θ̂−T , T−]−1 =

E
[
p
(
θ̂+
T , T

+
)∣∣∣ ν, θ̂−T , T−]

p̃
(
ν, θ̂−T , T

−
) −1 =

hsHp
(
θ̂+
sH
, T+

)
+ hsLp

(
θ̂+
sL
, T+

)
p̃
(
ν, θ̂−T , T

−
) −1,

(140)

where p̃
(
ν, θ̂−T , T

−
)

is defined in Eq.(76).
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Implied variance reduction upon the announcement Because the dividend is con-

tinuous upon the announcement, the IV reduction can be computed as

∆IVT = Var
[

lnp
(
θ̂+
T , T

+
)
− lnp̃

(
ν, θ̂−T , T

)∣∣∣ ν, θ̂−T , T−] = Var
[

lnp
(
θ̂+
T , T

+
)∣∣∣ ν, θ̂−T , T−] (141)

= E
[

lnp
(
θ̂+
T , T

+
)2
∣∣∣∣ ν, θ̂−T , T−]− (E [ lnp

(
θ̂+
T , T

+
)∣∣∣ ν, θ̂−T , T−])2

=

[
hsH lnp

(
θ̂+
sH
, T+

)2

+ hsL lnp
(
θ̂+
sL
, T+

)2
]
−
[
hsH lnp

(
θ̂+
sH
, T+

)
+ hsL lnp

(
θ̂+
sL
, T+

)]2

.(142)

30-day expected variance after the announcement going forward We first compute

the 30-day implied variance after the announcement:

IVT+,T+∆

(
θ̂+
T , T

+
)

= Var
[

lnp
(
θ̂T+∆, T + ∆

)
+ lnDT+∆

∣∣∣ θ̂+
T , T

+
]
. (143)

where ∆ = 1
12

for monthly return. Note that IVT+,τ

(
θ̂+
T , T

+
)

is a random variable that

depends on the realization of θ̂+
T . This is the same as the implied variance defined in (137).

To compute expected value, we compute

E
[
IVT+,T+∆

(
θ̂+
T , T

+
)∣∣∣ ν, θ̂−T , T−] = hsHIVT+,T+∆

(
θ̂+
sH
, T+

)
+ hsLIVT+,T+∆

(
θ̂+
sL
, T+

)
.

(144)

Expected 30-day return after the announcement going forward Using the expres-

sion (90), the expected log return is given by:

ERt,T+∆

(
θ̂+
T , T

+
)

= E

 ln

p
(
θ̂T+∆, T + ∆

)
DT+∆ +

´ T+∆

T+ Dsds

p
(
θ̂+
T , T

+
)
DT+

∣∣∣∣∣∣ θ̂+
T , T

+


≈ E

 ln

p
(
θ̂T+∆, T + ∆

)
DT+∆ +DT+∆∆

p
(
θ̂+
T , T

+
)
DT+

∣∣∣∣∣∣ θ̂+
T , T

+


= E

[
ln
[
p
(
θ̂T+∆, T + ∆

)
+ ∆

]∣∣∣ θ̂+
T , T

+
]

−lnp
(
θ̂+
T , T

+
)

+ a1

(
θ̂+
T , T

+
)

+ g
(
ω+
T , T

+
)
, (145)

where ∆ = 1
12

for monthly return. The only unknown in the above equation is w3

(
θ̂T+∆, T + ∆

)
=

E
[

ln
[
p
(
θ̂T+∆, T + ∆

)
+ ∆

]∣∣∣ θ̂+
T , T

+
]
. We apply the same procedure in computing w1

(
θ̂+
T , T

+
)

with the only difference of the boundary condition w3

(
θ̂T+∆, T + ∆

)
= ln p

(
θ̂T+∆, T + ∆

)
+
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∆.

Then we compute the average expected return after announcement as

E
[
ERt,τ

(
θ̂+
T , T

+
)∣∣∣ ν, θ̂−T , T−] = hsHERt,τ

(
θ̂+
sH
, T+

)
+ hsLERt,τ

(
θ̂+
sL
, T+

)
. (146)

7.3 Data

For model calibration purposes, we use consumption growth, dividend growth, total market

excess returns, and the risk-free rate (all in real terms) for the period 1929-2019. More

specifically, we use BEA data on real per capita annual consumption growth of nondurables

and services. We also use annual dividends data from the CRSP value-weighted portfolios

of all stocks traded on the NYSE, AMEX, and NASDAQ. Stock market excess returns and

risk-free rates are from Kenneth French’s data library. All nominal quantities are deflated

using the annual CPI. To illustrate and compare the volatility of consumption growth and

stock market excess returns in Figure 1, we switch to a monthly frequency for the period

1960.02-2019.12.

The dates for FOMC meetings are from the website of the Board of Governors of the

Federal Reserve System. Following Savor and Wilson (2014), we only include the pre-

scheduled FOMC meetings during our data period (1994.09-2019.12). About eight regularly

pre-scheduled FOMC meetings occur each year. When the meeting lasts for two days, we

consider the second day the FOMC announcement day. In total, our data period contains

203 FOMC announcement days.

To determine the ex post measure of informativeness, we use the difference between the

squared option-implied volatility index, V IX2 before and after announcement days. We

obtain data on V IX from the Chicago Board Options Exchange (CBOE) for the period

1990-2019. The CBOE’s V IX is a model-free measure of the implied variance computed

from the S&P 500 Index option prices.

To determine the ex ante measure of informativeness, we construct the informativeness

measure by exploring the S&P 500 Index option panels before the FOMC meetings. We use

equity-options data from OptionMetrics for the period January 1, 1996, to December 31,

2019. We exclude options with missing or negative bid-ask spreads, zero bids, or zero open

interest. We restrict the sample to out-of-the-money (OTM) options to estimate the model-

free implied variance (Bakshi, Kapadia, and Madan (2003)). To ensure that our results are

not driven by misleading prices, we follow Conrad, Dittmar, and Ghysels (2013) and exclude

options that do not satisfy the standard option price bounds. We further remove options

with maturities less than 7 days or more than 180 days.

We define IVt,τ as the time-t price of the τ -maturity quadratic payoff on the underlying
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stock, IVt,τ ≡ e−rf τEQ
t

[
r2
t,t+τ

]
, where rf is the continuously compounded interest rate and

rt,t+τ is the logarithm return over time τ periods of time. Bakshi, Kapadia, and Madan

(2003) show that IVt,τ can be recovered from the prices of OTM call and put options as

follows:

IVt,τ =

ˆ ∞
St

1− ln (K/St)

K2/2
Ct (τ ;K) dK +

ˆ St

0

1 + ln (St/K)

K2/2
Pt (τ ;K) dK, (147)

where St is the price of the underlying stock and Ct (τ ;K) and Pt (τ ;K) are call and put

prices with maturity τ and strike K, respectively.

We compute IVt,τ on each day and each day to maturity. In theory, computing IVt,τ

requires a continuum of strike prices, whereas in practice, we only observe a discrete and

finite set of them. Following Jiang and Tian (2005) and others, we discretize the integrals

in Eq.(147) by setting up a total of 1,001 grid points in the moneyness (K/St) ranging from

1/3 to 3. First, we use cubic splines to interpolate the implied volatility inside the available

moneyness range. Second, we extrapolate the implied volatility using the boundary values to

fill in the rest of the grid points. Third, we calculate option prices from these 1,001 implied

volatilities using the formula of Scholes and Black (1973). Lastly, we compute IVt,τ if the

number of OTM options is more than four (e.g., Conrad, Dittmar, and Ghysels (2013) and

others). This process yields a daily panel of the risk-neutral expected quadratic payoff with

various maturities.

In the empirical section, we use the S&P 500 Index return at the daily frequency to

conduct return predictability regressions. We also use 5-min intra-daily data on the S&P

500 Index return to compute the realized variance for one day, two days, ..., one month, two

months,..., several months. Over a small interval dt, where dividend is negligible, we have

rt,t+dt = lnRt+dt − lnRt. (148)

To conserve space, we illustrate the construction method for the daily logarithm return

rt,t+∆ and the daily realized variance RVt,t,t+∆. Both are defined by aggregating rt,t+dt and

r2
t,t+dt, respectively:

rt,t+∆ =

∆/dt∑
j=1

rt+(j−1)dt,t+jdt + rt,O, RVt,t+∆ (dt) =

∆/dt∑
j=1

r2
t+(j−1)dt,t+jdt + r2

t,O, (149)

where ∆/dt is the number of high-frequency returns in a day (e.g., dt = 5 for 5-min intra-

daily returns), rt,O denotes the overnight return between the previous day at close and day t

at open, and rt+(j−1)dt,t+jdt denotes the jth high-frequency return of the daily period during

59



day t.

7.4 Regime Switching Model

In this section, we apply a regime switching model to the idiosyncratic shock of the dividend

growth rate in Eq. (16). To measure the idiosyncratic shock εt, we regress the dividend

growth rate dt on the consumption growth rate ct. The residuals from this regression capture

the innovations in the dividend growth rate that are uncorrelated with the consumption

growth rate:

dt = α + βct + εt.

Next, we assume that the idiosyncratic shock εt follows a two-state Markov switching

model. For each state, εt depends on an intercept µ = [µH , µL] and a volatility ω = [ωH , ωL]

as follows:
εt = µH + ωHet high volatility state

εt = µL + ωLet low volatility state
,

where ωH > ωL and et ∼ iid N (0, 1). The process governing the dynamics of the underlying

regime is specified as a homogeneous first-order Markov chain,[
1− κH κH

κL 1− κL

]
,

where κ = [κH , κL] and κH(κL) denotes the probability of transition from a high (low) to

low (high) state of dividend idiosyncratic volatility.

Finally, we take this model to the data for consumption growth and dividend growth

for the annual sample period 1929-2019. The estimated intercept µ = [0.006,−0.004], es-

timated volatility ω = [0.1378, 0.0418], and the estimated transition probability is κ =

[0.0603, 0.0246].
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Online Appendix

In this Online Appendix, we provide a robustness check for the empirical analysis and we

describe the numerical solutions we use to solve for our dynamic model.

Robustness check In the main text Table 7, we show the regression coefficients on the

measure of the informativeness of the announcement are significantly negative. Here we test

whether our predictability results in Table 7 still hold if we also include the implied variance

on the announcement day, IVt, that is known to predict the realized variance. Specifically,

we consider the alternative regressions:

RVt,t+h = α + β1∆IVt + β2RVt−2,t−1 + β3IVt + εt,t+h, (150)

for the realized variance predictability and

Rt,t+h − rf = α + β1∆IVt + β2RVt−2,t−1 + β3IVt + εt,t+h, (151)

for the realized excess return predictability.

Table 12: Model-Implied Return and Variance Predictability by IV Reduction

Number of days 1 2 3 4 5 30 60

RVt,t+h Data −0.07 −0.04 −0.02 −0.02 −0.02 −0.03 −0.01

(−4.21) (−3.52) (−1.53) (−1.81) (−1.93) (−3.32) (−0.98)

R2 (%) 81.39 75.86 61.70 64.48 67.30 52.38 41.66

Rt,t+h − rf Data −2.00 −2.17 −0.96 −1.21 −0.68 −0.26 −0.23

(−0.77) (−1.57) (−1.44) (−1.80) (−1.52) (−1.61) (−2.65)

R2 (%) 5.23 3.96 3.27 7.87 1.75 1.52 1.90

This table presents the results of the realized variance predictability regression (150) and the excess return
predictability regression (151) in the data and the model. The columns 3-9 represent the horizon of returns
and variances on the left-hand side of (150) and (151), respectively, with h = 1, 2, 3, 4, 5, 30, 60 calendar days.
The data include the period 1994.09-2019.12. Returns and realized variances are in daily basis points. Implied
variance reductions are in monthly percentage squared units. Newey-West t-statistics are in parentheses.

Table 12 shows that more informative announcements are associated with a lower realized

variance and lower expected return after the announcements going forwards. Therefore, our

predictability results remain true if we also include the implied variance on the announcement

day, IVt.
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Now we describe the numerical solutions we used to solve for our dynamic model. We

first describe how we solve the daily returns, realized variance using the simulated sample

paths. Then we demonstrate the finite difference method to solve for the value function,

price-to-dividend ratio, as well as the implied variance.

Computing returns The return earned from t to t+ ∆ is defined as

Rt,t+∆ =
p
(
θ̂t+∆, t+ ∆

)
Dt+∆ +

´ t+∆

t
Dsds

p
(
θ̂t, t
)
Dt

. (152)

Numerically, ∆ = 1/360 for daily return, we approximate

Rt,t+∆ =
p
(
θ̂t+∆, t+ ∆

)
Dt+∆

Dt
+
´ t+∆

t
Ds
Dt
ds

p
(
θ̂t, t
) =

p
(
θ̂t+∆, t+ ∆

)(
1 + dDt

Dt

)
+
´ t+∆

t

(
1 + dDs−t

Dt

)
ds

p
(
θ̂t, t
)

=
p
(
θ̂t+∆, t+ ∆

)(
1 + dDt

Dt

)
+
(

1 + 1 + dDt
Dt

)
∆
2

p
(
θ̂t, t
) =

p
(
θ̂t+∆, t+ ∆

)(
1 + dDt

Dt

)
+
(

∆ + dDt
Dt

∆
2

)
p
(
θ̂t, t
) .(153)

Computing realized variance Over a small interval dt, dividend is negligible, we have

rt,t+dt = lnRt+dt − lnRt, (154)

where the law of motion of Rt in the interior follows Lemma 3. In the data, we compute

RVt,t+∆ (dt) =

∆/dt∑
j=1

r2
t+(j−1)dt,t+jdt. (155)

Over a 5-minute interval subtracting a mean is quantitatively irrelevant. It can be shown as

the dt→ 0, the above quantitative result converges to the quadratic variation of the return

process:

lim
∆→0

RVt,t+∆ (dt) =

ˆ t+dt

t

(
σ2
R,s + ω2

s

)
ds+

∑
t≤s≤t+∆

I{s}

[
lnp
(
θ̂+
s , s

+
)
− lnp

(
θ̂−s , s

−
)]2

,(156)
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where I{t} is the announcement indicator, I = 1 if (t mod T = 0). Therefore, numerically,

over a day, that is, ∆ = 1
360

, we simply compute

RVt,t+∆ ≈ 1

2

[
σ2
R

(
θ̂t, t
)

+ σ2
R

(
θ̂t+∆, t+ ∆

)
+ σ2

i

(
θ̂t, t
)

+ σ2
i

(
θ̂t+∆, t+ ∆

)]
∆

+
∑

t≤s≤t+∆

I{s}

[
lnp
(
θ̂+
s , s

+
)
− lnp

(
θ̂−s , s

−
)]2

. (157)

Calculating the risk-free rate Take the expression of the risk-free rate in (68), the

cumulative risk-free return from t to t+ ∆ is:

e
´ t+∆
t r(θ̂s,s)ds ≈ exp


∆/dt∑
j=1

r
(
θ̂t+(j−1)dt, t+ (j − 1) dt

)
dt

 . (158)

This way we can accumulate daily risk-free return to compute annual risk-free rate for ∆ = 1.

Solve for H function We use finite difference method to solve for the value function.

The HJB equation in Eq.(62) can be rewritten as:

(1− γ)

(
ρ

1− 1
ψ

− θ̂t +
1

2
γσ2

Y

)
H = Ht +Hθ [µθ,t + (1− γ)σθ,t] +

1

2
Hθθ

σ2
θ,t

σ2
Y

+
ρ (1− γ)

1− 1
ψ

H
1
ψ
−γ

1−γ .

Use finite difference method and approximate the functions H
(
θ̂t, t
)

at I discrete points

in the space dimensions, θ̂i, i = 1, 2, ..., I. Denote Hn
i = H

(
θ̂i, t

n
)

, where time dimension

n = 0, 1, 2, ..., N . Denote

βi = (1− γ)

(
ρ

1− 1
ψ

− θ̂i +
1

2
γσ2

Y

)
, (159)

un+1
i =

ρ (1− γ)

1− 1
ψ

(
Hn+1
i

) 1
ψ
−γ

1−γ . (160)

Use implicit method to update the value function,

βiH
n
i =

Hn+1
i −Hn

i

∆t
+ un+1

i +
1

2
∂θθH

n
i

σ2
θ,i

σ2
Y

+∂θ,FH
n
i [µθ,i + (1− γ)σθ,i]

+ + ∂θ,BH
n
i [µθ,i + (1− γ)σθ,i]

− . (161)
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Use upwind scheme to approximate the derivatives ∂θH
n
i and ∂θθH

n
i ,

βiH
n
i =

Hn+1
i −Hn

i

∆t
+ un+1

i +
1

2

Hn
i+1 − 2Hn

i +Hn
i−1(

∆θ̂
)2

σ2
θ,i

σ2
Y

+
Hn
i+1 −Hn

i

∆θ̂
[µθ,i + (1− γ)σθ,i]

+ +
Hn
i −Hn

i−1

∆θ̂
[µθ,i + (1− γ)σθ,i]

− . (162)

Collecting terms and rewrite HJB equation,

βiH
n
i =

Hn+1
i −Hn

i

∆t
+ un+1

i +Hn
i−1xi +Hn

i yi +Hn
i+1zi (163)

where

xi = − [µθ,i + (1− γ)σθ,i]
−

∆θ̂
+

1

2
(

∆θ̂
)2

σ2
θ,i

σ2
Y

(164)

yi = − [µθ,i + (1− γ)σθ,i]
+

∆θ̂
+

[µθ,i + (1− γ)σθ,i]
−

∆θ̂
− 1(

∆θ̂
)2

σ2
θ,i

σ2
Y

(165)

zi =
[µθ,i + (1− γ)σθ,i]

+

∆θ̂
+

1

2
(

∆θ̂
)2

σ2
θ,i

σ2
Y

(166)

Rewrite in the matrix notation,

βHn = un+1 + An+1Hn +
Hn+1 −Hn

∆t
, (167)

where

An+1 =



y1 z1 0 · · · 0

x2 y2 z2 0
...

0 x3 y3 z3
...

...
. . . . . . . . . . . .

0 · · · 0 xI yI


, Hn =



H1

H2

H3

...

HI


, β =



β1 0 · · ·
0 β2

β3

. . . 0
... βI


, un+1 =



u1

u2

u3

...

uI


.

The system can be written as

Bn+1Hn = bn+1, Bn+1 =

(
1

∆t
+ β

)
−An+1, bn+1 = un+1 +

1

∆t
Hn+1. (168)
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with the boundary condition

H
(
θ̂−, T

)
= E

[
H̃
(
ν, θ̂−, T

)
|θ̂−, T

]
; H̃

(
ν, θ̂−, T

)
= E

[
H
(
θ̂+, 0

)
| ν, θ̂−, T

]
,

where from (64) and (63),

H̃
(
ν, θ̂−, T

)
= hsHH

(
θ̂+
sH
, 0
)

+ hsLH
(
θ̂+
sL
, 0
)

(169)

=

[
θ̂− − θL
θH − θL

ν +
θH − θ̂−

θH − θL
(1− ν)

]
H

θL +

(
θ̂− − θL

)
ν (θH − θL)(

θ̂− − θL
)
ν +

(
θH − θ̂−

)
(1− ν)

, 0


+

[
θ̂− − θL
θH − θL

(1− ν) +
θH − θ̂−

θH − θL
ν

]
H

θL +

(
θ̂− − θL

)
(1− ν) (θH − θL)(

θ̂− − θL
)

(1− ν) +
(
θH − θ̂−

)
ν
, 0

 .

H
(
θ̂−, T

)
= E

[
H̃
(
ν, θ̂−, T

)
|θ̂−, T

]
=

m∑
j=1

qjH̃
(
νj, θ̂

−, T
)
. (170)

Solve for price-to-dividend ratio Similarly, the PDE for p
(
θ̂t, t
)

is defined in Lemma

2. Use finite difference method and approximate the functions p
(
θ̂t, t
)

at I discrete points

in the space dimensions, θ̂i, i = 1, 2, ..., I. Denote pni = p
(
θ̂i, t

n
)

, where time dimension

n = 0, 1, 2, ..., N . Denote

$n+1
i = (ξ − 1) θ̄ + ρ− 1

2
γσ2

Y (
1

ψ
+ 1) + γσ2

Y − (ξ − 1

ψ
)θ̂i +

( 1
ψ
− γ)(1− 1

ψ
)

2(1− γ)2

(
Hn+1
θ,i

Hn+1
i

)2
σ2
θ,i

σ2
Y

(171)

%n+1
i = µθ,i + (1− γ)σθ,i +

1
ψ
− γ

1− γ
Hn+1
θ,i

Hn+1
i

σ2
θ,i

σ2
Y

. (172)

Use implicit method to update the price-to-dividend ratio (74),

$n+1
i pni =

pn+1
i − pni

∆t
+ 1 +

1

2
∂θθp

n
i

σ2
θ,i

σ2
Y

+ ∂θ,Fp
n
i

(
%n+1
i

)+
+ ∂θ,Bp

n
i

(
%n+1
i

)−
. (173)

Use upwind scheme to approximate the derivatives ∂θp
n
i,j and ∂θθp

n
i,j,

$n+1
i pni =

pn+1
i − pni

∆t
+ 1 +

1

2

pni+1 − 2pni + pni−1(
∆θ̂
)2

σ2
θ,i

σ2
Y

+
pni+1 − pni

∆θ̂

(
%n+1
i

)+
+
pni − pni−1

∆θ̂

(
%n+1
i

)−
. (174)
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Collecting terms and rewrite the PDE,

$n+1
i pni =

pn+1
i − pni

∆t
+ 1 + pni−1x

n+1
i + pni y

n+1
i + pni+1z

n+1
i (175)

where

xn+1
i = −

(
%n+1
i

)−
∆θ̂

+
1

2
(

∆θ̂
)2

σ2
θ,i

σ2
Y

(176)

yn+1
i = −

(
%n+1
i

)+

∆θ̂
+

(
%n+1
i

)−
∆θ̂

− 1(
∆θ̂
)2

σ2
θ,i

σ2
Y

(177)

zn+1
i =

(
%n+1
i

)+

∆θ̂
+

1

2
(

∆θ̂
)2

σ2
θ,i

σ2
Y

(178)

Rewrite in the matrix notation,

$n+1pn = 1 + An+1pn +
pn+1 − pn

∆t
, (179)

The system can be written as

Bn+1pn = bn+1, Bn+1 =

(
1

∆t
+$n+1

)
−An+1, bn+1 = 1 +

1

∆t
pn+1. (180)

where

pn =



p1

p2

p3

...

pI


, $n+1 =



$1 0 · · ·
0 $2

$3

. . . 0
... $I


.
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At the boundary,

p̃
(
ν, θ̂−T , T

)
=

hsHH
(
θ̂+
sH
, 0
) 1
ψ
−γ

1−γ
p
(
θ̂+
sH
, 0
)

+ hsLH
(
θ̂+
sL
, 0
) 1
ψ
−γ

1−γ
p
(
θ̂+
sL
, 0
)

[
hsHH

(
θ̂+
sH
, 0
)

+ hsLH
(
θ̂+
sL
, 0
)] 1

ψ
−γ

1−γ

(181)

p
(
θ̂−, T

)
= =

∑m
j=1 qjH̃

(
νj, θ̂

−, T
) 1
ψ
−γ

1−γ
p̃
(
νj, θ̂

−, T
)

[∑m
j=1 qjH̃

(
νj, θ̂−, T

)] 1
ψ
−γ

1−γ

. (182)

Solve for implied variance The PDEs are in general as the form of

0 =
wn+1
i − wni

∆t
+ un+1

i +
1

2

wni+1 − 2wni + wni−1(
∆θ̂
)2

σ2
θ,i

σ2
Y

+
wni+1 − wni

∆θ̂
µ+
θ,i +

wni,j − wni−1

∆θ̂
µ−θ,i. (183)

where un+1
i = 0 for w1 = Et

[
ln p

(
θ̂τ , τ

)]
and w2 = Et

[
ln2 p

(
θ̂τ , τ

)]
, whereas for a1, a0 and

a3,

un+1
i = ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y (184)

un+1
i = 2an+1

1,i

(
ξθ̂i + θ̄ (1− ξ)− 1

2
σ2
Y

)
+ 2

an+1
1,i+1 − an+1

1,i

∆θ̂
σθ,t + σ2

Y (185)

un+1
i = wn+1

1,i

(
ξθ̂t + θ̄ (1− ξ)− 1

2
σ2
Y

)
+
wn+1

1,i+1 − wn+1
1,i

∆θ̂
σθ,t. (186)

Therefore, rewrite the PDE as

0 =
wn+1
i − wni

∆t
+ un+1

i + wni−1xi + wni yi + wni+1zi, (187)

where

xi = −
µ−θ,i

∆θ̂
+

1

2
(

∆θ̂
)2

σ2
θ,i

σ2
Y

(188)

yi = −
µ+
θ,i

∆θ̂
+
µ−θ,i

∆θ̂
− 1(

∆θ̂
)2

σ2
θ,i

σ2
Y

(189)

zi =
µ+
θ,i

∆θ̂
+

1

2
(

∆θ̂
)2

σ2
θ,i

σ2
Y

. (190)
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Rewrite in the matrix notation,

0 = un+1 + An+1wn +
wn+1 − wn

∆t
. (191)

The system can be written as

Bn+1wn = bn+1, Bn+1 =
1

∆t
I−An+1, bn+1 = un+1 +

1

∆t
wn+1. (192)

with the boundary condition for Et
[
ln p

(
θ̂τ , τ

)]
is:

w1

(
θ̂, τ
)

= ln p
(
θ̂τ , τ

)
, (193)

and boundary condition for Et
[
ln2 p

(
θ̂τ , τ

)]
is:

w2

(
θ̂, τ
)

= ln2 p
(
θ̂τ , τ

)
, (194)

and the rest boundary conditions

a1

(
θ̂τ , τ

)
= 0, a0

(
θ̂τ , τ

)
= 0 and a3

(
θ̂τ , τ

)
= 0. (195)
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