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1 Introduction

In this paper, we develop a revealed preference theory that allows us to use asset market based

evidence to detect investors’ preference for the timing of resolution of uncertainty. Our main

theorem states that the representative agent prefers early (late) resolution of uncertainty if

and only if claims to market volatility, which can be constructed from index options, require a

positive (negative) premium during the period where the informativeness of macroeconomic

announcements is resolved. Empirically, using evidence on the implied volatility of S&P

500 index options around FOMC announcements, we find supportive evidence for investors’

preference for early resolution of uncertainty.

The notion of preference for the timing of resolution of uncertainty is formally developed

in Kreps and Porteus [32]. Models with preference for early resolution (PER) of uncertainty,

in particular, the recursive preference with constant elasticity, has been widely applied in the

asset pricing literature, for example, Epstein and Zin [17, 19], Weil [48], Bansal and Yaron [5],

and Hansen, Heaton, and Li [23], among others. However, in the constant elasticity recursive

utility model, and in most applied asset pricing models, PER is typically intertwined with

other aspects of preferences, such as risk aversion and intertemporal elasticity of substitution.

As a result, the exact role for PER in asset pricing is not well understood. In addition,

the asset pricing implications of models with PER are typically similar to a broad class of

preferences that satisfy generalized risk sensitivity (Ai and Bansal [2]). The purpose of this

paper is to provide an equivalent characterization of PER in terms of asset prices and use

asset market data to identify investors’ preference for the timing of resolution of uncertainty.

Preferences are often the starting point of macroeconomic analysis and asset pricing

studies. Modern economic theory implies that asset prices are evaluated using marginal

utilities and therefore the empirical evidence from asset markets can potentially provide

valuable guidance for the choice of preferences in macroeconomic analysis in general, and

in policy studies in particular. However, results that allow researchers to use relevant asset

market based evidence to identify exact properties of preferences are rare. In this paper, we

provide a general result that allows researchers to build such links and apply our result

to establish a necessary and sufficient condition for PER in terms of asset prices. We

show that the representative investor prefers early resolution of uncertainty if and only if

claims to market volatility requires a positive premium during the period of resolution of

informativeness, that is, a period in which the uncertainty about the informativeness of

macroeconomic announcements is resolved. We provide empirical evidence for investors’

preference for timing of resolution of uncertainty based on our theoretical insights and found
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evidence supportive of PER.

Our main theorem builds on the notion of generalized risk sensitivity (GRS) developed

in Ai and Bansal [2]. Ai and Bansal [2] define GRS to be the class of all preferences

where marginal utility of consumption decreases with respect to continuation utility. The

Theorem of Generalized Risk Sensitivity in Ai and Bansal [2] demonstrates that a non-

negative announcement premium for all assets that are comonotone with continuation utility

is equivalent to GRS. However, GRS is a very general condition that includes many examples

of non-expected utility as special cases, for example, the Gilboa and Schmeidler [20] maxmin

expected utility which is indifferent between the timing of resolution of uncertainty, and the

Kreps and Porteus [32] utility that prefers early resolution of uncertainty. The announcement

premium itself does not allow us to identify PER.

The condition of GRS, however, implies that ranking of marginal utility of consumption

is the inverse ranking of the level of continuation utility and allows us to design a thought

experiment to identify PER from risk premiums. PER implies that the utility level of

the representative agent is higher when she expects a more informative macroeconomic

announcement and lower when she expects a non-informative announcement. The key

insight of our paper is that under GRS, PER is equivalent to a negative co-monotonicity

between marginal utility and the expected informativeness of the upcoming macroeconomic

announcement. Because more informative macroeconomic announcements are associated

with higher realized stock market volatility upon announcements, the risk premium on claims

to market volatility can be used to detect the ranking of marginal utility with respect to the

informativeness of macroeconomic announcements, and therefore, PER. The asset pricing

test implied by our theorem is easily implementable as claims to market volatility can be

replicated using a portfolio of options.

Based on the above insight, we design an empirical exercise to identify PER from asset

market data. Our empirical exercise contains two steps. The first step is to identify a

period of resolution of the informativeness of macroeconomic announcements. Empirically,

we use the predictability of the informativeness of FOMC announcements by the term

structure of implied volatility ahead of announcements to identify the period of resolution of

informativeness of FOMC announcements. The second step is to estimate the risk premium

for claims to market volatility associated with FOMC announcements to identify PER. Based

on standard results from option pricing, for example, Carr and Madan [11], Britten-Jones

and Neuberger [9], Bakshi, Kapadia, and Madan [3], and Jiang and Tian [27], we construct

a replicating portfolio for market volatility and found evidence of a positive premium, which

is consistent with preference for early resolution of uncertainty.
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Related literature Our theoretical work builds on the literature that studies decision

making under non-expected utility. We adopt the general representation of dynamic

preferences of Strzalecki [46]. The generality of our approach is important given that our

purpose is to identify the property of preferences from asset market data and given that

PER if often intertwined with other aspects of preferences in the popular recursive utility

formulation used in applied asset pricing work.1 In particular, the general setup allows

us to distinguish different decision theoretic concepts such as generalized risk sensitivity,

uncertainty aversion, and preference for early resolution of uncertainty.

Our framework includes most of the non-expected utility models in the literature as

special cases, such as the maxmin expected utility of Gilboa and Schmeidler [20], the dynamic

version of which is studied by Chen and Epstein [12] and Epstein and Schneider [15]; the

recursive preference of Kreps and Porteus [32] and Epstein and Zin [17]; the robust control

preference of Hansen and Sargent [25, 26] and the related multiplier preference of Strzalecki

[45]; the variational ambiguity-averse preference of Maccheroni, Marinacci, and Rustichini

[35, 36]; the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji [30, 31]; and the

disappointment aversion preference of Gul [22].

Earlier work on the reveal preference approach for expected utility includes Green and

Srivastava [21] and Epstein [18]. More recently, Kubler, Selden, and Wei [33] and Echenique

and Saito [13] developed asset market based characterizations of the expected utility model.

None of the above papers focus on GRS and aim to connect their result to asset market data

as we do.

Our paper is also related to several papers that study PER in asset pricing models. Ai

[1] demonstrates that in a production economy with long-run risk, most of the welfare gain

from knowing more information about future is due to PER, not due to the fact that agents

can use the information to improve intertemporal allocation of resources. Epstein, Farhi,

and Strzalecki [14] show that in the calibrated long-run risk model, the representative agent

is willing to pay more than 30% of her permanent income to resolve all future uncertainty

and they argue that this magnitude is implausibly high by introspection. They also state

that “We are not aware of any market-based or experimental evidence that might help with

a quantitative assessment”. Kadan and Manela [29] estimate the value of information in a

model with recursive utility. Schlag, Thimme, and Weber [43] find supporting evidence for

PER using options market data. Both the above papers assume the CES form of utility

function and do not distinguish PER from GRS, or uncertainty aversion.

1For example, in the constant elasticity case, as shown in Ai and Bansal [2], PER is equivalent to risk
aversion being higher than IES, which is also equivalent to GRS.
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A vast literature applies the above non-expected utility models to the study of asset

prices and the equity premium. We refer the readers to Epstein and Schneider [16] for

a review of asset pricing studies with the maxmin expected utility model, Ju and Miao

[28] for an application of the smooth ambiguity-averse preference, Hansen and Sargent [24]

for the robust control preference, Routledge and Zin [41] for an asset pricing model with

disappointment aversion, and Bansal and Yaron [5], Bansal [4] and Hansen, Heaton, and Li

[23] for the long-run risk model that builds on recursive preferences. Borovicka and Stachurski

[8] provide necessary and sufficient conditions for the existence and uniqueness of recursive

preferences with constant elasticities. Bhamara and Uppal [6] study the role of risk aversion

and intertemporal elasticity of substitution in portfolio choice problems. Skiadas [44] provides

an excellent textbook treatment of recursive preferences based asset pricing theory.

Our empirical results are related to the previous research on stock market returns on

macroeconomic announcement days. The previous literature documents that stock market

returns and Sharpe ratios are significantly higher on days with macroeconomic news releases

in the United States (Savor and Wilson [42]) and internationally (Brusa, Savor, and Wilson

[10]). Lucca and Moench [34] find similar patterns and document a pre-FOMC announcement

drift. Mueller, Tahbaz-Salehi, and Vedolin [38] document an FOMC announcement premium

on the foreign exchange market and attribute it to compensation to financially constrained

intermediaries.

The rest of the paper is organized as follows. We begin with a simple example in Section

2 to illustrate the concept of preference for early resolution of uncertainty and generalized

risk sensitivity. In Section 3, we develop a thought experiment that allows us to identify

PER from risk premiums of claim to market volatility. Building on these theoretical insights,

in Section 4, we develop an identification strategy and present evidence for PER based on

option prices on S&P 500 index options. Section 5 concludes.

2 PER and GRS

In this section, we illustrate the concepts of preference for early resolution of uncertainty and

generalized risk sensitivity in a simple three-period model. We also provide simple examples

for both properties of preferences. To set up some notation, we consider an economy with

three periods, 0, 1, 2. Let (S,Σ, µ) be a finite probability space with equal probabilities.

We denote S = {1, 2, · · ·n}, where µ (s) = 1
n
for s = 1, 2, · · · . Let (Ω,F ,µ) = (S,Σ, µ)3 be

the product space, and let L (Ω,F ,µ) be the set of real-valued random variables. A typical
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realization of states is denoted as (s0, s1, s2), where for t = 0, 1, 2, st is the realization of the

state in period t. A consumption plan is denoted as C = [c0 (s0) , c1 (s0, s1) , c2 (s0, s1, s2)],

where consumption in each period is a measurable function of history: ct : (S,Σ)
t → C, for

t = 0, 1, 2. Here, the feasible set of consumption, C is a subset of the positive orthant of the

real line R. To simplify notation, we use the convention that st = {s0, s1, · · · st} denotes the

history of s up to time t.

As in Ai and Bansal [2], we consider conditional preferences induced by a triple {u, β, I},
where u : C → R maps consumption into utility units, β is the discount rate, and

I : L (Ω,F ,µ) → R is a certainty equivalent functional that maps continuation utility,

which is a random variable, into the real line. In our setup, date-t utility is constructed

recursively using

Vt (C)
(
st
)
= u

(
ct
(
st
))

+ βI
[
Vt+1 (C)

(
st+1

)]
, (1)

for t = 0, 1, where the terminal utility on date 2 is given by V2 (C) = u (c2). Here, we

use the notation Vt (C) (st) for the date-t utility of the consumption plan C at hostory st.2

To simplify notation, we will suppress C and simply write Vt (s
t) whenever the underlying

consumption plan is clear from the context.

2.1 Preference for early resolution of uncertainty

To provide a definition of preference for early resolution of uncertainty, we restrict our

attention to a simple class of consumption plans. We consider two consumption plans,

CE = [c̄0, c̄1, c2 (s1)] and CL = [c̄0, c̄1, c2 (s2)], where both c̄0and c̄1 are constants, and

c2 : (S,Σ, µ) → C is a random variable that depends only on s but not its history. Note

that both plans, CE and CL have the same unconditional distribution, because s1 and s2

do. However, under CE, which represents early resolution, period-2 consumption, c2 (s1), is

known in period 1, because s1 is realized in period 1. By contrast, under CL, which represents

late resolution, the uncertainty in s2 only realizes in period 2.

A dynamic preference represented by {u, β, I} is said to satisfy preference for early

resolution of uncertainty if V0 (c̄0, c̄1, c2 (s1)) ≥ V0 (c̄0, c̄1, c2 (s2)) for all c̄0, c̄1 and all

measurable functions c2 (s). Our concept of PER is the same as Kreps and Porteus [32].

Figure 1 provides a graphic illustration of CE (top panel) and CL (bottom panel). The squares

represent the consumption in each period, and the circles represent the agent’s information

2Strictly speaking, to emphasize the dependence of It on period-t information, we should allow It :
L (Ω,F ,µ) → R to be a family of certainty equivalent functionals indexed by t. For each t, It maps

(S,Σ)
t+2

measurable functions into (S,Σ)
t+1

measurable functions.
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node. The uncertainty is resolved early in period 1 in the top panel under consumption plan

CE, where the agent is able to distinguish nodes 1H and 1L. The bottom panel illustrates

late resolution of uncertainty under consumption plan CL, where the value of c2 (s2) is known

only in period 2.

Figure 1: Early and late resolution of uncertainty
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Figure 1 illustrates the notion of PER. Both panels have identical distributions of consumption. The top
panel is a situation with early resolution, as the uncertainty about C1 is resolved one period earlier, in period
0. The bottom panel corresponds to the case of late resolution, because C1 is not revealed to the consumption
until period 1.

Recursion (1) allows us to compute the utility associated with CE and CL. Under CE,

there is no uncertainty in period 1 because period-2 consumption is perfectly predictable.

Therefore, period-1 utility is computed as: V1

(
CE

)
(s1) = u (c̄1) + βu (c2 (s1)). The time 0

utility is given by:

V0

(
CE

)
= u (c̄0) + βI [u (c̄1) + βu (c2 (s1))] . (2)

In the case of late resolution (bottom panel), because uncertainty is resolved in period

2, we need first to aggregate over uncertain states of the world when computing period 1

utility: V1

(
CL

)
= u (c̄1) + βI [u (c2 (s2))], and simply aggregate over time in period 0 to get:

V0

(
CL

)
= u (c̄0) + β {u (c̄1) + βI [u (c2 (s2))]} . (3)

Comparing equations (2) and (3), it is clear that PER can be formulated as the following
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property of the certainty equivalent functional:

I [u (c̄1) + βu (c2 (s1))] ≥ u (c̄1) + βI [u (c2 (s2))] . (4)

Below we provide a simple example of recursive preference that may satisfy preference for

early or late resolution of uncertainty depending on the value of the discount factor.

Examples In this section, we compute the utility level at node 0E for the case of early

resolution of uncertainty and that at node 0L for the case of late resolution of uncertainty for

several examples of preferences. Our first example is the expected utility, where I (u) = E [u].

Expected utility has indifference towards the resolution of uncertainty. The utility associated

with early resolution

V0 (0E) = u (c̄0) + βE [u (c̄1) + βu (c2 (s1))] = u (c̄0) + βu (c̄1) + β2E [u (c2 (s1))] ,

and that associated late resolution,

V0 (0L) = u (c̄0) + β {u (c̄1) + βI [u (c2 (s2))]} = u (c̄0) + βu (c̄1) + β2E [u (c2 (s2))] .

are the same.

Our second example is the multiple-prior expected utility of Gilboa and Schmeidler [20]

and Chen and Epstein [12]. We assume that I (u) = minϕ∈ΦE [ϕu], where Φ is a set of

probability densities. We assume that the I operator defined by Φ is distribution invariant.

That is, for any uand v, if u and v have the same probability distribution under P , then

minϕ∈Φ E [ϕu] = minϕ∈Φ E [ϕv]. The utility for early resolution at node 0E is:

V0 (0E) = u (c̄0)+βmin
ϕ∈Φ

E [ϕ {u (c̄1) + βu (c2 (s1))}] = u (c̄0)+βu (c̄1)+β2Eϕ∈Φ [ϕu (c2 (s1))] .

The utility associated with later resolution of uncertainty at node 0L can be computed as

V0 (0L) = u (c̄0) + β

{
u (c̄1) + βmin

ϕ∈Φ
E [u (c2 (s2))]

}
= V0 (0E) ,

where the last equality holds because c2 (s1) and c2 (s2) have the same distribution.

Our third example is the multiplier robust control preference of Hansen and Sargent [24].

Here we assume that u : C → R is strictly increasing and I (u) = −θ lnE
[
e−

1
θ
u
]
for some

parameter θ > 0. In the appendix of the paper, we show that this choice of the aggregator
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has preference for early (late) resolution if β < (>) 1, and is indifferent towards the timing

of resolution of uncertainty if β = 1. To simplify computation, we assume that u (c) = ln (c)

and ln c2 (s) ∼ N (µ, σ2). To calculate the utility associated with early resolution,

V0 (0E) = ln c̄0 + βI [ln c̄1 + β ln c2 (s1)] (5)

= ln c̄0 − βθ lnE
[
e−

1
θ
[ln c̄1+β ln c2(s1)]

]
(6)

= ln c̄0 + β ln c̄1 + β2µ− 1

2θ
β3σ2. (7)

The utility associated with late resolution is:

V0 (0L) = ln c̄0 + β ln c̄1 + β2I [ln c2 (s2)] (8)

= ln c̄0 + β ln c̄1 − β2θ lnE
[
e−

1
θ
ln c2(s2)

]
(9)

= ln c̄0 + β ln c̄1 + β2µ− 1

2θ
β2σ2. (10)

Clearly, if β < 1, then V0 (0E) > V0 (0L) and the above specified aggregator has preference

for early resolution. In fact, under the assumption of u (c) = ln c and β < 1, we have

V (t) = ln ct − θβ lnE
[
e−

1
θ
V (t+1)

]
. This is recognized as the Epstein-Zin preference with

unit IES and a risk aversion of 1 + θ. It is well known that the Epstein-Zin preference

has preference for early resoluiton if risk aversion is higher than the inverse of IES. In our

example, this condition is guranteed by θ > 0.

If we assume β > 1, then V0 (0E) < V0 (0L), and the resulting preference has preference

for late resolution of uncertainty. The case β > 1 is typically not discussed in the literature,

but as we will see in the following section, the case β > 1 provides a convenient example that

has preference for late resolution of uncertainty and at the same time, satisfies generalized

risk sensitivity.

From a decision theory perspective, Kreps and Porteus [32] note that preference for

early resolution of uncertainty can be motivated either by pure preference or by un-modeled

planning. Epstein, Farhi, and Strzalecki [14] develops a thought experiment and computes

how much the representative agent is willing to pay to resolve all future uncertainty in

long-run risk models. In our setup, due to indifference towards the timing of resolution of

uncertainty, an expected utility maximizer and a multiple-prior expected utility maximizer

are not willing to pay anything in exchange for information that they cannot act upon. Due

to preference for early resolution, an agent with the multiplier robust control preference

with β < 1 is willing to pay a positive amount for information about future consumption.
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Epstein, Farhi, and Strzalecki [14] remark that there is no asset market based evidence to

infer consumer’s preference for early resolution of uncertainty. The purpose of this paper is

to provide one.

As shown in Strzalecki [46], general characterizations of property (4) in terms of the

functional form of I can be quite complicated. Directly testing the functional form of I from

asset prices seems to be extremely hard. The asset pricing test we propose in this paper

takes advantage of the notion of generalized risk sensitivity developed in Ai and Bansal [2],

which we briefly review in the following section.

2.2 Generalized risk sensitivity

To discuss the notion of generalized risk sensitivity, we first introduce some terminologies.

Let X : (Ω,F , P ) → R and Y : (Ω,F , P ) → R be two random variables. X is said to

first-order stochastically dominate Y if E [ϕ(X)] ≥ E [ϕ(X)] whenever ϕ is increasing, which

we denote as X ⪰FSD Y . X strictly first-order stochastically dominates Y if X ⪰FSD Y and

if E [ϕ(X)] > E [ϕ(X)] whenever ϕ is strictly increasing, which we denote as X ≻FSD Y .

X is said to second-order stochastically dominate Y if E [ϕ(X)] ≥ E [ϕ(X)] whenever ϕ is

concave, which we denote as X ⪰SSD Y . X strictly second-order stochastically dominates

Y if X ⪰SSD Y and E [ϕ(X)] > E [ϕ(X)] whenever ϕ is strictly concave.3 We denote strict

second order stochastic dominance as X ≻SSD Y . In what follows, we will assume that I is

strictly increasing in first-order stochastic dominance. That is, I [X] ≥ I [Y ] if X ⪰FSD Y

and the inequality is strict if X ≻FSD Y . This assumption is a requirement of monotonicity

of the preference.

An intertemporal preference represented by {u, β, I} is said to satisfy generalized risk

sensitivity if I is increasing in second order stochastic dominance (see (Ai and Bansal [2])).

That is, I [X] ≥ I [y] if X ⪰SSD Y . It satisfies strict generalized risk sensitivity if I is

strictly increasing in second order stochastic dominance. Ai and Bansal [2] demonstrate that

generalized risk sensitivity provides a necessary and sufficient condition for the existence of

announcement premium in representative agent economies.

To illustrate the concept of GRS, we consider the top panel of Figure 1 and interpret the

event in period 1 that reveals the true value of c2 (s1) as an announcement. The utility of

the agent at time 0 can be computed in two steps:

V0 = u (c̄0) + βI [V1 (s1)] ,

3For other equivalent definitions of second order stochastic dominance, see Rothschild and Stiglitz [40].
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where ∀s1 ∈ Ω, the continuation utility V1 (s1) is computed as:

V1 (s1) = u (c̄1) + βu (c2 (s1)) . (11)

We compute the stochastic discount factor that prices period-0 state contingent payoff

into period -1 consumption units. As in standard equilibrium models, stochastic discount

factor can be constructed as the ratio of marginal utilities. Therefore, if we interpret

V1 = [V1 (1) , V1 (1) , · · ·V1 (n)] as a finite-dimensional vector and denote ∂I[V1]
∂V1(s1)

as the partial

derivative of the certainty equivalent with respect to V1 (s1),

SDF (s1) = β

1
µ(s1)

∂I[V1]
∂V1(s1)

u′ (c̄1)

u′ (c̄0)
∝ ∂I [V1]

∂V1 (s1)
,

where in the last step, we suppressed the term β u′(c̄1)
u′(c̄0)

, which does not depend on s1

and does not affect risk premium. We have also used the fact that µ (s) = 1
n
does not

depend on s. Clearly, if ∂I[V1]
∂V1(s1)

is a decreasing function of V1 (s1), then any payoff that is

positively correlated with continuation utility, V1 (s1) will require a positive risk premium at

announcement.

Formally, we consider an endowment economy where aggregate consumption is of the form

C = [c̄0, c̄1, c2 (s1)]. We think of period 1 as the macroeconomic announcement period where

the value of c2 (s1) is revealed. We consider a state contingent payoff X (s1) and denote the

present value of X (s1) from the perspective of period 0 as P0 (X). We say asset X provides

an announcement premium if E[X]
P0(X)

> Rf,1, where Rf,1 is the risk-free rate between period 0

and period 1.

To establish a link between generalized risk sensitivity and announcement premium, for

any two random variables X and Y , we define X and Y to be co-monotone with respect to

each other if ∀s and s′ such that X (s) ·X (s′) ̸= 0,

[X (s)−X (s′)] [Y (s)− Y (s′)] ≥ 0, (12)

and X and Y to be negatively co-monotone with respect to each other if (12) holds with ≤.

Strict co-monotonicity is defined similarly with condition (12) holding with strict inequality.

The following theorem is the discrete-state version of the Theorem of Generalized Risk

Sensitivity in Ai and Bansal [2].

Theorem 1. (Theorem of Generalized Risk Sensitivity) Suppose both u and I are strictly

increasing and continuously differentiable, the following statements are equivalent:
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1. The announcement premium for any asset comonotone with c2 (s1) is non-negative.

2. The certainty equivalent functional, I is non-decreasing in second-order stochastic

dominance.

3. For any continuation utility, V : {Ω,F} → R, the vector of partial derivatives of I
with respect to V ,

{
∂I[V1]
∂V1(s)

}
s=1,2,··· ,n

is negatively comonotone with {V1 (s)}s=1,2,··· ,n.

The strict inequality version of the above also holds. That is, the following statements are

equivalent:

1′. The announcement premium for any asset strictly co-monotone with c2 (s1) is strictly

positive.

2′. The certainty equivalent functional, I is strictly increasing in second-order stochastic

dominance.

3′. For any continuation utility, V : {Ω,F} → R, the vector of partial derivatives of I with

respect to V ,
{

∂I[V1]
∂V1(s)

}
s=1,2,··· ,n

is strictly negatively co-monotone with {V1 (s)}s=1,2,··· ,n.

The above theorem complements Theorem 2 of Ai and Bansal [2]. The discrete time setup

allows us to establish the equivalence between strict generalized risk sensitivity and strictly

positive announcement premium, which is not covered by Theorem 2 of Ai and Bansal [2] but

is important for identifying preference for early resolution of uncertainty. Below we discuss

the generalized risk sensitivity property of the examples of preferences discussed in Section

2.1.

Examples The expected utility does not satisfy strict generalized risk sensitivity. Clearly,

if I is the expectation operator, then I [u] = I [v] as long as E [u] = E [v] regardless of the

second order stochastic dominance between u and v.

The multiple-prior expected utility satisfies generalized risk sensitivity and satisfies

strict generalized risk sensitivity if Φ is not a singleton. In fact, if u ⪰SSD v, then

minϕ∈ΦE [ϕu] ≥ minϕ∈Φ E [ϕv], and the inequality is strict if u ≻SSD v.4

The multiplier robust control preference satisfies generalized risk sensitivity. Using

the result from Ai and Bansal [2], aggregators of the form I (u) = ϕ−1 (E [ϕ (u)]) satisfy

4See Lemma 2 in Wasserman and Kadane [47].
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generalized risk sensitivity if ϕ is concave.5 It follows immediately that the example in the

last section, that is, I (u) = −θ lnE
[
e−

1
θ
u
]
satisfy generalized risk sensitivity as long as

θ > 0. As a result, this utility function may exhibit preference for early or later resolution of

uncertainty, depending on the value of β, but it always satisfy generalized risk sensitivity.

In the rest of the paper, we will restrict our attention to preferences that satisfy generalized

risk sensitivity. The assumption of generalized risk sensitivity is appealing in our setup for

two reasons. First, it is motivated by the empirical fact of the macroeconomic announcement

premium. Second, it links the level of utility, which is a property of preference, to marginal

utilities, which can be conveniently tested from asset prices. In particular, under the

assumption of GRS, the ranking of the level of utility is exactly the reverse of the ranking of

continuation utility, a property which we exploit in the following sections.

3 An asset pricing test for PER

3.1 A thought experiment

In this section, we extend the three-period model above to construct a thought experiment

where asset prices can be used to identify preference for early resolution of uncertainty. To do

so, we combine the early resolution of uncertainty case and the late resolution of uncertainty

case in Figure 1 and add a period −1 to construct a four-period model as illustrated in Figure

2.

In our four-period model, a general consumption plan is denoted as C =

[c−1, c0 (s0) , c1 (s0, s1) , c2 (s0, s1, s2)]. To identify PER, it is enough to restrict attention

to the class of consumption plans where C =
[
c̄−1, c̄0, c̄1, c2

(
sι(s0)

)]
, where as before,

c2 : (S,Σ, µ) → C is a random variable taking values in the consumption set C, and c̄t

are constants for t = −1, 0, 1. In addition, ι : (S,Σ, µ) → {1, 2} is a random variable that

takes a value of either 1 or 2. As illustrated in the previous example, ι (s0) = 1 represents the

case of early resolution of uncertainty and ι (s0) = 2 represents the case with late resolution

of uncertainty.

As illustrated in Figure 2, early and late resolution are a stochastic outcome to be learned

in period 0. We call period 0 the period of resolution of informativeness. The node 0E

represent a situation with early resolution where ι (s0) = 1 and the continuation utility of

5If u ⪰SSD v, then E [ϕ (u)] ≥ E [ϕ (v)]. As a results, ϕ−1 (E [ϕ (u)]) ≥ ϕ−1 (E [ϕ (v)]) because ϕ is strictly
monotone.
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Figure 2: Resolution of informativeness
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Figure 2 represents our thought experiment of resolution of informativeness. −1 (I) is node where the
agent expects the uncertainty about C1 to be resolved in period 0 with an informative macroeconomic
announcement. Node −1 (I) represents the situation where the upcoming announcement is expected to be
completely uninformative about future.

the agent, V0 (0E) can be calculated as in (2). The node 0L represents a situation of late

resolution where ι (s0) = 2 and V0 (0L) is calculated as in (3). In period −1, before the

resolution of informativeness, the agent’s utility is calculated as V−1 = u (c̄−1) + βI [V0 (s0)].

In our model, the stochastic discount factor that converts period 0 payoff into period −1

consumption units can be calculated as the marginal rate of substitution of consumption

between periods 0 and −1:

SDF (s0) =
β 1

µ(s0)
∂I[V0]
∂V0(s0)

u′ (c̄0)

u′ (c̄−1)
∝ ∂I [V0]

∂V0 (s0)
. (13)

By Theorem 1, under the assumption of generalized risk sensitivity, the ranking of the

level of utility is the inverse of the ranking of the marginal utilities. That is, for any s0 and s′0,

where s0 is more informative than s′0, preference for early resolution implies V (s0) ≥ V (s′0).

Under GRS, this is true if and only if ∂I[V0]
∂V0(s0)

≤ ∂I[V0]

∂V0(s′0)
. Conversely, preference for late

resolution is equivalent to ∂I[V0]
∂V0(s0)

≥ ∂I[V0]

∂V0(s′0)
.

Although the ranking of the level of continuation utility is hard to observe, the ranking

of marginal utilities can be detected from the asset market. Suppose we find a payoff X that

is increasing in informativeness, that is, X (s0) ≥ X (s′0) whenever s0 is more informative
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than s′0, the under PER, X (s0) will be negatively correlated with SDF (s0), and therefore

the claim to X will receive a positive risk premium. Conversely, under PLR, X (s0) will be

positively correlated with SDF (s0), and therefore the claim to X will receive a negative risk

premium. This is the basic intuition of our asset pricing test. Below, we discuss several issues

in the setup of our model before we present our formal thereotical results.

Definition of informativeness In our setup, the distinction between early and late

resolution is quite stark: in the case of early resolution, the signal s1 completely reveals

the consumption in period 2. In the case of late resolution, s1 does not carry any information

about c2 (s2). The comparison between early and late resolution of uncerainty can be defined

more generally using Blackwell [7]’s criteria for more informativeness. In general, we allow

agents to observe a signal from an experiment about c2 in period 1. Let Z be the space

of signals, and let z ∈ Z denote a typical element of Z. Using the language of Blackwell

[7], an experiment can be represented by a mapping from the state space S to the space of

conditional probabilities on Z: {m1,m2, · · ·mn}. Let Z be the set of all experiments, and let

f : S → Z be a measurable function that assigns an experiment to each realizations of s0. We

can generalize our model above in the following way. In period 0, upon the realization of s0,

the experiment f (s0) is determined. We say s0 is more informative than s′0 if the experiment

f (s0) is more informative than f (s′0) in the sense of Blackwell [7]. In period 1, the agent

will observe a signal from experiment f (s0), and asset market prices will be determined after

the signal is observed. Preference for early resolution in this general setup can be defined as

preference for the informativeness of experiments.

A simple way to compare informativeness is to compare the variance of conditional

expectations. In the above discussed general setup of our model, the signal z carries

information about c2. In general,

V ar [c2] = V ar [E (c2|z)] + E [V ar (c2|z)] .

Let z and z′denote signals from two different experiments. If z is more informative than z′,

then V ar [E (c2|z)] > V ar [E (c2|z′)] and E [V ar (c2|z)] < E [V ar (c2|z′)]. Intuitively, if z is

more informative than z′, then the arrival of z is associated a higher reduction in posterior

variance.

In Figure 3, we illustrate the evolution of conditional variance by assuming that cH =

c̄2+σ, cL = c̄2−σ, and cH and cL each happens with probability 1
2
. Note that nodes 0E and

0L have the same conditional distribution of c2. In the case of early resolution, at note 0E, the
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Figure 3: Evolution of conditional variances
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Figure 3 plots the evolution of the conditional variance of c2 under the assumption of cH = c̄2+σ, cL = c̄2−σ,
and both occur with probability 1

2 .

agent anticipates a more precise signal of c2 in period 1. In the example, the signal completely

reals the true value of c2. As a result, V ar [E (c2|s1)] = σ2, and E [V ar (c2|s1)] = 0, because

s1 resolves all uncertainty and the conditional variance going forward is 0. In contrast, in

the case of late resolution, at note 0L, the agent expects a completely uninformative signal in

period 1, V ar [E (c2|s1)] = 0, and E [V ar (c2|s1)] = σ2. Clearly, the signal in period 1 changes

the intertemporal distribution of conditional variance without affecting the total variance.

The arrival of more informative signals is associated with a higher variance of conditional

expectations but a lower conditional variance going forward.

The assumption of constant consumption In our model, we have assumed the

consumption in period −1, 0, and 1 are all constant and does not depend on the signal.

This simplifies our analysis and allows to prove a theorem that identifies PER from asset

prices. Empirically, we interpret the resolution of uncertainty in period 1 as arrivals

a macroeconomic announcements and interpret the resolution of informativeness as the

few days before announcements where the informativeness of the upcoming announcement

becomes known to the public. These events happen at a daily or even hourly frequency, and

it is impossible for aggregate consumption to respond at this frequency. Our assumption of

constant consumption before period 2 allows us to capture this feature of the data, which we

use to identify PER.
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3.2 An equivalence result

Consider any asset with payoff X : Ω → R. The payoff X is said to be co-monotone with

informativeness if for any s0 and s′0, [ι (s0)− ι (s′0)] [X (s0)−X (s′0)] ≤ 0 . Asset X is said to

requires a positive resolution of informativeness premium if

E

[
X (s0)

P−1 [X (s0)]

]
> Rf,−1,

where Rf,−1 is the risk-free interest rate from period −1 to period 0. That is, if the strategy

of purchasing the asset right before the resolution of informativeness and selling it right

afterwards earns an expected return higher than the risk-free interest rate.

Theorem 2. Suppose both u and I are strictly increasing, continuously differentiable and

satisfies strict GRS, the following statements are equivalent:

1. The announcement premium for any asset comonotone with informativeness is positive

(negative).

2. The certainty equivalent functional, I satisfy preference for early (late) resolution of

uncertainty.

The fact that under GRS, PER implies a positive risk premium for payoffs increasing in

the informativeness of the upcoming announcement is straightforward given the discussion

in the last section. The converse of this statement is non-trivial and is the theoretical basis

for the identification exercise in this paper. If we have a rich enough set of assets with payoff

increasing in informativeness, and the risk premium of all of these assets are positive, then

we can safely conclude that the representative agent prefers early resolution of uncertainty.

Examples We continue with the examples of preferences discussed in Section 2. Under

expected utility, I [V0] =
∑

s0
µ(s0)V (s0) and

∂I[V0]
∂V0(s0)

= 1
µ(s0)

. Using Equation (13), SDF (s0)

is equalized across s0 and there cannot be any preference for early resolution premium.

Under the multiple prior expected utility, I [V0] =
∑

s0
µ(s0)ϕ

∗(s0)V (s0), where ϕ
∗ is the

minimizing probability density. Because we have already established in Section 2 that the

multiple prior expected utility is indifferent towards the timing of resolution of uncertainty,

V (s0) does not depend on s0. As a result, any ϕ ∈ Φ can be used as a minimizing probability.

Therefore, SDF (s0) is not unique. This is a well-known property for multiple prior expected

utility: it is a concave function, but the set of sub-gradients may not be a singleton. As a
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result, both a positive or a negative preference for early resolution premium can be consistent

with equilibrium.

The multiplier robust control preference is a good example to illustrate the idea of our

asset pricing based test for PER, because it always satisfies GRS, but may or may not satisfy

PER depending on the value of β. Under the multiplier robust control preference, the SDF

can be computed as

SDF (s0) ∝
∂I [V0]

∂V0 (s0)
=

µ (s0) e
− 1

θ
V0(s0)∑n

s0=1µ (s0) e
− 1

θ
V0(s0)

=
e−

1
θ
V0(s0)∑n

s0=1 e
− 1

θ
V0(s0)

,

where the second equality uses the fact that µ (s0) =
1
n
for all s0. Clearly,

∂I[V0]
∂V0(s0)

is a strictly

decreasing function of V (s0), regardless of the value of β. Note that V (0E) and V (0L) can

be computed from (5) and (8), which allows us to compute the value of SDF at nodes 0E,

and 0L, respectively:

SDF (0E) = constant× exp

{
1

2θ2
β3σ2

}
, SDF (0L) = constant× exp

{
1

2θ2
β2σ2

}
.

Having solved the stochastic discount factor, we now need to find an asset whose payoff

is increasing in informativeness, that is, X0 (0E) > X0 (0L). Consider an asset that pays

Y1 (s1) = E [ ln c2| s1] in period 1. In the top branch of the tree that follows 0E, the payoff

of this asset is ln c2, because c2 (s1) is a function of s1, which is revealed in period 1. In the

bottom branch of the tree, which follows 0L, the payoff is a constant µ, which c2 (s2) is a

function of s2, the value of which is not known in period 1. Now consider an asset X that

pays the variance of Y1 in period 0. That is, X0 (s0) = V ar [Y1| s0]. At node 0E, X0 (0E) = σ2

because Y1 (s1) = ln c2 (s1). At node 0L, X0 (0L) = 0, because Y1 (s1) = µ does not depend

on s1. In empirical exercises, we think of Y1 as the stock market payoff in period 1, and we

think of X0 (s0) as the implied volatility computed from options that expires in period 1,

that is, the implied volatility that expires right after the announcement of s1 in period 1.

It is straightforward to compute the risk-premium for the claim X0 (s0). In Appendix, we

show that the risk premium, that the expected return on the claim to X0 (s0) divided by the

risk-free rate, is equal to:

E
[

X(s0)
P−1[X(s0)]

]
Rf,−1

− 1 =
1
2

[
exp

{
1

2θ2
β2σ2

}
− exp

{
1

2θ2
β3σ2

}]
exp

{
1

2θ2
β3σ2

} .
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Clearly, the risk premium
E
[

X(s0)
P−1[X(s0)]

]
Rf,−1

− 1 > 0 if β < 1, which is the case of preference for

early resolution of uncertainty. The risk premium
E
[

X(s0)
P−1[X(s0)]

]
Rf,−1

− 1 < 0 if β > 1, which is the

case of preference for late resolution of uncertainty.

4 Empirical evidence

4.1 Key elements for identifying PER

To operationalize our thought experiment and use financial market data to test PER, we use

monetary policy announcements made by the Federal Open Market Committee (FOMC) as

our primary example of announcements that reveal uncertainty about the macroeconomic. In

order to test PER, we need to identify the event of resolution of informativeness in the data

and assets with payoff increasing in the resolution of informativeness. Below we summarize

the key elements of our identification exercise, which serves as a guide for the following

empirical sections of the paper.

1. The informativeness of FOMC announcements must change over time. The thought

experiment in Section 3 requires that the informativeness of the announcement to be a

stochastic outcome. More informative announcements correspond to the case of early

resolution and less informative announcements correspond to the case of late resolution.

2. The heterogeneity in the informativeness must be perceived by the market. The thought

experiment in Section 3 requires that the market must be able to distinguish early

resolution (node 0E in Figure 2) from late resolution (node 0L) so that expected asset

payoff can respond to the expected informativeness of the upcoming announcement.

3. The period during which the informativeness of the upcoming FOMC announcements

is perceived by the market is the period of resolution of informativeness.

4. The payoff of the test asset must be increasing in the informativeness of the

announcement. The key to the identification exercise is an asset with payoff increasing

in the informativeness of the announcement.

Here, we use claims to market volatility with short maturities. To understand this

construction, in the context of Figure (2), consider a claim to market volatility that

expires at the end of the period 1. At node 0E, which is the case of early resolution, the
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upcoming announcement is expected to be informative and the market is expected to

react to the announcement. The implied volatility at node 0E with maturity at time 1,

which largely reflects the expected volatility over the announcement, will be high. In

contrast, at node 0L, which is the case of late resolution, the upcoming announcement

is expected to be uninformative. In this case, there is no news in period 1, and the

implied volatility at node 0L with expiration at time 1 will be low. In fact, it is zero in

this example.

Motivated by the above observation, in the data, we use synthetic variance claims with

maturities after the announcements as the test asset.

Below, we briefly summarize our identification strategy for each of the above elements.

Variations in the informativeness To establish the time-varying informativeness of

FOMC announcements, we show that implied volatility reduction varies substantially across

FOMC announcements.

Intuitively, when the upcoming announcement is expected to be informative, the implied

volatility of the S&P 500 index will be high before the announcement, and will drop

significantly afterwards. The time variations in the implied volatility reduction across FOMC

announcements is therefore evidence for time-varying informativeness. To confirm the above

intuition, we show that i) implied volatility of the stock market index (S&P 500 index)

on average drops over FOMC announcements, and ii) there is substantial variation in such

reduction.

Predictability of informativeness Our identification exercise requires that the

variations in informativeness be perceived by the market. We establish this empirically by

showing that the amount of reduction in implied volatility is predictable by market prices. In

particular, we use the ratio of short-term versus long-term implied volatility, or the inverse

slope of the term structure of implied volatility, as a predictor for the implied volatility drop.

Our inverse slope variable is defined as:

Inv Slope =
IV 9

IV 90
, (14)

where IV 9 is the short-term implied stock market volatility, which we measure by using

the implied volatility index with 9 days to maturity published by CBOE. IV 90 is long-term

implied volatility measured by the implied volatility index with 90 days to maturity.
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Implied volatility from option prices may be affected by changes in the volatility of

economic fundamentals (such as the volatility of aggregate productivity shocks) or by

the informativeness of macroeconomic news. Variations in the volatility of economic

fundamentals presumably happen at a much lower frequency than the few days of FOMC

announcements. Fundamental economic volatility is therefore likely to affect both short-

term and long-term volatility. The inverse slope constructed above allows us to control for

volatility of economic fundamentals and better predict the informativeness of announcements.

We show in the next section that Inv Slope has significant predictive powers for the implied

volatility reduction on FOMC announcement days.

Resolution of informativeness The key to our identification exercise is the

calculation of risk premium earned by the test asset during the period of resolution of

informativeness (ROI). We take advantage of the news data from RavenPack Analytics to

locate this period of ROI. We construct a direct measure of market’s attention on the Fed

from the Fed-related news counts in RavenPack. An identifying feature of the period of ROI

is a strong positive relation between changes to this inverse slope and this attention measure.

This is because in the period of ROI, investors form expectation about the informativeness

of the upcoming FOMC announcement, and higher expected informativeness feeds into both

higher market attention and higher inverse slope. Outside the period of ROI this correlation

shouldn’t exist—investors may think about informativeness of other events and that will

influence the inverse slope, but there is no obvious reason why they would influence Fed-

related news. We show in the next section that evidence suggests that this period of ROI

typically corresponds to the five weekdays before the FOMC announcements.

Premium for claims to market volatility Having identified the period of resolution

of informativeness, our final step is to estimate the risk premium earned on claims to short-

term market volatility during this period. As commented earlier, claims to implied volatility

which expires shortly after the announcements can be used as the test asset for PER.

To construct the claim to market volatility, we follow Bakshi, Kapadia, and Madan [3].

who show that under no arbitrage, the second moment of log security returns under the
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risk-neutral measure can be constructed from option prices the following way:

1

T
ERN [(ln(ST )− ln(St))

2] =

erT

T
(

∫ St

0

2(1− ln(K
St
))

K2
Put[K]dK +

∫ ∞

St

2(1 + ln(K
St
))

K2
Call[K]dK) (15)

Here, ERN [·] is the risk neutral expectation. St is the price of the underlying security at

time t, and ST that at time T . Put[K] and Call[K] are prices of a put and a call option

with the underlying security S, strike price K, and expiration T . The formula expresses the

risk neutral squared log returns as integrals of options across strike prices. Because squared

mean of returns is orders of magnitude smaller than the mean of squared returns, Equation

(15) practically measures the risk-neutral price of return variance.

Empirically, we can use the weighted sum of options with different strikes to approximate

the above integral and construct the claims to aggregate stock market variance. We also

construct the at-the-money straddles as a robustness check. While variance claims closely

align with our theory, straddles are simpler instruments that heavily load on volatility.

We empirically estimate the excess return of the above portfolios during the period of

resolution of informativeness. Our Theorem 2 implies that an extra positive (negative)

average return during the period of resolution of informativeness is indicative of investors’

preference for early (late) resolution of uncertainty.

4.2 Resolution of informativeness

In this section, we first verify the four elements for the identification of PER we developed in

the last section, we then provide an estimation of the risk premium for the claim to aggregate

stock market volatility, which according to Theorem 2, identifies investors attitude towards

the timing of resolution of uncertainty.

The option return data we use in our empirical exercises below come from OptionMetrics

and are daily from 1996 to 2019. The implied volatility data we use include the 9-day, 30-day

(VIX), and 90-day implied volatility indices on S&P 500 from CBOE. The 30-day implied

volatility is the VIX index, which goes back to 1990. The 9-day and 90-day IV indices have

shorter history going back to 2011 and 2007 respectively. These implied volatility indices end

in 2020.

The 9-day implied volatility has the shortest maturity. Therefore, the test asset in
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Equation (15) constructed using 9-day implied volatility is less affected by measurement

error induced by the volatility on non-announcement days. It, however, has a much shorter

history than the 30-day implied volatility index. In what follows we use the reduction in the

30-day implied volatility index as our baseline measure of realized informativeness and use

the 9-day index as an alternative measure for robustness analysis.

Reductions in implied volatility across announcements In support of the

hypothesis that FOMC announcements reduce uncertainty about the aggregate economy,

we first show that on average there is a significant reduction in implied volatility on FOMC

announcement days. The reduction in implied volatility is quite robust across all maturities.

In Figure 4, we plot the level log VIX index around FOMC announcement days with the

announcement-day log VIX normalized to zero. We denote the FOMC announcement day as

day 0, the day before the announce day as -1, and the day after as 1, etc. All values of the VIX

are end-of-the-day values. Figure 4 shows a clear reduction in VIX on FOMC announcement

days on average. In Table 1, we present a formal regression analysis for the reduction in

the VIX index on announcement days controlling for the day-of-the-week effect.6 The third

column is the reduction in 30-day implied volatility and the fourth column is the reductions

in 9-day implied volatility. The reduction in VIX on announcement days is significant with

a point estimate −1.89%. Because VIX index is the average volatility of 30 days, under the

assumption that stock returns are i.i.d., an −1.89% reduction roughly corresponds to a 50%

higher volatility on announcement days relative to non-announcement days.7 The estimate

for 9-day implied volatility shows a similar pattern.

Our identification exercise requires that the informativeness of FOMC announcements to

be time-varying. Here, we provide consistent empirical evidence by demonstrating that there

are substantial variations in the amount of volatility reduction across announcements. We

plot the histogram for the changes in VIX index on FOMC announcement days in Figure 5.

There is a fairly wide range of implied volatility changes across announcements, indicating

the informativeness of announcements does change over time.

6As shown in Table 1, the VIX index has a significant day-of-week pattern. In particular, changes in VIX
is typically positive on Mondays and negative on Wednesday and Fridays. Because FOMC announcements
are not evenly distributed across days of the week, we control for this effect out of an abundance of caution.

7Assume that the daily volatility is σ on non-announcement days and (1 + x)σ on announcement days.

The thirty-day volatility before announcement is

√
(1 + x)

2
σ2 + 29σ2, and the thirty-day volatility after

announcement is
√
30σ2. A log difference of 2% between the above translates into a value of x = 49%.
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Figure 4: Log VIX around FOMC announcements
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This figure illustrates the average log VIX index around FOMC announcements. We normalize the (end-of-

day) log VIX index to zero for the FOMC announcement day which is represented by day 0. Other days are

labeled relative to the FOMC announcement day. The decline from 2.2 to 0 over day 0 means that the VIX

index experienced on average a 2.2% decline on the FOMC announcement days.

Figure 5: Histogram of changes in log VIX on FOMC announcement days
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This figure plots the histogram of changes in log VIX around FOMC announcements. Changes in log VIX is

computed as the difference between the log of the VIX index at the end of the announcement day and that

on the day before the announcement day.
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Predictability of informativeness The second element of our identification exercise

is the predictability of informativeness. We establish this by demonstrating that the reduction

of volatility across announcements can be predicted by the inverse slope of the term structure

of implied volatility. To do this, we regress the changes in short-term implied volatility on

the inverse slope of the previous day, an FOMC announcement day dummy, an interaction

between the two terms, and control variables such as the day-of-the-week dummies.

∆ ln IVt = ξ0+ξ1Inv Slopet−1+ξ2I
FOMC
t +ξ3Inv Slopet−1 ·IFOMC

t +
5∑

d=1

δdI
DOW
d,t +εt. (16)

Here, ∆ ln IVt is the one-day change in implied volatility from the end of t − 1 to t,

Inv Slopet−1 is the inverse slope defined in equation (14) on day t − 1, and IFOMC
t is an

indicator variable that takes the value of 1 if day t is a pre-scheduled FOMC announcement.

For d = 1, 2, · · · , 5, IDOW
d,t is an indicator variable that take the value of 1 if day t is the

dth day of the week. As explained earlier, we expect short-term volatility to be higher

relative to long-term volatility ahead of informative FOMC announcements, because higher

informativeness of announcements, if expected by the market, should be associated with

larger reactions of stock market returns with respect to these announcements.

In Table 2, we report several versions of the above regression to demonstrate the

predictability of announcement-day volatility reductions. In column 1, the regression of

volatility reduction on inverse slope produces a significant coefficient of −6.57, indicating

that in general, the inverse slope variable has significant predictive powers for volatility

reductions. It is well known that volatility is mean reverting. As shown in column 2, higher

volatility on the previous day is associated with significantly larger volatility reductions

as well. However, whenever the inverse slope variable is included (column 3, 4 and 5),

the effect of the level of volatility on the previous day is subsumed. The regression in

column 4 includes only the 77 observations on FOMC announcement days. In this case, the

effect of inverse slope is much large in magnitude, although the t-statistic is much smaller

due to a much smaller sample. In column 5, we report the result of the full regression.

Here, Inv Slopet−1 has significant predictive powers for implied volatility reductions in

general. More importantly, the coefficient on the interaction term of FOMC indicator and

Inv Slopet−1 is significantly larger, indicating the Inv Slopet−1 variable has extra predictive

powers on FOMC announcement days. In the last column of the same table, we report the

results of regression (16), where the dependent variable is the reduction in 9-day implied

volatility. This regression shows a similar pattern with a more negative point estimate for
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ξ3. These results indicate that the option market correctly understands the informativeness

of the FOMC announcements ahead of time, and expresses its view via option prices.

Anticipating an informative announcement, investors bid up the prices of the short-horizon

options relative to long-horizon ones, creating a large 9-day/90-day implied volatility ratio

before the announcement. In the next section, we investigate over what period do they come

up with this expected informativeness.

Period of resolution of informativeness The third step of our identification exercise

is to identify the period of resolution of informativeness. As explained earlier, we do this by

first constructing a time series that measures the market’s attention on the Fed. We obtain

the number of Fed-related new items from RavenPack Analytics. The measure is the number

of Fed-related news items issued on a given day divided by the average number in the past

30 days. This division step keeps the measure stationary while the number of news items has

an upward trend over time. We call this ratio news intensity.

Column 1 of Table 3 performs a daily time series regression of the news intensity measure

on the contemporaneous daily change in inverse slope. It shows that on average, Fed-related

news intensity does not strongly relate to the inverse slope measure. As explained earlier,

there is no reason to expect these two measures to positively correlate, except during the

period of ROI. Column 2-6 perform the same regression on various subsamples around the

FOMC announcement days. Column 2-3 show that during the 5 weekdays before the FOMC

announcements, the two measures suddenly become positively correlated. This suggests

that during these 5 days, investors regularly form expectations of the informativeness of the

upcoming FOMC announcement, and higher expected informativeness corresponds to both

higher inverse slope and more news on the Fed. Notice that “forming expectation of the

informativeness of the upcoming FOMC announcement” is the definition the period of ROI.

Column 4-6 are placebo tests showing that there is no positive relation between the two time

series on and after the FOMC days. The negative coefficient on the FOMC days is because

more informative announcements see higher reduction in the inverse slope and also receive

more news attention.

4.3 The PER premium

The last step of our identification exercise is the estimation of the premium of the claim

to market volatility constructed in Equation 15. Theorem 2 implies that if investors have

preference to early resolution, this premium must be positive during the period of ROI. In the
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data, we must also take into account of the premium that variance claims normally receive—

both within and out of the period of ROI. On an average day, variance claims provide valuable

hedge against stock market crashes and adverse economic shocks in general. It is therefore

unsurprising that they receive a negative premium on average. Such protection exists both

within and out of the period of ROI. Consequently, we should not seek an outright positive

premium on variance claims over the period of ROI, but rather a positive premium relative

to an average day.

To estimate the sign of this PER premium, we construct synthetic variance claims on the

S&P 500 index using put and call prices from OptionMetrics, the range of which is 1996 to

2019. They are constructed according to equation 15 and are portfolios of out-of-money puts

and calls. The construction details can be found in the data appendix. We also construct

the at-the-money straddles. With daily returns to these variability-paying portfolios, we run

the following regression:

rτ ,t = βIROI
t · IAfter

t (τ) + β1I
FOMC
t +

11∑
w=1

γwI
Maturity
w,t (τ) +

5∑
d=1

δdI
DOW
d,t + ϵτ ,t. (17)

This is a panel regression where rτ ,t is the log return realized on date t on a claim to

market volatility constructed using an option portfolio with maturity τ . IROI
t is an indicator

function that takes the value of 1 if date t is within the period of ROI of a pre-scheduled

FOMC announcement. IAfter
t (τ) is an indicator function that take the value of 1 if the

claim expires after the closet announcement in the future as of day t. Because the price of

options that expire before announcements will not be affected by the informativeness of these

announcements, we focus only on options that expire after the announcements. IFOMC
t is an

indicator that takes the value of 1 if day t is a FOMC announcement day. We also include

several control variables in the above regression: IMaturity
w (τ) is an indicator function for the

maturity of the options, which takes the value of 1 if the option is w weeks to maturity, for

w = 1, 2, · · · , 11. As before, IDOW
d,t are indicator variables that control for the day of the

week effect.

We present our regression results in Table 4, where we report the coefficients β

which captures the average return of the variance claims over the period of resolution of

informativeness in excess of their returns on an average day. Column 1 reports the excess

return on the second moment portfolios, and column 2 that on the at-the-money straddles.

What is important for our theory is the coefficient β, which is what Table 4 shows. In both
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columns we observe a significantly positive coefficient. This indicates that these variability-

paying portfolios see high excess returns over the period of ROI, consistent with a preference

for early resolution of uncertainty.

It is worth mentioning that first, these portfolios do not have higher loading on market

excess returns over the period of ROI. Table 7 shows, if anything, that the market loading is

somewhat lower. Second, the market return is not higher during the period of ROI. In fact,

over this period the market return is about 8 basis points lower than average. Given these

two empirical patterns, this premium on the variability-paying portfolios cannot be driven

by exposure to the market. Controlling for the market or the Fama-French 3 factors in the

regression of Table 4 does not appreciably change the coefficient β. This robustness check

is useful because an important assumption that we make in our analysis is that the period

of ROI reveals the informativeness of the upcoming announcement, but not the news in the

announcement. The assumption seems consistent with the data, because 1) the market itself

does not earn a positive premium over the period of ROI, and 2) the premium of the variance

claims over the period of ROI is not explained by the market or common risk factors.

4.4 Additional Results

A simple, commonly used instrument of variance claims is the VIX futures, which pay the

level of VIX index on the expiration day. While their history is relatively short, they and are

simple instruments that load on volatility. However, notice that because they pay the VIX

level as of the expiration day, a VIX future that expires after an FOMC announcement are

not exposed to the volatility over the announcement, which capture the informativeness that

is at the core of our theory. This is because the VIX index is a forward looking index that

captures the expected volatility over the 30 days in the future and not the past. The VIX

futures therefore enable a valuable placebo test.

Table 5 repeats the regression, except the dependent variables are now log returns on VIX

futures. The table shows that on VIX futures there is no significant excess returns during the

period of ROI relative to an average day. This test is valuable because VIX futures are similar

to our synthetic variance claims in nature, but the subtle difference of being forward-looking

predicts that our theory should not apply to them. This evidence lends further support to

our theory by showing that the pattern we see are really due to the exposures to the market

movements during the announcements.

While the FOMC announcements clearly resolve important systematic risks, there are

relatively few observations. Savor and Wilson (2016) demonstrate that individual firms’
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earnings announcements also resolve important systematic cash flow risks. Within the 3-day

window centering on the earnings announcement day, a stock earns on average 25.8 basis

points in excess of the market.8 The economic scale of this risk premium is smaller than that

earned by the aggregate market on the FOMC days, but on the same order of magnitude.

Furthermore, investors and analysts pay close attention to these earnings announcements and

make forecasts about the earnings outcome ahead of time.9 Additionally, firms’ managements

exercise considerable discretion in being vague or precise during earnings calls, like the Fed

during the FOMC announcements. A period of ROI may therefore also exist for these

individual earnings announcements. Since a 9-day implied volatility index for individual

stock options cannot be constructed, we cannot perform an analogous search for the period

of ROI in this context. We therefore keep using 5 weekdays before the announcement, and

investigate whether the returns to the variability-paying portfolios—now on individual stock

options—are also abnormally high before the earnings announcements. Table 6 shows exactly

this.10 This piece of evidence lends additional support to our results.

5 Conclusion

This paper develops a revealed preference theory for preference for the timing of resolution of

uncertainty based on asset pricing data and present corresponding empirical evidence. Our

main theorem provides an equivalent characterization of the representative agent’s preference

for early resolution of uncertainty in terms of the risk premium of assets realized during the

period of resolution of informativeness of macroeconomic announcements. Empirically, we

found support for preference for early resolution of uncertainty based on evidence on the

dynamics of the implied volatility of S&P 500 index options before FOMC announcements.

8The 25.8 basis point mean is weighted by market value of the stock divided by the total market values
of all stocks on the cross section, on the CRSP universe from 1971-2021.

9A systematic dataset containing these forecasts is the I/B/E/S database, available on WRDS.
10This result may appear to relate to those in Johnson and So (2018), who show that cost of trading

negative news on stocks increases before earnings announcements, and that this leads to increase in stock
prices prior to announcements. This would lead to elevated call prices and decreased put prices prior to the
announcements, because they embed long and short positions in stocks, respectively. However, because our
variation paying portfolios roughly equally weight puts and calls, this effect should largely cancel with each
other.
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Table 1

Changes in VIX on FOMC announcement days

(1) (2) (3) (4)

∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX9

IDOW
1 1.94*** 1.94*** 5.99***

[10.20] [10.20] [8.86]

IDOW
2 -0.26 -0.13 0.32

[-1.59] [-0.77] [0.64]

IDOW
3 -0.48*** -0.33** -1.06*

[-3.17] [-2.12] [-1.86]

IDOW
4 -0.04 -0.03 -0.56

[-0.22] [-0.17] [-1.05]

IDOW
5 -1.00*** -1.00*** -3.74***

[-5.91] [-5.90] [-7.01]

IFOMC -2.20*** -1.89*** -2.43*

[-5.02] [-4.18] [-1.71]

N 7,766 7,766 7,766 2,477

R-sq 0.022 0.003 0.024 0.063

This table reports results from running the following daily time-series regression: ∆ ln IVt =∑5
d=1 δdI

DOW
d,t + ξIFOMC

t + ϵt, where ∆ ln IVt is the change in lnV IX on day t (in percentage
unit), IDOW

d,t is the indicator of whether day t is the dth weekday (e.g. IDOW
1,t takes the value

of 1 when day t is Monday, and 0 otherwise), and IFOMC
t is the indicator of whether day t

is a FOMC announcement day. Dependent variable in column (1)-(3) is based on the 30-day
VIX, and that in column (4) is based on the 9-day VIX. Data are daily from 1990-2020
in column (1)-(3), and from 2011-2020 in column 4. T-statistics are computed with White
standard errors and reported in square brackets.
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Table 2

Predictability of implied volatility reduction on FOMC announcement days

(1) (2) (3) (4) (5) (6)

∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX ∆ lnV IX9

Inv Slopet−1 -6.57*** -5.37*** -15.84* -6.13*** -14.47***

[-4.23] [-2.85] [-1.87] [-3.94] [-6.65]

V IXt−1 -0.11*** -0.04 -0.13

[-4.11] [-1.24] [-0.64]

IFOMC 10.87 16.57**

[1.58] [2.08]

Inv Slopet−1 · IFOMC -13.42* -19.90**

[-1.73] [-2.21]

DOW Indicators Yes Yes Yes No Yes Yes

Constant No No No Yes No No

N 2477 2477 2477 77 2477 2477

R-sq 0.035 0.029 0.036 0.139 0.038 0.101

The column (5) of this table reports results from running the following daily time-
series regression: ∆ ln IVt = ξ0 + ξ1Inv Slopet−1 + ξ2I

FOMC
t + ξ3Inv Slopet−1 · IFOMC

t +∑5
d=1 δdI

DOW
d,t + εt, where ∆ ln IVt is change in log VIX on day t (in percentage unit),

Inv Slopet−1 is the inverse slope, or the 9-day VIX divided by the 30-day VIX, on day
t − 1, IFOMC

t is the indicator of whether day t is a FOMC day, and IDOW
d,t are indicators of

whether day t is the dth weekday (e.g. IDOW
1,t takes the value of 1 when day t is Monday, and

0 otherwise). Column (1) to (3) are the regression with subsets of the independent variables
and possibly adding V IXt−1 which is the VIX level of day t − 1. Column (4) is restricted
to FOMC announcement days only. Column (6) has a different dependent variable which is
change in 9-day VIX. Data are daily from 2011-2020. T-statistics are computed with White
standard errors and reported in square brackets.
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Table 3

News intensity and change in inverse slope over the period of ROI

News Intensityt

All t [−10,−6] [-5,-1] FOMC day [1,5] [6,10]

∆Inv Slopet -0.242 -0.209 1.076*** -2.132** 0.098 -0.382

[-1.13] [-0.69] [4.09] [-2.02] [0.16] [-1.50]

N 2,453 385 385 77 385 385

Column 1 of this table reports the results of the following time-series regression
News Intensityt = α + β∆Inv Slopet + ϵt. Here News Intensityt is the number of
Fed-related news items on day t divided by the average number of items in the past 30
days. Inv Slopet is the 9-day VIX divided by 90-day VIX. Column 2 and 3 perform the
same regression conditioning on day t being 10-6 and 5 to 1 weekdays before the FOMC
announcements. Column 4 is on the FOMC announcement days. Column 5-6 are 5 weekdays
and 6-10 weekdays after the FOMC announcements. Data are daily from 2011-2020. T-stats
are computed using White standard errors and reported in square brackets.
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Table 4

Excess returns of stock index options during the period of resolution of
informativeness

(1) (2)

2nd Moment Straddle

ROI premium β 1.234** 0.435***

[2.45] [2.25]

N 42,010 42,019

R-sq 0.054 0.116

This table reports the results of the following panel regression rτ ,t = βIROI
t ·IAfter

t (τ)+β1I
FOMC
t +∑11

w=1 γwI
Maturity
w,t (τ)+

∑5
d=1 δdI

DOW
d,t +ϵτ ,t, where rτ ,t is the log return of the option portfolio with

expiration τ on day t (in percentage unit), IROI
t is an indicator of whether day t is within the period

of ROI, IAfter
t (τ) is an indicator of whether τ is after the next FOMC announcement as of day

t, IFOMC
t indicates whether day t is an FOMC announcement day, IMaturity

w,t (τ) is an indicator of

whether t is within w weeks of τ , and IDOW
d,t is an indicator of whether day t is the dth weekday

(e.g. IDOW
1,t takes the value of 1 when day t is Monday, and 0 otherwise). Regressions apply equal

weight on each trading day (i.e. t). Column (1) are portfolios tracking the 2nd moment of the
underlying returns, and (2) are on returns of at-the-money straddles. At-the-money strike price is
the one closest to the underlying index level. Data are daily from 1996-2019. T-stats are computed
using clustered standard errors by trading day and reported in square brackets.

36



Table 5

Excess returns of VIX futures during the period of resolution of informativeness

(1)

VIX futures

ROI premium β 0.033

[0.24]

N 10,598

R-sq 0.007

This table reports the results of the following panel regression rτ ,t = βIROI
t ·IAfter

t (τ)+β1I
FOMC
t +∑11

w=1 γwI
Maturity
w,t (τ) +

∑5
d=1 δdI

DOW
d,t + ϵτ ,t, where rτ ,t is the log return of the VIX future with

expiration τ on day t (in percentage unit), IROI
t is an indicator of whether day t is within the period

of ROI, IAfter
t (τ) is an indicator of whether τ is after the next FOMC announcement as of day

t, IFOMC
t indicates whether day t is an FOMC announcement day, IMaturity

w,t (τ) is an indicator of

whether t is within w weeks of τ , and IDOW
d,t is an indicator of whether day t is the dth weekday

(e.g. IDOW
1,t takes the value of 1 when day t is Monday, and 0 otherwise). Regressions apply equal

weight on each trading day (i.e. t). Data are daily from 2004-2019. T-stats are computed using
clustered standard errors by trading day and reported in square brackets.

37



Table 6

Excess returns of stock options prior to earnings announcements

(1) (2)

2nd Moment Straddle

ROI premium β 0.328** 0.931***

[2.75] [18.44]

N 3,652,726 4,713,315

R-sq 0.010 0.015

This table reports the results of the following panel regression rτ ,i,t = βIROI
i,t · IAfter

i,t (τ) + β1I
EA
i,t +∑11

w=1 γwI
Maturity
w,t (τ) +

∑5
d=1 δdI

DOW
d,t + ϵτ ,t, where rτ ,i,t is the log return of the option portfolio

of stock i with expiration τ on day t (in percentage unit), IROI
i,t is an indicator of whether day t is

within the period of ROI for stock i, IAfter
i,t (τ) is an indicator of whether τ is after the next earnings

announcement as of day t, IEA
i,t indicates whether day t is an earnings announcement day for stock

i, IMaturity
w,t (τ) is an indicator of whether t is within w weeks of τ , and IDOW

d,t is an indicator of

whether day t is the dth weekday (e.g. IDOW
1,t takes the value of 1 when day t is Monday, and 0

otherwise). Regressions apply equal weight on each trading day (i.e. t), and restrict to the S&P 500
universe. Column (1) are portfolios tracking the 2nd moment of the underlying returns, and (2) are
on returns of at-the-money straddles. At-the-money strike price is the one closest to the underlying
index level. Column (1) requires that there are at least 10 instruments in the portfolio and (2)
requires that the at-the-money strike price is chosen from at least 10 different strike prices, and is
neither the maximum nor the minimum among them. Data are daily from 1996-2019. T-stats are
computed using clustered standard errors by trading day and reported in square brackets.
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Table 7

Market loadings of options prior to FOMC announcements

(1) (2)

2nd Moment Straddles

βmkt -8.645*** -1.121***

[-24.19] [-6.11]

βROI
mkt 0.587 0.178

[0.58] [0.43]

N 42,010 42,019

R-sq 0.284 0.054

This table reports the results of the following panel regression rτ ,t = βmktmktt + βROI
mkt mktt · IROI

t ·
IAfter
t (τ)+βIROI

t ·IAfter
t (τ)+β1I

FOMC
t +

∑11
w=1 γwI

Maturity
w,t (τ)+

∑5
d=1 δdI

DOW
d,t +ϵτ ,t, where rτ ,t is

the log return of the option portfolio with expiration τ on day t (in percentage unit), mktt is the log
market return on day t in excess of the risk free rate, IROI

t is an indicator of whether day t is within
the period of ROI, IAfter

t (τ) is an indicator of whether τ is after the next FOMC announcement as

of day t,IFOMC
t is an indicator on whether day t is an FOMC announcement day, IMaturity

w,t (τ) is

an indicator of whether t is within w weeks of τ , and IDOW
d,t is an indicator of whether day t is the

dth weekday (e.g. IDOW
1,t takes the value of 1 when day t is Monday, and 0 otherwise). Regressions

apply equal weight on each trading day. Column (1) uses portfolios tracking the 2nd moment of the
underlying returns, and (2) uses at-the-money straddles. Data are daily from 1996-2019. T-stats
are computed using clustered standard errors by trading day and reported in square brackets.
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A Proof for Theorems 1 and 2

Proof for Theorem 1 Because the underlying probability space Ω is finite dimensional,

for any random variable V defined on Ω, we can identify V as a finite dimensional vector

V = [V1, V2, · · · , Vn] and think of the certainty equivalent functional I as a function from

Rn toR. For s = 1, 2, · · · , n, we denote ∂
∂V (s)

I [V ] as the partial derivative of I with respect

to the sth element of V . The stochastic discount factor can be computed from the marginal

rate of substitution of the representative agent. Given the form of the utility function in (1),

the SDF is given by:

SDF (s1) = β
1

µ (s1)

∂I[V1]
∂V1(s1)

u′ (ȳ1)

u′ (ȳ0)
= λ

∂I [V1]

∂V1 (s1)
, (18)

where λ = β 1
µ(s1)

u′(ȳq)
u′(ȳ0)

is a constant that does not depend on s1 (Recall that µ (s1) =
1
n
for

all s1 due to the assumption of equal probability.).

To prove Theorem 1, we first set up some notation and introduce a useful lemma.

Note that given the SDF , no arbitrage implies that the price of any period-1 payoff X1

denominated in period-0 consumption goods is given by P0(X1) = E0 [SDF (s1)X(s1)]. The

one-period risk-free rate paid in period 1 is Rf,1 =
1

E0[SDF (s1))]
. The risk-premium for an asset

with payoff X1 is therefore given by E0

[
X1

P0(X1)

]
−Rf,1.

Lemma 1. Suppose that I : L (Ω,F , P ) → R is strictly increasing and continuously

differentiable. The following conditions are equivalent:

(i) The risk premium received in period 1 is non-negative for all payoffs that are co-

monotone with respective to V1.

(ii) I is non-decreasing in second order stochastic dominance, that is, ∀ V and Ṽ ∈
L (Ω,F , P ), if V second order stochastic dominates Ṽ then I [V ] ≥ I

[
Ṽ
]
.

(iii) For any V ∈ L (Ω,F , P ),[
∂

∂V (s)
I [V ]− ∂

∂V (s′)
I [V ]

]
[V (s)− V (s′)] ≤ 0. (19)

Proof. Here, we prove the equivalence between statements (i) and (iii). The equivalence

between (ii) and (iii) is based a characterization of Schur concavity that can be found in

Marshall, Arnold, and Olkin [37] or Muller and Stoyan [39].
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First, we assume that statement (i) is true and prove (iii) by contradiction. Suppose there

exist V ∈ L (Ω,F , P ) and s, s′ such that

V (s) > V (s′), and
∂

∂V (s)
I [V ] >

∂

∂V (s′)
I [V ] . (20)

Consider the following payoff:

X (i) = V (i) for i = s, s′; X (i) = 0 otherwise.

Given condition (20), X is strictly positively correlated ∂I[V ]
∂V (s)

and, therefore, the SDF defined

in (18). As a result,

P0(X) = E [SDF (s)X (s)] > E [SDF (s)]E [X (s)] =
E [X (s)]

Rf

,

That is, the risk premium for X is strictly positive. However, by the definition of co-

monotonicity in equation (12), X is co-monotone with V , a contradiction.

Next, we assume that statement (iii) in the lemma is true and prove (i). Take any X that

is co-monotone with V . By condition (21), X is also co-monotone with respect to ∂I[V ]
∂V (s)

and

the SDF defined in (18). As a result, X and SDF are positively correlated and

P0(X) = E [SDF (s)X (s)] ≤ E [SDF (s)]E [X (s)] = E [X (s)]

as needed.

It is straightforward to show that the strict inequality version of Lemma 1 also holds.

That is, the following under the same assumptions in Lemma 1, the following states are also

equivalent:

(i′) The risk premium received in period 1 is strictly positive for all payoffs that are strictly

co-monotone with respective to V1.

(ii′) I is strictly increasing in second order stochastic dominance, that is, ∀ V and

Ṽ ∈ L (Ω,F , P ), if V strictly second order stochastic dominates Ṽ then I [V ] > I
[
Ṽ
]
.

(iii′) For any V ∈ L (Ω,F , P ),[
∂

∂V (s)
I [V ]− ∂

∂V (s′)
I [V ]

]
[V (s)− V (s′)] ≤ 0. (21)
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and the strict inequality holds as long as V (s) ̸= V (s′).

To prove Theorem 1, we note that statement 2 in Theorem 1 is equivalent to statement

(ii) in Lemma 1. In addition, statement 3 in Theorem 1 is equivalent to statement (iii) in

Lemma 1. It is enough to show that statement 1 is equivalent to (i). Given that u is a

strictly increasing function, the definition of V1 in equation (11) implies that y1(s1) is strictly

co-monotone with V (s1). This establishes the equivalence between statement 1 in Theorem 1

and statement (i) in Lemma 1. The strict inequality version of the theorem can be similarly

proved by using the strict inequality version of Lemma 1.

Proof for Theorem 2 First, we assume condition 1 in Theorem 1 is true, that is the

risk premium for any asset with payoff co-monotone with informativeness is non-negative.

To prove condition 2, it is enough to show that V0(s0) is co-monotone with informativeness.

We prove by contradiction. Assume ∃s0 and s′0 such that ι(s0) < ι(s′0) and V (s0) < V (s′0).

Consider the following payoff:

X(i) =
1

ι(i)
if i = s0, s

′
0; X(i) = 0 otherwise. (22)

Clearly, X is co-monotone with informativeness. By condition 1, the risk premium of X

must be non-negative. Note that X is also strictly negatively co-monotone with V (s0). By

Lemma 1, we know that under the assumption of strict GRS, the risk premium for X must

be strictly negative, which is a contradiction.

Next, we assume that condition 2 in Theorem 1 holds and prove condition 1. Note that

preference for early resolution of uncertainty is equivalent to V (s0) being co-monotone with

respect to informativeness. As a result, any payoff that is co-monotone with respect to

informativeness is also co-monotone with V (s0). By the assumption of GRS, we know that

the risk premium on this asset must be non-negative. The strict inequality version of this

theorem can be proved similarly.
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B Data Appendix

Our VIX data come from CBOE’s website, and option data OptionMetrics. While the VIX

data are straightforward to use, the handling of the option data is more involved. Below we

describe our data construction process in detail.

Starting with a big panel of option prices, we first get the data to underlying-expiration-

strike price-put/call-day level, i.e. for a put or call option on a certain underlying that has

a certain expiration date and strike price we should have one price per day. There are some

cases where there are two prices per day.11 In those cases, we take the average of those two

available prices.

Having a panel at the underlying-expiration-strike price-put/call-day level, we take the

average of bid and ask to get the price of an option. This price can be missing, however, even

for large underlying such as the S&P 500 index. This is because price inquiries can be rare

for deeply in-the-money or out-of-money options. In the event that a price becomes missing

and reappear in a future date, we forward fill the price, assuming a return of zero. If the price

becomes missing forever, we replace the first missing price with zero if the option is a call

and the last available call price is less than the put price of the same strike and expiration,

and with the last available price if the last available call price is greater than or equal to the

put price. Similarly, if the option is a put, we replace the missing price with 0 if its price is

less than the call with the same strike and expiration, and with the last available price if it

is the greater than the put price. This logic is to roughly impute a zero final return if the

option is in the money, and a return of -100% if it is out of money.12 While this operation is

conceptually importantly, our results are robust to alternative imputation methods such as

assuming all final returns are 0.

Having non-missing prices we can construct the synthetic variance swaps behind VIX

using these S&P 500 options and compute their returns. We construct these variance swaps

following the formulas in Bakshi et. al. (2003), with additional data cleaning procedures

taken from the construction of the VIX index, which are documented on the VIX white

paper, available on CBOE’s website. We describe our methodology in detail below.

11Such cases are because there are two types of options, e.g. standard monthly options and weekly options,
that happen share the same underlying, expiration, strike price, and put/call and are both outstanding on
the same day.

12In the context of individual stock options, this logic is expensive due to the size of the data. We instead
replace all final missing price with last day’s price, and additionally verify that our results do not change
appreciably if we replace all final missing prices with 0, of if we conditionally replace all missing prices with
0 or last day’s price based on whether last day’s price is greater than a dollar.
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Overall, the portfolio on any given day consists of out-of-money options, which are call

options with strike prices higher than the previous close price of the underlying, and put

options with strike prices lower than that close price. Out-of-money options with zero bid

prices are excluded from the portfolio. Also, those with two consecutive zero bids between

them and the at the money strike prices are also excluded. For instance, suppose a call with

strike 100 has a non-zero bid price, and on that day the at-the-money strike price is 30.

Let’s say the two strike prices immediately lower than 100 is 95 and 90, and calls with those

two strikes prices both have zero bids. Then the call option with strike price of 100 will be

excluded even though it is an out-of-money option with non-zero bids. These data exclusion

logic is adopted from the CBOE’s methodology in constructing the VIX index.

Having the sample we now discuss the weight of each option in the portfolio of variance

swap. Say an option has a strike price of K, and the two nearby strike prices flanking K

for that underlying-expiration-day are K− and K+. Let the underlying’s close price on the

previous trading day be S. For the second moment portfolio, the relative weight on the

option with strike K is (K+−K−)
2

1−log(K/S)
K2 . If the strike price is the highest or the lowest

for that underlying-expiration-day, the weight is then (K−K−)
2

1−log(K/S)
K2 or (K+−K)

2
1−log(K/S)

K2 ,

respectively. We then rescale these relative weights so that they add up to 1 for each

underlying-expiration-day. Weighted-returns on these portfolios are then computed. In the

context of S&P 500 option portfolios, these returns are used as is because the data can be

manually examined to make sure that they are free of influential data errors. For individual

stock options such manual examination is not possible. We instead winsorize these returns at

the 0.5 and 99.5 percentiles, and additionally verify that our results are robust to the chosen

percentiles.

44


